
Compiler Design
Prof. Y. N. Srikant

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 02
Lecture No. # 03

Run-time Environments-Part 2

 (Refer Slide Time: 00:25)

Welcome to part 2 of this lecture on run-time environments. In the last lecture, we

discussed some aspects of run-time support; for example, what is run-time support,

parameter passing mechanisms and a little bit of storage location.

(Refer Slide Time: 00:45)

Today, we will continue the part 2 of the lecture with the topics that we have not yet

discussed. A little bit of review from last time: we discussed static data storage

allocation. Basically, the compiler is responsible for allocating space for all variables

both local and global in this type of allocation.

This is done for all procedures at compile time. If you look at the picture here, you have

main program variables, procedure P 1 variables, P 2, P 3 variables and so on and so

forth.

The difficulty with this allocation method is we cannot have recursion. No stack and

heap allocation is available here. There are no overheads, but at the same time we cannot

have recursion.

(Refer Slide Time: 01:35)

Dynamic storage allocation is another policy, where compiler locates place only for

global variables at compile time, but space for all other variables of procedures will be

allocated only at runtime. This policy is based on stack heap allocation and it is available

in C, C plus plus, Java, FORTRAN 8 and FORTRAN 9.

The variable access in this case is a bit slow because there are several indirections in

accessing locations, but recursion can be implemented here. This is the biggest

advantage in dynamic storage location.

(Refer Slide Time: 02:17)

We also saw the activation record structure. An activation record is a unit of allocation

for the run-time support. Whenever a procedure is called, a new activation record is

created; parts of the activation record are initialized by the caller and parts of the

activation record are initialized by the callee. There is almost everything that you need,

all the information: return address, some static and dynamic links, address of the function

result and then the actual parameters, local variables, temporaries, machine status, that is,

the set of registers and other information, space for local arrays, etcetera.

(Refer Slide Time: 03:06)

The first thing that a compiler should do during intermediate code generation itself is to

compute the offset at which variable is going to be stored in the activation record. If the

storage allocation is static, then these are going to be offsets in the static data area itself,

but otherwise these are all offsets in the activation record. The compiler should compute

the offsets at which variables and constant will be stored in the activation record.

These offsets will be with respect to the pointer pointing to the beginning of the

activation record and variables are usually stored in the activation record in the

declaration order itself. For example, if you have int A, B, C semicolon; float D, F

something like that, then the offsets for A, B, C will be 2, 0, 4 and 8; and the next D and

F will get offset from 8 onwards that is 12 and 12 plus 8; that is 20. It is in the storage in

on declaration order itself. We will see a little more detail of how is this computation is

performed during semantic analysis.

(Refer Slide Time: 04:35)

For example, consider a simple grammar program consisting of only declarations. P

going to decl and a declaration is type T followed by id semicolon Decl 1; Decl 1 is the

other non-terminal which produces more and more declarations. Otherwise the ending

terminal production is decl going to T type and followed by id.

Type can be int, float or num as indicated in the other 3 productions here. Let us start

looking at the method by which the variable offset is computed. The declaration is the

most important non terminal. It has actually an inherited attribute called inoffset and it

also has a synthesize attribute called outoffset.

To begin with, at the beginning of the declaration list this inoffset is set to 0 and then as

we parse declarations, for example, look at this now (Refer Slide Time: 05:52) T id

semicolon declaration 1. This identifier is entered into the symbol table along with the

name, the type and the inoffset that is the beginning of that declaration list there is some

offset which comes in to this list. That is the offset which is assigned to the name id.

Now the declaration 1 dot inoffset is also set as declaration dot inoffset, but it is added an

increment of T dot size.

The reason is this declaration id is of type T and T dot size is the size of that particular

type. For example, ints may take 4 bytes; floats may take 8 bytes and so on and so forth.

That is why, whatever we got from the left hand side declaration non terminal is

incremented by the size of that particular type and that is assigned to declaration 1 dot

inoffset.

What is declaration dot outoffset? That is whatever we get from declaration 1 dot

outoffset. The declaration which are parsed by this non terminal or generated by this non

terminal are all accumulated and then outoffset will give you the final offset for this

particular thing.

This recursive production applies itself again and again and generates all the

declarations. Each time a declaration is produced there is some incrementing and then

the next declaration gets that added offset. For example, declaration going to T followed

by id terminates this recursion and at that point we enter the name with type and some

offset and outoffset is T dot size itself because this is a declaration which is terminating

the entire thing.

This is how we parse the declarations and assign variable offsets.(Refer Slide Time:

08:00) T going to int - size is 4, T going to float - size is 8 and T going to num T 1 is an

array. The T dot type is array type and T dot size is T 1 dot size into the num dot value

that is the size of that particular array is num dot val. This num dot value is multiplied by

the type of this particular array whose size is available in T1 dot size. This is an example

of how variable offset computation is performed in the declaration order.

(Refer Slide Time: 08:36)

Now we come up to a very important part of this lecture, how are activation records

allocated during dynamic allocation that happens in languages such as C and C plus plus.

Let us consider a simple program here, program RTST and the procedure is P, which is

actually enclosed within the main program RTST. Then procedure Q is enclosed within

procedure P and the procedure Q has a body in which we say begin, call the procedure R

and end; procedure R is just outside procedure Q; it also has a body which says begin,

call the procedure Q and end.

So, basically Q calls R and R calls Q there is some recursion which happens here and at

the level of procedure P itself, there is a body which says call R and the main program

begins by calling P. Here is a call sequence which is possible. The main program RTST

calls P and P calls R, R calls Q and Q calls R.

We are going to trace the allocation of activation records for this particular sequence.

What we need to remember at this point is activation records are created at procedure

entry time and they are destroyed at procedure exit time. (Refer Slide Time: 10:12) To

begin with, what we have is the main program space in the stack of activation records. In

the stack heap area we just have the main program data already available because these

are like global variables. Whatever is stored here is a set of global variables which can be

accessed by any of these procedures; that is the program variables which are declared

here.

There is a static link chain which will be shown in the following diagram on this side and

there is a dynamic link chain which will be shown in the diagram on the other side. So,

let see. Next is the next place where the activation record can be created in the stack

heap.

(Refer Slide Time: 10:58)

So, RTST has called P, the activation record for P did not exist; it is created now. Now

there are 2 questions to be answered: One is what to do with the dynamic link chain and

the other one is what to do with the static link chain. The rest of the initialization within

the activation record is fairly straight forward and there is nothing much involved there;

various return addresses and temporaries etcetera are all stored there.

The dynamic link chain is used only to maintain the stack nature of this particular set of

activation records. As we go on, as we add 1 activation record at a time, this dynamic

link will point to the previous activation record. When we remove for example, this

particular activation record, the activation for P ends after the call chain comes back.

This entire thing will be removed; this particular link also disappears.

What is the static link? The static link actually allows us to access the global variables.

For example, if you look at the scope of the variables which are visible within the

procedure P, here is the body of the procedure P, this particular body can access the

variables of program RTST; they can also access the variables of the procedure P.

As far as the variables of program RTST are concerned, they are like global variables

and the variables within the procedure P are the local variables. The access to local

variables is very easily done with respect to a pointer call the base pointer. All the

offsets, we saw offset computation example before, offsets are all with respect to this

base pointer. So, it is very easy to add the offset to the base pointer and get to the

location where the local data is stored.

For each variable, we have an offset and adding that to this base will give us the location

where the variable is stored. Suppose we have global variables that is the variables of the

main program RTST which we need to access within the procedure P, in such a case, the

static link chain is going to help us. Take the static link, see where it points, it is actually

pointing to RTST itself.

If we take the contents of this particular static link variable, we get the base pointer of

this particular RTST (Refer Slide Time: 13:45); that is the way it would be. Once we

know the base pointer of RTST, accessing the variable within that is really straight

forward. Again we have the offset that has already been computed and it is easy to access

it.

All this happens at compile time. In other words, the compiler already knows because of

the nesting levels of the procedures, how many times it needs to skip the static link. This

will become clear as we go along and then treat that as a pointer to the activation record

and access the variables within that activation record.

(Refer Slide Time: 14:28)

Let us now look at the call to R from P. See the activation record for C is now created

fresh. The dynamic link simply points to the previous one, previous activation record that

is the tough P and then whatever remains as dynamic link from P to RTST remains.

This is the chain of dynamic links used to maintain the stack nature of the activation

records. On this side look at the procedure R; the procedure R is just within the

procedure P. So, the body of the procedure R can access the variables which are within

the procedure R, it can access the variables of the procedure P which is the enclosing

procedure and it can also access the variables of RTST which is the next level enclosing

procedure - that is the main program itself.

Using the base pointer, the code can access all the variables of R by using one level of

indirection on the static link and then treating that as the base pointer it can access all the

variables of P. By doing indirection twice, it can get the base pointer of the main

program RTST and access the variables of RTST.

Remember that the compiler itself knows how many times this indirection needs to be

applied because the symbol table will contain the nesting depth of each one of the

program variables and the procedures.

(Refer Slide Time: 16:12)

We go one step further, R calls Q. We had RTST which called P; then P called R; now R

calls Q. R and Q happen to be at the same nesting level. They are not nested within one

another.

If you look at Q, the body of Q can access the variables within procedure Q, it can access

variables within the procedure P and it can access the variables within the main program

RTST. That is all, just like the procedure R. It is not allowed to access the variables of

procedure R. So, making the static link point blindly to the activation record of R will be

incorrect. If that is done, then the variables of R can also be accessed which is not right.

Therefore, this particular static link (Refer Slide Time: 17:05) should be made to point to

the beginning of the activation record of P itself. Now, whenever the compiler needs, it

can generate code to access the variables of this procedure Q. By doing one indirection,

it can access the variables of P and by doing 2 indirections, it can access the variables of

RTST. The variables of R will not be accessed at all, which is the right thing to do.

(Refer Slide Time: 17:34)

Let us look at the next activation which is that of R. So far, we had RTST then called P,

P calls R, R calls Q and then there is a recursion, Q calls R again. There are 2 instances

of R and an instance of Q. So, R cannot and should not access the variables of Q - this R,

the second instance of R and it should not also access the variables of the first instance of

R. It should actually be accessing only the variables of R, P and RTST and this is

appropriately done by making the static pointer or the static link of this particular

activation record point to the beginning of the activation record of P. The next thing that

we need to see is how exactly are we going to establish these static links. Dynamic links

are very easy. This is dependent on the level information of the various procedures.

For example, RTST is assumed to be at level 1; procedure P is assumed be at level 2;

then procedure Q is at level 3; procedure R is also at level 3. The levels of the procedures

are all indicated in this caller chain. RTST has superscript 1, P has 2, R has 3, Q has 3

and R has 3.

(Refer Slide Time: 19:02)

Let us see how it is established. The basic rule is very simple: skip L1 minus L2 plus 1

records starting from the caller’s activation record and establish the static link to the

activation record reached.

What is L1? L1 is the level of the caller and L2 is the level of the callee. Let us take this

call chain and look at an example, 2 examples really. Consider the call P to R; that means

this RTST would already be present; P will already be present, but R is not yet present;

of course, these (Refer Slide Time: 19:43) 2 are not yet present.

So, the level difference is 2 minus 3 plus 1 which is 0. Hence, the static link of R should

point to this activation record of P itself. That is the simplest rule. Similarly, take R calls

Q; we should really be pointing here. Let us see whether we do that.

So, 3 minus 3 plus 1 is 1. Hence, skipping one link starting from R, we get P and the

static link of Q will point to the activation record of P. This is how the static link chain is

set and this formula, which is very simple one, enables us to set this links appropriately.

(Refer Slide Time: 20:34)

What we saw so far is one method of arranging activation records; this is using the static

link and dynamic link. There is another way of establishing access to these global

variables and arranging the activation records; that is known as the display stack.

Let us discuss this display stack and then see what is the advantage or otherwise of each

of these schemes. Take the same program RTST, P, Q and R. The display stack is a very

simple stack of pointers to the activation records. To begin with the display stack has a

pointer to the activation record of RTST, the main program and nothing else. Activation

records are going to be stored exactly the way they were stored before - that is in the

stack heap area.

The creation of activation record, destruction of activation record etcetera happens as

before; there is no difference at all. To begin with, we have just this RTST; one pointer

pointing to the activation record of RTST.

Now there is a call; the call is to the procedure P. When there is a call, we actually push

the activation record pointer of the callee or we decide to pop some of the entries of the

display stack and then push the activation record pointer; one of these can happen based

on this particular formula.

The formula says: Pop L1 minus L2 plus 1 records off the display of the caller and push

the pointer to the activation record of callee on to the stack. L1 is the caller, L2 is the

callee and the formula is exactly the same as before.

Let us do that here. The levels, when we look at it, RTST is at level 1, P is at level 2; 1

minus 2 plus 1 is 0. So, nothing needs to be popped from this display stack; you only

push the pointer to P’s activation record. Then P calls R; P is at level 2 and R is at level

3. 2 minus 3 is minus 1 and then plus 1, again 0. So, we again need not pop anything

from this display. You only push the activation record pointer of R on to this display

stack, but now something different happens. R now calls Q, both are at level 3. 3 minus 3

is 0 plus 1 is 1.

So, we need to pop one activation record pointer; that is that of R from this stack which

uncovers the pointer P and then we push the new pointer Q on to the stack exactly the

way we did before. There is no difference at all. There, the static link changes allowed us

to access the various global variables.

(Refer Slide Time: 20:34)

Here, as I am going to tell you very soon, the stack of activation record pointers - the

display stack allows us to do exactly the same thing. We get 3 activation record pointers

Q, P and RTST on this and then once this happens, there is another call to R again; 3

minus 3 plus 1 is 1. So, one of the pointers that is Q is pushed out R. The new R

activation record pointer is pushed on to the stack and from now onwards the recursion

unwinds. This is where this particular comment becomes important.

The popped pointers are stored in the activation record of the caller and restored to the

display after the callee returns. In other words, whatever we popped here cannot be just

dispensed with. We need to store it in the activation record of the caller and then once we

return, this particular pointer will have to be pushed on to the stack again and situation

should be exactly as before.

This is after the callee returns; that is what we do. The callee will not know about this

activation record pointers at all. See for example, when R calls Q we have dispensed

with the activation record of R, rather the pointer to activation record of R is removed

from here and then the pointer to the AR of Q is inserted. Therefore, the callee cannot

store this pointer in its memory, only the caller will have to store the pointers which are

going to be popped off and then place the call to the new procedure.

Let us see how the variables are accessed within these programs. Let us take this

example. We have Q, we have P, we have RTST. These are the 3 activation records

which are active at this point of time and the code of procedure Q can access the

variables of itself, those of P and those of RTST; that is what this really means.

This can be done very easily here. Q is a pointer to the activation record; this is the

pointer to the Qs activation record. Using this pointer, it can access the AR of Q and

variables of Q with an offset.

Similarly at the next level, if there is a variable of P which is easily known from the

symbol table, the compiler generates code to take the pointer AR which is mentioned

here as P, go to that particular activation record, use the offset and dig into the AR of P.

Similarly for RTST also.

The access is very similar to what happened before. Only thing is we really do not have

to traverse any static link chains. Here, we just use these pointers which are on the

display stack in order to access the variables.

(Refer Slide Time: 27:04)

Before we begin this static scope and dynamic scope, let me mention a few points about

the display stack and the static link, dynamic link chain itself - the methods themselves.

When you have the sldl scheme, you need to traverse the static link chains possibly many

times before we access the right global variables.

There are many indirections which can happen. This can become a bit slow if the number

of global variables in the program is large. This does not happen in the case of the

display stack. The pointers are already on the stack and taking them from the stack is no

overhead, but popping and pushing the pointers from the display stack is extra in the case

of the display stack mechanism. This does not happen in the case of the sldl scheme.

It is very difficult to say which particular method is more efficient compared to the other

and there are compilers which use either of these methods. We are not going to get in to

a debate on which is better; both are equally good and any one can be used

Let us proceed further; the next concept that we discuss now relates to the scope. There

are 2 varieties of scope: first is the static scope and the second is the dynamic scope. Let

us understand these words well. When the scope is said to be static, a global identifier or

a name, global name refers to that particular identifier with that name that is declared in

the closest enclosing scope of the program text. It uses the static relationship between

blocks in the program text.

That is, this is exactly the way we understand the scope of variables in C and C plus plus.

Look at the program, see at which level the variable is declared and whenever we want to

refer to a variable, we just go up the nesting levels, find the first place where it is

declared and that is our variable.

That is, what we mean by saying the name refers to the identifier with that name that is

declared in the closest enclosing scope of the program text. You just go up the nesting

levels of for the procedures, find the first one which contains that particular name. This

particular relationship does not change. It is related to the program text and it is not

related to the execution of the program but dynamic scope is different.

We are going to see example of this very soon. A global identifier refers to the identifier

associated with the most recent activation record. For example, if we have 2 procedures

with the same variable x depending on which is active a point, x may refer to either one

of them. We will see an example of this. It uses the actual sequence of calls that are

executed in the dynamic execution of the program and both are identical as far as local

variables are concerned; there is no different at all.

(Refer Slide Time: 30:40)

Let us see a simple example. Here is a C like program: int x equal to 1; function g z, the

body is x plus z, it is just an expression; function f y has a bigger body, it has a variable x

equal and it is assigned the value y plus one and it returns g of y star x; this particular

function f is called with f 3 in the main program.

Let us assume static scope. What really happens is, when we are within this function g z

the x here, there is no declaration of x within the function g; it just goes to the next

nesting level that is, the main program. This particular x is what we refer here; that is

static scope.

When we come to a function f y, you have int x equal to y plus 1; this is a local variable

which is declared within the function f. Then we say return g of y star x. We have called

f with 3. So, y is 3, x becomes 4 and g is called with 4 into 3 - that is 12.

When we come to g z, let us trace what happens. This says x plus z, z is already 12, but

the x we refer to is 1. So, 12 plus 1, 13 is returned as the value of f. This is the way a

program executes when it is using static scope.

Most importantly, even though the function f y is active, when g is executing; for

example, we called f. See, you look at this particular chain (Refer Slide Time: 32:43):

This is the outer block x with value one; this is the activation record corresponding to f

of 3; the variable y and variable x are present here; y is the parameter, x is the local

variable; y has the value 3, x has the value 4 and then we have another activation record

corresponding to g where the value of z, which is the parameter, is 12.

Let us see what happens if we use dynamic scope. Let us trace the whole thing all over

again we called f with 3; x becomes 3 plus 1 4; then g is called with y star x that is g of

12. So far so good, there is no change with what happened.

But when the function g is called it says x plus z. In dynamic scope, the question asked is

which x? In static scope, it was very easily resolved as this particular outer x, the

enclosing main program is looked at and x is determined to be the variable which is

relevant here. In dynamic scope, it looks at the most recent activation of some function

which contains the variable declaration for x. In this case, it is this particular f. So, that is

why it is so. Let me go back.

We have g here, the parameter is 12, but when we come here x plus z, the most recent

activation of x corresponds to the variable int x within the function f y here. (Refer Slide

Time: 34:32) This x is not this x which is relevant, when dynamic scope is active. In

static scope, this is always the variable that is relevant whereas, in dynamic scope this is

the most recent activation of x; so this x is relevant.

What we do is add 4 to 12 and return 16. In the previous case, we had added one to 12

and returned 13. Now, we return 16. This is the precisely the way the dynamic scope

works.

(Refer Slide Time: 34:55)

Here is another example. Let us see what happens. Here is the floating variable r, 0.25;

then the procedure show simply prints the value of r; the procedure small has a local

variable called r which is initialized to 0.125 and then it calls show.

What does the main program do? The main program calls show and then calls small and

prints a new line. It does the same thing all over again. Let us trace the values which are

printed out by these 2 print statements under static scope and dynamic scope. Under

static scoping, show prints r; the only r which is relevant at this point is the r here, which

is printed out as 0.25. Then it calls small. It has a float variable called r which is

initialized to 0.125, but when we call show under static scope, again there is no other r

except this which is relevant. So, 0.25 is printed all over again. The same goes for the

next line – 0.25 and 0.25.

Let’s see what happens under dynamic scope. The first show - there is only one r, which

is active that is this r; so, it prints 0.25. Then it calls small. Now, the second r becomes

active because the procedure small is called.

The new r has 0.125. When show is called, the r variable that is referred to here is the

most recent activation of r which is this. (Refer Slide Time: 36:37) So, it prints 0.125.

When it comes out and prints a new line and then show is called again, at this point this

procedure small and the variable r have vanished; the activation record have already been

destroyed because the procedure has returned. 0.25 is printed all over again. small

repeats exactly what happened. The small creates a new variable, it calls show and this r

within show is again going to refer to the r which is inside small. 0.125 is printed all over

again. So, this is how the static scope and dynamic scope really work

(Refer Slide Time: 37:18)

Let see how to implement the dynamic scope. Static scope, we already saw how to

implement it; that was using the static link dynamic link chain or using the display stack.

Here we have what is known as the deep access method and in the next few minutes after

this, we will also discuss another method call the shallow access method.

What is the deep access method? In this case, we use the dynamic link itself as the static

link. In other words, we do not have 2 links; we just have 1 link. It is dynamic link Static

link is not necessary. The reason is simple; we always want the most recent activation of

the variable and we are not worried about the scope. So, there is no need to compute the

value of static link as we used to do before. Now we just use the dynamic link, but how

to find the most recent activation of that particular name. This is done by searching the

activation records on the stack; to find the first activation record containing the non local

name. If it is a local name, then it is within my activation record. Whatever I am doing

within my procedure activation, the variable is existing.

If it is a global variable, we need to go out, but how far into the stack of activation

records is the question. Since we do not know how far, it is called as the deep access

method. It can go up to the main program, that is, the first activation record or it could be

the immediate previous predecessor activation record itself; we have no idea.

The depth of the search depends on the input to the program and cannot be determined at

compile time. This search also needs some information on the identifiers to be

maintained at runtime within the activation records. Why?

How do we search for a variable in an activation record? If the activation record has only

offsets, there is no way we can say, this is that of the variable r or x or a. So, for each

variable, we also need to maintain some type of an integer code saying with this code,

this is the variable associated; with this code, this is the variable associated and so on and

so forth.

Once we have this coding within the activation record, that is, the variable and the

integer code which is already known to the compiler, this can be established by the

compiler; that is not a problem. Because each name needs to have a unique code nothing

more than that is necessary. We search for the existence of that particular code. Once that

code is available, the offset corresponding to it is used for access to that variable.

Such a mechanism takes much longer time to access the globals, but there is no overhead

when activations begin and end. This is an advantage. Activations do not cause any

overheads, but when you want to access globals, you have to get deep into the stack of

activation records and then access the variable.

(Refer Slide Time: 40:49)

Let us look at the next method of implementing dynamic scope. This is called as the

shallow access method. Why is it called shallow? It will be very clear soon. It is a very

simple method, allocates some storage for each name. In other words, if the name has 5

or 6 instances that is, the same name is declared in many procedures it does not matter.

We just want to look at each name and allocate the maximum amount of storage for that

particular name. In other words, let us say the variable is x; it may be declared as int in a

particular function or procedure. In another function or procedure, it may be declared as

an array; and in third one it could be a struct. What we want is the maximum storage

corresponding to this name; it could be the array, it could be the struct, any one of these

possible. Of course it can be a single variable, but it can be an int but struct is not smaller

than int; that is, why I said either struct or the array itself.

So much maximum storage is known already and that is the storage which is allocated

statically for each name. There is a new unique location in each name, very simple.

When a new activation record is created for a procedure p, a local name n in p takes over

the static storage allocated to the name n. Therefore, there is only 1 location or set of

locations corresponding to the variable n.

Whenever there is a need for that variable n, it could be in a particular activation of a

procedure, we just use this static region as the storage allocated to the name n. The

previous value of n is held in static storage As we go along there could be another n

which comes along. Then the previous n must vacate the space and give it to the new n.

What happens to the value of old n?

The previous value of n held in static storage is saved in the activation record of p and

restored when the activation of p ends. Now it is the callee which is storing the variable.

Before it tries to access the storage for n, whatever is already available in n is stored in

its own activation record. We know the maximum size of that variable storage. That is

why we can store it in the activation record. Once the activation of p ends, whatever is in

the activation record, the previous value is restored into the static area and then the call

continues.

Direct and quick access to globals is possible because this is like hashing. You always

come to one location for n; it is static, the address is known, but some overhead is

incurred when activations begin and end. You need to store the old value of n and restore

it when the procedure p ends. So, this is the overhead that is incurred. Whereas, in the

previous case that is, the deep access method there was no overhead when activation

begin and end, but you have to traverse deep in to the stack in order to access that

particular variable.

(Refer Slide Time: 44:29)

The next topic that is very important is to understand how to pass functions to other

functions as parameters. To understand this, we must understand what exactly first class

functions are. Here is a description:

A language has first class functions if functions can be declared within any scope. For

example, Pascal has such a facility and functions can be declared within classes in C plus

plus that is, the methods and functions can be passed as arguments to other functions.

This is something we have not discussed so far and they can also be returned as results of

functions. When we say passed as arguments, we are not looking at a function call as a

parameter. It will become very clear with this particular example

Let us look at the example and then return to the text again. Here is main; you have int x

equal to 4 and then you have int f which is a function f which returns an integer value, it

takes another integer as a parameter and returns x star y, so far so good.

There is another function called g which takes a function as a parameter. The function

parameter is h and the function takes as input an integer and returns output as another

integer. That is why this is a mapping from int to int.(Refer Slide Time: 46:23) This is

the type of this particular h. Just like int was the type of the parameter y here, the type of

the parameter here is a map from int to int.

The body contain int x equal to 7, straight forward and then it is says return h 3 plus x

which is straight forward again. Let us start looking at the call to g with a parameter f.

Notice that, this f is not loaded with any parameters at this point. g has simply an actual

parameter called f which is nothing, but this function which is passed as a parameter.

Let us go to g. Types match here; f is int to int, takes input as int and returns output as

int. So, int to int is matched here. Now x is initialized to 7. When you say return h 3 plus

x that f corresponds to h.

It is really a call to f with the parameter 3. Now, the function f is executed. (Refer Slide

Time: 47:32) At this point when we passed f to g, there was no execution of the function

f, but here when we call the function h which is nothing, but the function f along with the

parameter 3, the actual function f is invoked. That is x star y; it returns x star y. We have

3 and then we have 4 here; so, the return value is 12, plus x again. This 3 star y; g of f

returns h of 3; int y was 3; 3 into 4 was 12. This would not return 12. There is a minor

mistake here. So, 12 plus 4, 16 is returned here. This should have been 16.

In a language with first class functions and static scope, a function value is generally

represented by a closure. We know how to pass integers, floats and so on and so forth as

parameters.

Now, let us learn how to pass functions as parameters. It is not enough to pass a pointer

to the code itself. We need to pass a pointer to the function code and also a pointer to an

activation record. Which activation record? It will become very clear with an example in

the next slide.

Passing functions as arguments is very useful in structuring of systems using what are

known as up calls. For example, you may have a nested set of procedures. One nested in

another and the inner most procedure probably is required to be called at the outer most

level which is not possible if you look at static scoping. In order to permit such a thing to

happen even under static scope, we can pass the inner most function as a parameter and

then execute it whenever it is necessary in the outer function. This is called an up call

and it is very useful in operating systems design and implementation.

(Refer Slide Time: 49:44)

Here is an example of closure. Let us explain, what exactly is a closure here. Here is the

example that we had seen earlier. You have the main program that is, the variable x

equal to 4 and nothing else, only one variable. When we call g of f within the main

program, here is the activation record corresponding to that particular call to g; there is a

static link which points to the main program. We are looking at static scope. The only

things that we can see here from within g are the variables of g itself and the variables of

main. Nothing else can be seen that is, we can see x and f that is all.

Now here is the integer variable within the function g and the parameter which was

passed as f to g. This is the closure corresponding to the parameter h: one part is a

pointer to code for f and a second part is a pointer to the enclosing scope that is, the

tough main itself.

When the call to h that is, the call to f is made, the only difference in the implementation

is creation of the activation record remains the same, but creation of the static link is

actually done by copying this particular static link from the closure parameter to the

actual static link variable and there by pointing it to main itself.

This particular activation of f runs as if it is an activation with access to itself and also

the activation record of main. This is the only difference. Let me repeat when we create

the activation record of the function parameter, the static link is created by copying the

static link value from the closure parameter and it is not computed using L1 minus L2

plus 1, but when we pass a closure which particular static link to be passed is computed

using the same formula L 1 minus L 2 plus one treating f, as if it were a call.

f is at this level. (Refer Slide Time: 52:28) This is let us say 1; this is 2. If you treat it as a

call to f, you really have 1 minus 2 plus 1 which is 0, that is, the pointer to the activation

record of main itself is to be passed to this particular closure. That is how we determine;

it is the same L1 minus L2 plus one.

(Refer Slide Time: 52:48)

Whatever I explained so far is listed here. Just to make sure that we understand

everything well let us go through it very quickly. In this example when executing the call

h 3 h is really f and 3 is the parameter y of f. This parameter y is nothing, but this

particular 3. Without passing a closure, the activation record of the main program cannot

be accessed. How do we know what exactly is the scope of this particular h? Hence the

value of x within f will not be 4. We have no idea what this particular x will be because

we do not even know that we can access the main program.

When f is passed as a parameter in the call g f, a closure consisting of a pointer to the

code for f and a pointer to the activation record of main program is passed. This is what I

mentioned now. When processing the call h 3, after setting up an activation record for h,

the static link for the activation record is set up using the activation record pointer in the

closure for f that has been passed to the call g f.

(Refer Slide Time: 54:08)

This was what I was saying just now. We really copy this to this, rather than computing

this all over again using L1 minus L2 plus one. That is really as far as the activation

record management is concerned. That is how exactly static scope, dynamic scope

etcetera are taken care of.

(Refer Slide Time: 54:17)

Now let us switch to a slightly different topic called as the heap memory management.

What is heap? Heap is just an area in memory. There is a difference between heap and

stack. Stack is a very systematic data structure; there is only push and there is only a pop

permitted and a stack can be implemented using either link layer star or it can be

implemented using an array.

A heap is extremely useful for allocating space for objects created at run time. We do not

know when the object is going to be created. Therefore, it is not possible to use the stack;

you can only use the heap. For example, nodes of dynamic data structure such as linked

list and trees cannot be created using a stack or an array etcetera without losing some

flexibility.

Dynamic memory allocation and deallocation based on the requirements of the program.

For example, C programs have malloc. They do malloc when they want a node to be

created in a link list or in a tree etcetera. They call free when that node is not needed

anymore.

Similarly, in C plus plus programs, there is a call to new to create a new object and then

there is call to delete the old object. In Java, there is only new that is, a call to new is

going to create a new object, but there is no call to delete or free any object. There is a

process called garbage collection which collects all the useless objects and returns it to

some pool.

Allocation and de-allocation may be completely manual as in C, C plus plus. That is we

have malloc, free, new and delete; semiautomatic as in Java that is, we have new and

then garbage collection or it could be fully automatic as in the case of a functional

programming language such as Lisp.

We will actually end our lecture at this point and in the next class we will discuss more

details of how heap is organized. We are going to look at a memory a manager, how the

allocation happens, how de-allocation happens, etcetera. Thank you very much.

