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Instruction Scheduling

@ Reordenng of instructions so as io keep the pipalines of
functional units full with no stalls

@ NP-Complete and needs hauristcs

@ Applied on basic blocks (local)

@ Global scheduling requires elongation of basic blocks
(supar-biocks)

Welcome to part 2 of the lecture on instruction scheduling. So, to recapitulate a little bit,
instruction scheduling is nothing but reordering of instructions so as, to keep the
pipelines of functional units full and make sure that there are no stalls. This is an NP-
Complete problem, as are actually all good problems in computer science. So, we need
heuristics, in order to solve this problem and each heuristic will have some efficacy and
some may be better than the others. We can apply heuristics on basic blocks and that
would become local instruction scheduling; if we consider extended basic blocks called
super blocks, then the scheduling strategy would be called as a global instruction

scheduling strategy.



(Refer Slide Time: 01:16)

Basic Block Scheduling

Basic block eansists of micro-operation sequences (MOS)
which are ingvisiblo

Each MOS5 has several steps. esch regquinng rescurces
Each siep of an MOS requires one cycle for execution

Frecodence consiraints and resource constrainis must ba
satshied by the scheduled program

¢ PCs relate 10 data depéndences and exscubon it i¥y S

& RC's relate to dmited avalability of shared resouwrcoes

What is basic block scheduling? We consider a model of basic blocks to consist of
various micro operation sequences; these are the instructions that we have. Each MOS is
indivisible; so it is pipeline, but it is indivisible. Each MOS has several steps and each of
these sub steps will require resources. We assume that each MOS sub step will require

one cycle for execution.

There are going to be constraints on the reordering process. So some of them are

precedence constraints; some of them are resource constraints.

Precedence constraints arise because of data dependences and execution delays whereas;
resource constraints arise because of the availability or unavailability of the shared

resources.
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Instruction Scheduling - Precedence and Resource
Constraints
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Quickly, a simple example to show the precedence and resource constraints, if u and v
are related by an edge and the delay on that edge is d. Let us say, sigma u is the
scheduled time of u and sigma v is the scheduled time of v. Then, the delay must be less
than or equal to sigma v minus sigma u. So, in other words you cannot schedule sigma v

d slots after sigma u you know earlier than d slots after sigma u.

Whereas, the resource constraints. Let us assume that v 1, v 2, v 3, v 4 are scheduled in
0, 1, 2, 3 time slots these are the sub steps of each MOS and the matrix contains

numbers, which indicate the resource requirements of various sub steps.

So assume that we have 5 resources. At i equal to 4; that is, we start here 3; so this is 3,
this is 4. So, look up the diagonal and we have 2 plus 2 plus 1 as the resource
requirements of all the instructions which are still active. See this, sigma the v 3 is
active; and v 2 in its second sub step and v 1 is in its third sub step and v 1 has finished.

So, we have to add up all these and make sure that it is less than or equal to 5, which is
indeed true. The resource constraints are satisfied but if you look at i equal to 2; then, we
sum up the resource requirements of all the three active instructions; v 3, v2 and v 1 are
all active. So 3 plus; 3 plus; 2; that is, 8, which is greater than 5. So the resource
constraint is not satisfied that means this particular schedule the way we have put it here

is not a legal schedule.
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A Simple List Scheduling Algorithm

Find the shortest schedule «~ : ¥ — N, such that precedence
and resource constraints ane sabshod. Holes are hiled with
NOFS

FUMNCTION ListSchedule (' E)

BEGIN
Ready = root nodes of V', Scheduwie =
WHILE Ready + « DO
BEGIM

v = highost prionty node in Ready;
Lb = SatistyPrecedencaConstraints (v. Schedile. o)
r(v) = SatisfyResourcaConstrainis (v, Schedwe, ~ Lb)
Schedule Schedule + [v];
Roady = Ready [v} + {u| NOT (b £ Schedule)
AND Y (w. 1) E.w Schedule |
END
RETURMN o
EMD

The simple list scheduling algorithm looks at a ready queue of nodes, which are ready to
be scheduled. To begin with we have the root nodes of v and then, we pick the highest
priority node in the ready. Then, check whether, it satisfies precedence constraints and
find the lowest slot in which we can schedule it. We make sure that resource constraints
are also satisfied and find the slot after | b, during at which v can be scheduled. Then, we

update the ready queue and add this v 2 to the schedule.

(Refer Slide Time: 04:45)

List Scheduling - Ready Queue Update
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So this is the ready queue update. So v is the node which has been just now scheduled.
So, it has many successors. Three of the successors have predecessors which are already
scheduled; all the predecessors are scheduled. We can add the u 1; u 2; u 3 to the ready
gueue but x 2 has another predecessor x 1, which is not at scheduled so x 2 cannot be

added to the ready queue.
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Constraint Satisfaction Functions

FUMCTION SatistyPrecedenceConsiraini(v, Sched, o)
BEGIM
RETURMN ( max a{u) 4+ diw, v))
o]

EMD

FUMCTION SatisfyResourceConstraint(v, Sched. =, Lb)
BEGIM
FORi=LbTO ~ DO
IF 0 < [ < Hiv), poll
RETURN (i}
EMD

The precedence constraints and resource constraints are quiet straight forward. | already

mentioned what they are so let us look at a picture.
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Precedence Constraint Satisfaction

A ey 5 PRI ] R FrDdal s CORETET SFIANRoT

ANt achec e ool Ete
of u,, Uy, wl, iy, ferir

Lowe ibowurd for o
o g 1e 2 ad, 10
« i 13 2 31)e 30
.




So v is the node and sigma u 1; sigma u 2; sigma u 3 are mentioned here as 10, 25 and
18. So, now what is the lower bound on sigma v, that is the slot in which can be
scheduled; it will be the maximum of 10 plus 2; 25 plus 2 and 18 plus 3. So, that comes
to 29. This is how the precedence constraint is satisfied and the lowest lower bound for

sigma v is found.
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Resource Constraint Satisfaction
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The resource constraint satisfaction at any slot that we want to schedule, we must make
sure that the resources are available. So, as | showed you in the few minutes ago,
scheduling v 3 here will cause a problem; there will be resource crunch so the same is

true for this also.

For example, if we schedule sigma, we put sigma v 3 equal to 3. So, we would have 3

plus 1 plus 2, that is 6. So again we are violating the constraint.

So whereas, here it is 3 plus 1 4 and 1 plus 2 3 and this is 2. So no problem, thus a

resource requirement will be satisfied., that is the reason why 2 and 3 have been left free.
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List Scheduling - Priority Ordering for Nodes
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Simple List Scheduling - Example - 1
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Now how do we pick the nodes from the ready queue? So, there is a priority ordering for
nodes: One of the priorities that we use is the longest path from the node to a terminal
node. So, that is something | can show here. So, you compute the path lengths starting
from the bottom and travel to the top by adding the delays along the paths. You also have
Estart and Lstart, the early start and latEstart deadlines for the nodes. So, let me show

you, a very simple picture of how it can be computed.
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Eslart and Lstarl Computation

ul, u 2, u 3 are the three nodes which are already scheduled the predecessors rather; the
v is the node for which we want to compute the Estart u 1, u 2, u 3 have their Estart
already computed not scheduled. So, 25, 45 and 16 are the Estart times for theu 1, u 2, u
3; the delays are 4, 7 and 2 on these arcs. So, again just like resource on the precedence
constraint problem, we compute 25 plus 4, 45 plus 7 and 16 plus 2, find that 52 is the
max of all this and that would be the earliest start time for this particular node v. So, that

makes sense it is just like satisfying the precedence constraints.

For the latest start we consider from the bottom, the nodes w 1, w 2, w 3 which are
successors of v 12, 36 and 21; subtract the delays and see which of these is minimum and
that is the time the latest time at which we can start v, for example, this is minimum is 10
that corresponds to w 1 which is 12 minus 2 10; that means, if we schedule v at 10 then
after two slots w 1 can be scheduled. If we schedule v earlier than that, then there is a
precedence violation, and therefore we require a pipeline stall. If we schedule v later than
that w 1 will have to wait for a slot because w 1 will be ready at 12, if we schedule this
say at 12, then w 1 will have to wait for the 2 cycles that is still 14 in order to get

schedule.
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List Scheduling - Slack

@ A node with a lower Estart (or Lafarf) value has a higher
Bty
& Slack = Lateri —“Estart
@ Modes wilh kever slack are grien Mghar prcnty
& InslFuchong on the criical path may e 8 slack valus of
Zerd and hence got poonty

So, either too early or too late will harm our heuristic will always make sure that the
slack which is Lstart minus Estart is used as when it is used as the priority. We make
sure that the lower slack nodes are given higher priority and it so happens on critical path
possibly the slack would be 0 and they get the maximum priority. So, let us see how

these Estart and Lstart values are computed for a nontribal example.
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Simple List Scheduling - Example - 2

@ [atencios
@ a0d sub shore. 1 cycle; load. 2 cycles; mull 3 cycles
@ path lengih and slack are shown on the left side and right
side of the pair of numbaers in parenthases

We assume that, add sub and stores take one cycle each, load takes two cycles and

multiply takes three cycles. So, path length is written on the left hand side of the



parentheses and the slack is written on the right hand side of the parentheses. So, what is

inside parentheses or the Estart and Lstart numbers.

So, if you look at it closely, we start the Estart computation from the top. So, the Estart
number is O for i 1 and then as | told you in the last lecture, we compute the Estart values
for i 3 and i 4 by adding the delay of load. So, 0 plus 2 becomes 2 or n 2 on the side as
well. Here also because this is a root node we start the Estart value with 0. And from i 3
along the arc, from i 3 to i 7, we have a delay of 1; so, the value of Estart along this arc
could be 2 plus 1, 3.

Whereas, if we consider this path the mult instruction will get 2 plus 1 3 and the add
instruction will get 3 plus 3 6 because mult has a delay of 6 3. So, 6 is the max value and
therefore, this gets 6. Similarly, Estart value of all the nodes are computed and when we
reach here, this is 7. There is an output dependence from i 8 to i 9.So, this is forced to

become 8 which is 7 plus 1.
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Simple List Scheduling - Example - 2

@ [atencios
@ a0d sub shore. 1 cycle; load. 2 cycles, mull 3 cycles
@ path lengih and slack are shown on the left side and right
side of the pair of numbers in parenthoses

We start the Lstart values from here, it is assigned Lstart equal to Estart is the value
assigned. So, we get a value of 8 for i 9. Now the predecessors are considered this has
many predecessors. So, add has exactly one successor, when we consider add we get 8

minus 1 which is the delay of this as 7 for Lstart.



Whereas for this node this is the only successor so, again this gets 8 minus 1 as 7 and
then adds gets 7 minus 1 as 6. Then we go on you know this add gets 6 minus 1 of 5 and
this multiply gets 6 minus 3 as 3; this gets 3 minus 1 as 2 and from here this is 5 minus 2
that is 3; and this is 2 minus 2 that is 0 minimum is 0. So, this gets its Lstart value as 0
and from here we have two successors one is here and another is here. We need to
consider these two and you know this has 3. So, 3 minus 2 is 1 that is the minimum
value. Of course, when you look at this arc also, you get 8 minus 2 as 6, but 6 is much
larger than 0.

This is the way the Lstart values are computed from the bottom towards the top. So, here
is the program and we want to schedule this particular program by reordering the
instructions. So, we have so far computed the path length and Estart Lstart values. So,
Lstart minus Estart gives you this slack and they are all noted here. So, let us try

scheduling these instructions:
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Simple List Scheduling - Example - 2 (contd.)

@ [pancias
@ o sub, shore: 1 oypcle, load. 2 oycles; muit. 3 cycles
# 2 Irleger unets and 1 Mulbplication unit, a0 capable of Dad
AN GhOre BE el
@ Hounsbe used: haight of the node of Siack

int1  int2 it | Cycle # | InstrMNo. | Instruction
1 i1, i2 By = load 8ty — |

= |

i, i3 by o=ty =20y =1y 4
BE | h+-h+dbh+bek

i645 not sche cycle 2
dud 1o shorts il units

As we said add sub store require one cycle, load requires two cycles and multiply

0
1]
i)
1
1
1
0
Q
1]

00 0 0O 0 0 == =
0 =) % L &= L& B3

requires three cycles. Let us assume that there are two integer units and one

multiplication unit and all the three units are capable of load and store operations as well.

We can use the heuristic of either the height of the node or slack and the schedule will be
identical. So, let us look at slack because we have already one example with height of the

node.
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Simple List Scheduling - Example - 2

@ [alencios
@ B0 Sub shone. 1 eyde, load. 2 cycles, mult 3 cycles
@ path length and sfack are shown on the laft side and right
side of the pair of numbaers in parenthases

So, to begin with these are the two nodes which are in the ready queue because both of

them are the routes of are the dag.
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Simple List Scheduling - Example - 2 (contd.}

@ [pancias
& pod suby stare: 1 cyde, foad, 2 oycles, mult 3 cycles
& Inhrg.a:r umsis and 1 Muibphcaton unit. 8% capable of oad
and siore &5 well
@ Hounsbe used: haight of the node of Siack

int! int2 mult | Cycle® | InstrMo. | Instruction
] i1 i2 B = load oty |

- 0

i3 by o=ty =20y =1

i6. i5 by =l + 3l s
16415 not sche
dua to short
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Simple List Scheduling - Example - 2

@ [atancias
& B30 sub shore. 1 cycle; load. 2 cycles, mulr 3 cycleas
@ path length and sfack are shown on the left side and right
side of the pair of numbers in parenthases

So, in cycle number 0, all the resources become just before the cycle number O,
beginning of it all the resources are available. There are two instructions which need to
be scheduled both are load operations so, load and load. We can schedule both of them
on the two integer units which are available and the multiply unit is not used. So, here a
1 indicates that the integer unit being used and 0 indicates that unit is not being used. So,
1 1 0 indicates integer unit 1 and 2 are be used, but the multiply unit is not being used.
So, two unit two instructions are scheduled both are load. Now we cannot schedule any
instruction in this particular cycle number 1, for the simple reason that load requires two
cycles to compute and complete. Before the load is complete, neither of these two
instructions nor this particular instructions can be enabled. So, we just keep cycle
number 1 vacant and during this period also int 1 and int 2 are busy mult O because load
requires 2 cycles to complete



(Refer Slide Time: 15:48)

Simple List Scheduling - Example - 2

@ [alencios
& B0d sub shore. 1 cycle; load. 2 cycles; mull 3 cycles
@ path lengih and sfack are shown on the laft side and right
side of the pair of numbaers in parsnthases
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Simple List Scheduling - Example - 2 {contd.)

@ [alencies
& S0 Ut shong 1 oo, Ioad & yChESs, il J Cychs
@ 7 irieger units and 1 Mulbphcation unit, Al capable of oad
and shone as wel

2 Hounsbic used: haight of the node or siack

int1  int2 rwit | Cycle # | InsirMNo, | Instruction
1 i1, i by~ load a.i; -

[ ]

- o

i, i3 e=lh=-2l+14+d

i6, i5 T o N R
i645 not schad. in cycla 2
dua to shortage of il units

0
0
0
1
1
1
1]
i)
0

0o 0 o0 0 = =
0 =) @ LR B Lo R

In cycle number 2, now we have all 3 of them you know enabled right so, thisi 3 theni 4
and i 5. All the three instructions are now ready to be executed, the load has completed,
but obviously we cannot schedule all three of them. There is a shortage of the units so,
even though there are three instructions, we cannot really schedule all three of them. So,
we need to pick one or more of these instructions then scheduled them. How to pick?
That choice is done made actually based on the slack. The slacks are 3, 0 and 5 so it is
obvious that the highest slack corresponds to instruction i 5. Then we need to actually
look at the lowest slack not the highest slack. The lowest slack instruction corresponds to



this i 4 so, i 4 is scheduled first. We still have another integer unit available, therefore the
next lowest slack corresponds to i 3. So, i 3 can be scheduled but i 5 cannot be scheduled

because there is no other integer unit available to us.
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Simple List Scheduling - Example - 2 (contd.)

@ [plencies
& Sod Ut sharg 1 oo, Joad & CyCHES, M. J Cyehes
& 2 Irieger units and 1 Mulbphcation unit, & copabie of oad
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@ Hounsbic used: haight of the node or siack

int! int2 malt | Cycle # | InsirMo. | Instruction
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Simple List Scheduling - Example - 2

@ [alencios
& aod sub shore. 1 oycle; load, 2 oycles, mut 3 oycles
@ path length and sfack are shown on the left side and right
side of the pair of numbaers in parsnthases

So, we keep i 5 in the ready queue. Now once i 4 completes i 6 is enabled and it can be
added to the ready queue. But remember we cannot add i 7 to the ready queue because
even though i 5 has completed i 6 has not yet completed. So, in the ready queue we now

have i 6 and i 5 one of them requires mult and the other one requires add. So, obviously



int and mult are available at this point both are free. We take that services and schedule

both instructions in the mult and add units.
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Simple List Scheduling - Example - 2 (contd.}

@ [plancias
& podd sub sforne: 1 cydlo. Joad, 2 oycles, mult. 3 cyches
& 7 Inh_'-g-:-r umsls and 1 Mulbphcaton unit. 8 capable of oad
angd shore B well

@ Hounsbc used: haight of the node of SiaCK

int! int2 malt | Cycle# | InsirMo. | Insfruction

1 i1.i2 By = load &ty |

==

i3 By =ty = 2.0y ¢

i i5 by =ty + 304 .
i6A5 not sche cyche 2
dua 1o short il it

OO0 000 = -
= = S L
00 =) & LR Bs L3 R
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Simple List Scheduling - Example - 2

@ [atencios
@ B0 sub shore. 1 cycle; load. 2 cycles, mult 3 cycles
@ path lengih and slack are shown on the laft side and right
side of the pair of numbers in parenthases

Now the next step, we obviously cannot schedule in i 6 and i 5 etcetera in cycle number
2 because of shortage of units i 5 is not scheduled in; there is no int available and i 6
cannot be scheduled, until we have completed an instruction. So, until i 4 completes we
cannot schedule i 6. So, that is the major difficulty here and we are using slack so, we

cannot go to i 6 even though it is a multiply unit and it is free we cannot schedule i 6 a



head of another instruction i 5 because its slack is you know it is 0 and that is 5. We need
to take care of these slacks also. We cannot violate the rules of the slack. So, what
happens is we end up scheduling i 6 first because it has lowest slack and then i 5 in this
order. So, 2 cannot take anything because there are no units available.
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Simple List Scheduling - Example - 2 (contd.)
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& S0 Ut shong 1 Cyoe. Ioad & SYCHES, il J Cychs
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Simple List Scheduling - Example - 2

@ [alencios
& aod sub shome 1 oycle; load 2 oycles; mull 3 oycles
@ path lengih and sfack are shown on the laft side and right
side of the pair of numbaers in parenthases

Now the next one to be scheduled will only be instruction i 7. We are going to wait for a
long time because multiply has not completed so, please look at the picture again. This

instruction even though i 5 has completed and this is the next instruction; this cannot be



executed until i 8 is completed. So, that is the major problem, we cannot execute this. So,

we have complete i 6 that means, we will require three cycles. So, we wait and then

schedulei 7.
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Simple List Scheduling - Example - 2 (contd.)
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So i 7 is completed then only one integer unit i 8 is in the next cycle and i 9 in the last

cycle. So, this how we actually schedule the instructions according to their slack and that

is about it. So this is the example for scheduling with slack.
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Resource Usage Models - Reservation Table




Then we still have not formally considered how to represent the resource availability. |
showed you, an example here this is the resource reservation table that we are going to
talk about very soon. It shows all the resources and their availability in the various
cycles.

So, we are going to have a resource reservation table for each instruction. So, fori 1 a
class of instructions rather each class of instructions will have a resources reservation
table.

This shows for the various time steps needed to execute any instruction in that particular
class. What are the various resources used in the various cycles? So, for the two
instructions i 1 and i 2, we have shown the two reservation tables. So, for example, r 0 is
used in cycle 0, but not anymore; r 1 is used in cycles 1 and 2; r 3 is used in cycle 3.
Similarly, r 1, r 2, r 3 in the is used in the cycle 1 cycle 2 and cycle 3, 2 and 3.
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Resource Usage Models - Global Reservation Table

M: No. of rescurces in the machine

T Langth of the schadule i i

So, from this we consider the construct the global reservation table, which | have already
shown you. There are times slots here and resources here and it shows availability of

various resources and in the various timeslots.
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Resource Usage Models - Global Reservation Table

& GRT is constructed as the schedula is built (cycle by cycla)
@ All entries of GRT are initialized to 0
@ GRT maintains the stabe of all the resources in the machine
@ GRTs can answer guastons of the type
“can an insfruction of class | be scheduled in the curment
cycle (say i )7
@ Angwer 8 obtained by ANDIng RT of | with the GRT
starting from now [
2 | ihe resulting table contans cniy 0's, then YES, otherwise
PR
@ Tha GRT s updated after scheduling the mstruction with a
similar DR operation

So, the global reservation table is constructed as the schedule is built, which | have
shown you just now. All the entries of GRT are initialized to 0 and GRT maintains the
state of all the resources in the machine. GRTs can answer questions of the type: can an
instruction of class i be scheduled in the current cycle say t k. So, this answer is obtained
very simply by ANDing the reservation table of i with the GRT starting from row t k. So,
if the resulting table contains only Os, then obviously resources available but if it
contains once along that particular column for that resource, then it is not available. Then
the GRT is updated after scheduling the instruction with a similar OR operation. So, the
AND operation is done in order to make sure that, you know, availability is checked and

the OR operation is actually going to be the one which updates the ric GRT.
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Operation Scheduling

@ List scheduling discussed so far sehadules instructions on
a cyde-by-cycle basis

@ Opaeration schieduling attempts 1o schedule instructions
ond after anothar

@ Trias to find tho first cycle al which each instruction can be
schedulad

@ After choosing an operation | of highest prarty, an athemplt
is mada to schedule it at tima | batwean Estart(i) and
Lstart{/) that does not have any resource conflict

@ This scheduling may affect the Exfart and Lstart values of
unschedubed Instructions

& Prortes may have to be recomputed for thess instructions

Then what we have seen so far is one method of scheduling called cycle by cycle
scheduling. In other words what we do is we look at the cycle and see how many
instructions can be scheduled in that particular cycle and go ahead. So, it is not as if we
pick an instruction and see where that particular instruction fits in the sequence of
timeslots available to us. So, obviously, this second method which | just now mention is

also one of the scheduling methodology and that is called operation scheduling.

So, list scheduling discussed so far schedules instructions on a cycle by cycle basis.
Operation scheduling, attempts to schedule instructions one after another. Just pick the
instructions which have been ordered and schedule them one after another. It tries to find
the first cycle at which each instruction can be scheduled. So, it is not the cycle which is
picked and then the instructions which can be scheduled there, but we pick an instruction
and say in which cycle it can be scheduled.

Obviously, we need to make sure that precedence and resource constraints are satisfied

for that particular instruction in that cycle.

After choosing an operation i of highest priority, we make an attempt to schedule that
instruction in the slack period, that is between Estart and Lstart; make sure that there are

no resource conflicts in when the schedule that particular instruction in this slack period.



So, what may happen, this scheduling may not be at the Estart value right? So, we may
schedule an instruction at Estart plus 1, e or Estart plus 2 etcetera, no just before Lstart at

Lstart, or even after Lstart.

Once we if we have scheduled it exactly t start, then the Estart and Lstart values of the
other instructions remain as they are. Whereas if you schedule it in any slot other than
Estart, then the Estart and Lstart values of the successors; the other unscheduled

instruction etcetera will definitely change.

For Estart the successor values will change, for Lstart the predecessors value will
change. So, we may have to compute the Estart and Lstart of the unscheduled
instructions again, and then compute the slack as a priority for the instructions and

continue with the com, scheduling of the instruction.
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Suppose no timeslot can be found for an instruction i, then that is we do not find any slot
between Estart and Lstart for several reasons. It is possible that there are resource
conflicts during these slots are it is also possible that there are other instructions sitting in

the timeslots, and therefore, the resources are not available.

If this happens, an already scheduled instruction may have to be thrown out. So, that is,
we call this as de-scheduling of instructions. Which instruction? The one which is using

the resources that we want for our instruction is de-scheduled which is removed and the



instruction i is placed in this slot. The instruction j is again put back into the ready list

and ordered according to its slack priority.

Now this may lead to a problem, I may actually place an instruction and then, when we
pick another instruction my instruction may go out. So, this and then next time I kick the
instruction which kick me. So, we want to make sure that this does not get into a loop,
right. So, to make sure that the algorithm does not get into an infinite loop, a group of
instructions mutually de-scheduling each other. We place a threshold on the number of
de-scheduled instructions. So, let us say, we do not worry about the particular

instructions but just the number of instructions which have been de-scheduled.

If this crosses a threshold value, then you know the Lstart value of this sink node is
increased by 1. Then we throw the partial schedule out; increase the Lstart value by 1;

recompute the Lstart values and again restart the process.
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So, let us consider operation scheduling on the same example; this is the example that we
have: With 2 integer units 1 the multiplication unit all capable of load and store as well.
So, here again we do not have a ready queue in the way we had it before, we are just
going to keep all the instructions ordered according to their priority and that is our ready

queue.
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So, instruction sorted on slack with Estart and Lstart values. So, slack O we have i l,i4, i

6,17,18,19. So, these are ordered according to the Estart value 0, 2, 3, 6, 7, 8.

Slack 1 there is only one instruction i 2 with Estart and Lstart at 0 and 1, slack 3 isi 3 is
2, 5 and slack 5 is i 5 with 2 comma 7. So, this is our sequence of instruction. We are
simply going to pick the instruction one by one, see whether we can place it. For
example, pick i 1 it should be put in slot 0, as far as possible. All the resources are

obviously available put it here.

Next | have this is the final schedule that i shown not the partial one. So, i 2 is not yet
placed. So, i 1 has been placed in slot 0. Next is i 4 place it in slot 2. So how are we sure
that the precedence requirements are take care of? That is taken care of by the Estart
computation. So, we are not going to place any instruction pry prior to its Estart value;
that is why precedence constraints are automatically satisfied. We need to check the

resources constraints.
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In nine you know slot number 2, i 4 can be indeed place because resources that is the into
unit is available. Then comes i 6 in slot 3 which is fine no problem. So, what is

instruction i 6? i 6 is a mult instruction.
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Then comes i 7 in slot 6 so that is again no problem resources are available. Then i 8 in
slot 7,1 9 in slot 8 and then we have i 2 in slot 0. That is possible because we have used
only 1 integer unit in slot O; the other one is still available to us. i 3 in slot 2, the same

story another integer unit is still available so, we can use it. And i 5inslot2so,i6isa



mult, wherever i 5 is a an add. So, integer unit is definitely available so, we can place it

in slot 3.

So far we did not face any problem because there were enough resources in these slots
available, but if you did not have 2 integer units for example, we could not have placed
both the instructions; here i 2 would not have been scheduled, here i 2 possibly i 2 for
example, has 0 and 1 as its Estart and Lstart. So, we would have actually placed it here
without violation of any other precedence and so on and so forth. Because there is only 1
integer unit i 2 will have do you placed here.

The problem is more safe here because i 3 for example, it has 2, 5 it cannot be placed
here. We would have placed actually i 3 in slot number 4. So, slot number 3, i 5 comes
later. So, we would have placed this in slot number 3 and i 5 automatically would have
been push to slot number 4. So, i 5 is can be between 2 and 7 so, it could have been
placed here. So, that would have what you a schedule using the operation scheduling, but
we would not have placed it to the exactly short value, but there is a slack so, there
would not have been any pipelines stalls either. So, there are the length of the schedule
would have remained as nine as in this particular case. So, that is an examples to show

how operation scheduling can be done for basic blocks using slack as the priority.
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What are the problems with this simple list scheduling, either the cycle by cycle method
or the operation scheduling method. The checking of resource constraints is a bit



inefficient, why? It involves repeated ANDing and OR-ing of bit matrices for many

instructions in each scheduling step.

So, there are many matrices here. And if there are many resources as well the overhead
may become considerable; but it is still not too bad; but there is a lot of work.
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Collision Automaton - Example

How do we avoid such overheads? So, in other words we want to actually get rid of the
overheads involved in resource constraint checking. How do we do that? See that can be

done by constructing what is known as a collision automaton. So, what is a collision



automaton. So, collision automaton indicates whether it is legal to issue an instruction in
a particular cycle that is what a collision automaton is all about. That is that me show
you an example, here is the collision automaton for a simple example. These are the
various states of the collision automaton. Each one of the states would have a matrix and
there are many edges going out of this particular each state. So, this is a finite state

automaton.
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So each of these edges is labeled with n instruction of class; let us go back so, the
collision automaton what does it do it? Actually recognizes a legal instruction sequence.
So, in other words, if we pick instructions from the ready queue, see if it is legal to be
issued from a particular state; issue it; go to the next state; again issue whatever is
possible and so on and so forth. We actually get a sequence of instructions which is
legal. Because in every state we make sure that there are no resource constraints and the
precedence part is taken care of by the ready queue. It avoids extensive searching that is
needed in list scheduling and it uses the same topological ordering ready queue as in list

scheduling to handle precedence constraints.
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The most important part is automaton can be constructed offline using the resource
reservation tables. What are these tables? For it for example, it uses a collision matrix for
each state. So, | showed you a collision matrix for example, this is the collision matrix
for i class; this is the collision matrix for f class and this is the collision matrix for the
load store class. And here is the resource usage vector for the instruction i class, that is a
integer class. The pipeline requires, the integer d code in cycle 0 and nothing in cycle 1
for the floating point it requires the floating point d code and nothing the next one. For

the load store it requires integer d code, then the memory and again it requires memory



in the next cycle as well. So, this is the resource requirement not that this is a great

pipeline machine, but it is it is suffices to show our example.
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Collision Automaton - Example

So, this is the reservation table showing for each instruction class what are the various
resources used in the various cycles, and in the collision matrix for example, the size of
the collision matrix is number of instructions into the length of the longest pipeline. So,

here for example, these this is the length of the pipeline that is 2. So, we have as many



rows as the number of instruction classes and as many columns as the length of the

pipeline itself, longest pipeline.

What does a 1 or O indicate in this collision matrix table so, for example, it says for the
instruction class i in cycle 0 if we issue another instruction of i class this is the table for i
class. So, all these are i class considerations. So, this says the whether it is legal to issue
another i class instruction in cycle 0 or cycle 1. And in cycle 0 if we issue that another i
instruction 1 is already in progress, we trying to issue another one, there will be a
conflict that is, what this one indicates. How did this happen its simple each i class
instructions requires the i d unit. So, we cannot issue to i class instructions in cycle 0,

there would be a conflict of interest.

Whereas, if five in issue, the first i class instruction in cycle 0 and the second i class
instruction in cycle 1, there is no conflict because cycle one does not require idea again.

There is obviously no conflict between i class and f class instructions. So, both cycle 0
and cycle 1 have 0s here. So, it is legal to actually issue an f class instruction along with
an i class instruction either in cycle 0 or in cycle 1 after the i class instruction is initiated.
There is a problem with the | s also, because | s also requires i d unit in cycle 0. So, we
cannot issue an i class and | s class instruction together. So, there is a conflict in cycle 0

but in cycle 1 I s requires only mem so there is no conflict.

Let us look at the f. No conflict between i class so both are 0, conflict in cycle 0 of f class
so 1 is here and 0O is here, that is what this is and there is no conflict with | s because | s

does not requires the f d.

How about the last one | s class? There is a conflict with i class i cannot issue | s and i in
the same cycle. So, this is 1 and this is 0. I can issue f with | s no problem, because it
does not require any i d unit. | cannot issue another | s instruction together with this | s
instruction, in either cycle 0 or cycle 1. So, both require mem so there will be conflict,

that is what this is saying.
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S ijequal to 1 if and only if ith instruction class creates a conflict with the current
pipeline state S if issued j cycles after the machine enters the current state S. So, that is

why, there are many state.
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Now once you know this is the collision matrix for each state, but in each instruction
class i also has a similar collision matrix. So, i a i j equal to 1, if and only if instruction
class i would create a conflict with instruction class i; in cycle j; if launched in the
current cycle that is what | showed here. These are the instruction class collision
matrices. These collision matrices are created using the resource vectors. Now, we also

saw the matrix in each of these states, what is that about? That is what this is.
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So, in the collision matrix, for the state S i j equal to 1 if and only, if the ith instruction
class creates a conflict with the current pipeline state S, if issued j cycles after the
machine enters the current state S. So in other words, the first column corresponds to the
current cycle, the next column and corresponds to the cycle after the current cycles. So
current cycle plus 1, and if you had a third column it would have been current cycles plus
2 and so on. How many columns do we have? That is straight forward, you know, as
much as the length of the pipeline - longest pipeline. So, that is what we have to here.

And how many rows do we have? As many as number of instruction classes.

So, that is 3 here. How does the whole thing work? To begin with, we are in straight 0
so, forget the blue color for the present. The collision matrix has all Os, because all
resources are available no instructions have been issued so far so, there are no conflicts.
Therefore, it is legal to issue any instruction from the state f O the Estart state. So, let us
say, we issue either i or f or I s, we go to a different state. How do we compute the new
state here? Just take this particular sate collision matrix, or it with the collision matrix of
that particular instruction class which you are considering. When we branch on i class
take the i class collision matrix, whichis 1000 10, or it with thissowe get 1000 1 0.

Similarly, if we issue an f instruction, we get this or with the collision matrix of the f
class whichis00100, then fortheIsweget10001 1.

Now the situation becomes slightly more difficult. Which instructions are legal from
these three states? So, to check that what we really do is, we have remember launched an
instruction, but we have not advanced any cycle counters. We are still in the same cycle

as we were in this particular state.

Let us say we consider state f 1, look at the first column which corresponds to the current
cycle. If there are any Os in the first column, then the instruction corresponding to that
particular row or the instructions in the class corresponding to that particular row are all

legal to be issued from this particular state without any collision.

So, in this case the f class instructions are legal to be issued from the state f 1 but there is
a 1 in the other 2 elements of this particular vector in the column, i class and | s class. So,
those are illegal to be issued from the state f 1 y that is straight forward there are already
1s here so, in the same cycle | cannot issue another i class and | class | s class, whereas f

class is legal.



So, it is legal to issue another f class instruction from state f 1 let us do that. What do we
get? You the new state that we get, obviously is not this. We take 1 0 0 0 1 0 or it with
this particular f class collision matrix so, there is a 1 here and that comes here so, we get
111000.

Now there are no more Os in the first column of the state f 1 prime that we just now
computed. which means we have only three classes of instructions in our example; that
means there are no instructions belonging to any class that can be issued legally from this
particular state f 1 prime, because it has all 1s in the first column. There would only be

collisions if we issues them.

In such a case, what we do is, we have to now advance the cycle y 1. How do we capture
that effect in the state diagram? Simply left shift, so we now have f 1 prime has11100
0, simply left shift by one column the new state matrix that we got. So, if we do that this
111000 becomes 000000 because 0 shift from the right end.

That state is nothing but the Estart state. This indicates that now again all the resources
are available. If you have any 1s here, you know 0 1 0 or something like that in the
second column, then 0 1 0 would have become the first column, we would have go on to

new state not this particular state.
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So, from here on issue of f, we go back to this particular state f 0 and we have also
advanced the cycle. So, that is precisely what we want to show here. This blue indicates
that it is a cycle-advancing state. So, once we jump to that state, we find that it is cycle-
advancing state after the left shift of the column. We jump to f 0 and then advance the

cycle.

So let us look at, this state f 2. This has only 1 in the first column. So, it is legal to issue i
and | s class instructions from f 2. So, there are 2 arcs, with one with i, another with I s.
With i, if you arc it with the i class collision matrix, we get all 1s in the first column so
similar to f 1 we left shift and then go back to f 0. Whereas, if we had issued in | s class
instruction that was a 1 0 1 and there was a 1 in the second column also. So, this matrix
becomes 11100 1 and when we left shift it becomes 0 0 1 and 0 0 O, that is what we
have shown here. So, again we come to this new state and that is a cycle-advancing state

because we have done a left shift.

So from here again, we find that there are two 0s so i class and | s f class are legal to be
issued; so we issue that i and f. So, we go to this particular state on i and f on this
particular state; again from here when we issue an i, we go to this state so on and so
forth.

This is how the collision automaton works. How do we use it in scheduling? Let us see
so | hope this is understood the salient points are when we have a starts state all
resources are available, so any instructions can be issued from the Estart state. Once we
issue an instruction they are to compute the new collision matrix. We are the state matrix
with the collision matrix of that particular instruction class, we get a new state. We check
the first column of that particular state, to see if it has any Os; if it has then the column
the instructions corresponding to that class are legal to be issued. Other if there are only
ones, then we left s hift the matrix by one column and then if it is a new state, we go to
that new state and make it cycle-advancing, so that is a summary of the collision

automaton and its construction working etcetera.
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Collision Automaton - Example

So what are the transitions in the collision automaton? So, whatever | said is formally
written here, given a state S and any instruction i from an instruction class i; s of i
comma 1 is equal to 0 implies that it is legal to issue an instruction i from s, that is what |
said. Only legal issues have edges in the automaton. The collision matrix of the target
state S prime is produced by OR-ing the matrices of s and i. When no instruction is legal
to be issued from S S is said to be cycle-advancing. In any state this is important a NOP

instruction can be issued. It is always legal to issue a NOP instruction from any of these



we have not written the collision matrix for NOP class but there are going to be no

collisions with any NOP instruction, because NOP does not require any resources.
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Such a state behaves as a cycle-advancing state only when, a NOP, is issued otherwise, it
IS not going to behave as a cycle-advancing state.
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What is a cycle-advancing state? Collision matrix is produced by left shifting one
column- the collision matrix of S. So, such a state represents start of a new clock tick in

all pipeline in single instruction issue processors all states are cycle-advancing. Start



state is cycle-advancing and states in which NOP is issued behave like a cycle-advancing

state.
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Now how do we do instruction scheduling with the collision automaton. Fairly straight
forward, you begin at the Estart state of the automaton. Remember, we have the same
ready list that was available to us in cycle by cycle scheduling. So pick instructions one

by one in the priority order from the ready list.

So if it is legal to issue the picked instruction in the current state that is you have a 0
corresponding to that instruction class in the state matrix; issue it. There is no
advancement of the cycle counter now. But there is a change of state on that particular
instruction class takes that arc; go to the new state. Compute the collision matrix by OR-
ing the state matrix with the collision matrix of the instruction class. Now, you must
update the ready list because once this instruction is issued its successes become eligible
to be issued and repeat the steps 2-3-4; so, this goes on. But if no instructions in the
ready list are legal to be issued in a state, then, we insert a NOP in the output and
compute the collision matrix as we explained for the cycle-advancing states that are left
shifting of the column. Now we also advance the cycle counter and go back to step 2

The reason is there are no instructions which are legal to be issued. Now, we insert a

NOP in the output that means, a NOP, will be executed when nothing is being possible



now new instruction it can be executed. So, once we do that we have actually skipped

one cycle, so that means it is a cycle-advancing state.

Now, because we have skipped 1 cycle it is possible that more resources are now
available. So, that is why the left shifting of the column takes place. So, once we do that
more resources may be available once the cycle has been skipped; new instructions may
be schedulable in the current cycle that we get. If step 5 is executed repeatedly, the Estart
state will be reached at some point and in the Estart state obviously all the resources will
be available. Why? Look at this way each one of the instructions requires a finite amount
of resource and it will definitely complete in a certain finite amount of time. So, if we go
on skipping cycles and insert NOPs, when all the resources are busy eventually, in a
couple of cycles all the resources will become available again. In other words, if we
executes step 5 of cycle-advancing state, repeatedly in a few steps after all the resources
become available we will be reaching the Estart state. So, again we can start re issuing

instructions from the Estart state onwards.

So this is how the collision automaton works. The advantage of the collision automaton
is that we do not have to do any checking of the resources using reservation table
etcetera, that is, all inbuilt in the collision automaton itself. But, the problem with
collision automaton is its size can become very large for a very large instruction said.
People actually have looked at this issue they have considered factoring the automaton,

making smaller automaton and so on and so forth.

So, these are some of the advanced topics that are outside the scope of this particular
lecture. This is the end of the lecture today and in the next lecture, we will look at

optimal interior linear programming based instructions scheduling. Thank you.



