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Welcome to part 4 of the lecture on automatic parallelization. We looked at data 

dependence frame work in the last lecture. Let us recapitulate a little bit because it is 

very important. If you look at the loop, let us say the loop nest is of depth J, array depth 

d. There are two statements: S v and S w and both of them have an array reference each. 

So, the first array reference is X; with the subscripts being f 1, f 2, f 3, etcetera, each of 

which is a function of I 1 to I d the loop counter values. Similarly, S w has another 

reference to the same array X, with subscripts g 1, g 2, g 3, etcetera, each of which is 

again is a function of A 1 to I d. The question is whether these two references intercede 

and access the same memory location. First of all we are not worried about the type of 

dependence to begin with. Any type of dependence is ok. First of all we determine 

whether there is dependence at all and then refine it to see if it is delta, delta bar, and 

delta o etcetera. And in this process, when we find the intersection we also find the 

direction vector. 



So, the subscript functions must be equal simultaneously, only then there is going to be 

an intersection. For all the dimensions the subscripts must have equal values - f 1 equal 

to g 1; f 2 equal to g 2, etcetera, f s equal g s. So, this must happen with the same values 

of I 1 to I d. Otherwise, the intersection cannot happen. 
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We start with the most general direction at star, star, etcetera. We can apply the 

Banerjee’s test or the GCD test at this level. So, if we prove independence at this level 

nothing more to do and there will be no intersection at all. And if there is dependence as 

proven by the Banerjee or GCD test, one of the stars must be expanded. So, here we have 

an example, it is star, star; suppose, the dependence is proven to be true we just 

conservative. So, we expand first star to less than and then tries less than, stars, equal to, 

star, and greater than, star. So, each of these is going to be tested with Banerjee’s test. 

Depending on which one of these returns independence we do not actually expand the 

tree. Suppose, this will be obviously always independent, because first components is 

greater than. So, we do not have to do this re-test at all. But suppose, this also returns 

independents, then this will also not be expanded further, only this will be expanded 

(Refer Slide Time: 02:06). 

So, then we test each of these three direction writers and we apply Banerjee’s test, see 

which one of these is actually true. 
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We also define the complement and product of direction vectors. These are needed to 

compute psi inverse and psi 1 cross psi d, etcetera. So, if psi k is this and then psi k 

inverse is defined to be the complement if it is less than, then psi k inverse is greater than 

etcetera. And with the product, we simply take the two direction vectors psi 1 and psi 2; 

take the products of the components, where the product of the components is defined in 

this table. So, one of them is less than the other, one is less than it is less than, if it is less 

than and equal to it is nil, that means, it is illegal type of direction vector at this point and 

so on. Once, we know this, how you use it? We actually compute the product of different 

direction vectors belonging to the various subscripts; various dimensions have various 

subscripts; so, we compute the product which really indicates intersection of all this 

direction at us. So, that is done psi 1 cross psi 2 etcetera. 

If this combination produces any dot entries then, there is no simultaneous intersection of 

all these subscripts. We can say there is no dependence and they will never intersect. But 

if the all the entries are valid we need to find the actual dependence. So, this can be done 

by intersecting the direction vector that we get here; with the execution order direction 

vector for that particular construct. Depending on which type of a loop it is, you would 

have computed the direction vector psi of v to w bye looking at the syntax of the loop. 

So, we intersect it with rather the omega; omega v to w is the execution order direction 

vector. So, we intersected its psi to get the direction vector from v to w that is - we are 



resuming that know the dependence is from S v to S w because, this is dictated by the 

omega. 

So, if this provides any nil entries then, there is no dependence from S v to S w. 

Otherwise, whatever is given as the direction vector will give you the dependence from S 

v to S w. 
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In that case, we still have not found the type of dependence delta, delta bar and delta o 

that is - actually decided by looking at the position of the 2 statements. If the flow 



dependence means S v is on left side; and S w is on right side; so on and so forth. So, if 

some of the entries are nil then, we need to check whether there is dependence from S w 

to S v. We compute psi inverse and then intersect it with omega w to v, w to v again 

would have been computed using the execution order direction vector that is what this is. 

So, we would have computed this as the direction vector of the execution order using the 

syntax of the construct. So, psi inverse we know how to compute? The direction vector 

from w to v now, if all the entries are valid we add S w delta star w to v and which type 

of dependence that is, decided by the position of the 2 references. Now, let us look at the 

second example. We saw one example last time. So, here there are 2 loops, but A is a 

single dimensional array, it uses both loop holders. So, the expression is i star 10 plus j 

on the left side; and I star 10 plus J minus 1 on the right side; so, the dependence 

equation is 10 I 1 plus J 1 minus 10 I 2 plus J 2 minus J 2 equal to minus 1. 

That would be transferred to the left side that is, why this becomes 10 I 1 plus J 1 minus 

10 I 2 minus J 2 and this remains on the right side; so that is minus 1. Now, the GCD test 

says s dependence exists and that would be with the star comma star. 

Now, we need to apply the Banerjee’s test and the dependence frame work. This is how 

we compute all the required lower and upper bounds for star, less than, equal to, greater 

than etcetera for both the indices I and J. So, the formulas we looked at in the last class 

itself. 
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So, once we compute those, we can check the constraints at the various levels. At this 

level, the constraints are some of the l B’s of I J with star as the direction vector; must be 

less than or equal to B not minus a not; that must in turn will less than or equal to the 

some of the u B’s of I N J with star as the direction vector. So, this will be easily 

satisfied so, we can see that. So, we expand the left. The left star so, we have less than 

star, equal to star, and greater than star; this is not a feasible thing not possible so, we 

stop at this point. Whereas here, this returns to minus 99; less than or equal to minus 1; 

that is true. So, we expanded the second star again and checked to all the 3 dependences 

using Banerjee’s test. Two of them returned falls and one returned yes so, here again this 

returned yes and the other 2 returned false. So, these are the only 2 direction vectors, 

which may be possible less than, greater than and equal to less than. 
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It is not yet decided. Now, there is only 1 subscript. So, there is no need to do any 

intersection of the 2 subscripts at all since there is only 1. Now, the execution order 

dependence direction vectors are all given for that single loop. We know that - S 1 theta 

equal to less than or equal to S 2; S 2 theta equal to less than S 1; S 1 theta less than star 

less than comma star S 2; S 2 theta less than comma star S 1 are all possible. 
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So, we are going to actually look at less than, greater than. So, any of this with first 

component less than will be useful, anything with something other less than will return a 

null entry. So, less than comma star; S 1 theta less than comma star; S 2 is possible; so 

when we intersect, we just get the same less than, greater than. So, when we look at 

equal to comma less than again, unless the first 1 less than or equal to; or equal to there 

is no point in intersecting it; so we have equal to less than or equal to here, S 1 theta 

equal to less than or equal to that uses the same vector equal to and less than. So, all 

other products are dot values, but there are two of them which are not dot. So, these are 

indeed the dependences with this direction vectors. We have possibly S 1 delta equal to 

comma less than S 2; and S 2 delta less than comma greater than S 2. So, the position of 

the 2 references already indicates see for example, S 1 has this on the left side and S 2 as 

this on the right side. It indicates that - it is a delta not delta r or delta o and since this has 

been proven true; there is no need to test S 2 delta star S 1. So, that is how we use the 

dependence frame work and Banerjee’s test to compute the dependences in more 

complicated expressions and loops. So, that is about the dependence framework. Now, 

let us see what can be done about parallelization, concurrentization etcetera. 

So, this statement I already mentioned few lectures ago. If all the dependence relation in 

a loop enhanced have direction at value of equal to in a loop then, the iterations of that 

loop can be executed in parallel with no synchronization between the iterations. So, each 

iteration within the iteration the order of statements is going to be the same as in the 



program, we are not going to change the order of the statements unnecessarily. So, if we 

do that if since all their dependences at that level are equal to, we can simply execute that 

loop in parallel no violations will occur. This is the very performed result, even though it 

looks non-intuitive any dependence with a forward direction vector in an outer loop will 

be satisfied by the serial execution of the outer loop. So, if an outer loop l is run in 

sequential mode then, all the dependences with the forward direction at the outer level 

will be automatically satisfied. So, if this is even for the inner loops of l, I will show you 

an example for this, but if the outer loop has dependence equal to then whatever is said 

hear will not be true. Even if the outer loop is run in sequential mode the dependences 

may not be completely satisfied. 
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Let us take this example, I equal to 2 to N then, J equal to 2 to N, S 1 has A I J equal to B 

I J plus 2; and S 2 has B I J equal to A I minus 1 J minus 1 minus B I J. So, one of some 

of this dependences are obvious this A I J and this A I J; A minus 1, J minus 1, have a 

dependence. So, when this is 2, this is 1; when this is 3, this is 2; etcetera. Similarly, 

when this is 2, this is 1; this is 3; this is 2; etcetera. So, both this dependences are carried 

forward so, S 1 delta less than S 2 is because of these 2 references. Then we have this 

and this, the indices are the same; the subscripts are the same so, this will have actually 

anti-dependence with S 2, S 1 delta bar S 2, with both the direction extra components 

being equal to and equal to. Finally, we have this and this in same S 2 so, this is B I J; 

this is also B I J so, this is read first and then return in to so, it is an anti-dependence 



from S 2 to S 2 with equal to and equal to. Let us expand the loop. So, we get A (2, 2) 

equal to A (1,1) equal to etcetera and for various values of J under various values of I. 

So, we have a less than in the outer loop between S 1 and S 2 so, that dependence has a 

less than. Whereas for the others S 1 and S 2, it is equal to and S 2 and S 2 it is also equal 

to. 

So, this I loop cannot be run in parallel, it should have been equal to. Now suppose, we 

run this I loop in sequential mode; so, even the J loop cannot be run in parallel because, 

S 1 delta less than S 2 has the second loop, second component also as less than. But let 

us observe something. Let us run the I loop in sequential mode that means, I loop will 

run like this with J equal to 1; J equal to 2 etcetera; and then I equal to 2 will be run 

etcetera; I equal to 3 and so on and so forth. 

Let us see if we run I loop sequentially and if you run the J loop in parallel, we have J 

equal to 1; J equal to 2; J equal to 3 etcetera all of them running in parallel. That is what 

it really means. So, all these will run in parallel, but these will begin only after these 

complete. So, that is sequential for I parallel for J. So, that happens if the dependences 

get satisfied. 

So, between S 1 and S 2 there is delta less than so, let us see where that is. So A (2, 2) is 

here and A (2,2) is here. So, since this is going to run first and then this, automatically 

this will be computed first and then this would be computed and this particular 

dependence would be automatically satisfied. See that even if run JS in parallel, it would 

be only here and not across. So, this will be computed and then use and this particular 

dependence would be automatically satisfied. This poses no problem because; it is equal 

to equal to in both directions. So, we have very little to worry about S 1 delta bar S 2 and 

that would be only between S 1, S 2 in the same iteration of I and J. So, that would be 

automatically satisfied. Then this is also between S 2 and S 2 in the equal to equal to so, 

that means it is in the same iteration of I and J. So, this will be also be automatically 

satisfied even if we run J in parallel it will there will be nothing wrong. 

So, when we ran I loop in sequential mode; the second component which is less than also 

got automatically satisfied that is, what really said here? So, any dependence with less 

than forward less than direction vector in an outer loop will be satisfied by the serial 

execution of the outer loop that is obvious. But then the second one said, if we run the 



outer loop in sequential mode then, all other inner loops can be run in parallel mode; 

provided the outer loop had a less than direction vector. 

So, that is true. The outer loop had less than; inner loop also had less than, but once we 

ran the outer loop in sequential mode; inner loop could also be run in parallel mode. So, 

that is very important. Let us look at another example. Here we have I equal to 2 to N; 

and J equal to 2 to N; so, A I J is B I J plus 2; B I J is A I comma J minus 1 minus B I J. 

So, we have between S 1 and S 2; we have dependence between these 2 that is - S 1 delta 

equal to coma less than S 2 that is, between these 2; I and I are the same, J and J minus 1 

give less than. 

S 1 delta bar S 2 and S 2 delta bar S 2 remain the same as before, no change. Now, we 

can run the I loop in parallel because, the first component is equal to in all of them no 

problem, but the second loop cannot be run in parallel. The second loop has less than as 

the direction vector component. What I want to show you here is, even if we run the I 

loop in sequential mode; you cannot run the J loop in parallel mode; that is, what really 

is the problem.  

So, let us say we run the I loop in sequential mode; so, this gets run first and then this 

and so on and so forth. So, the dependence S 1 delta I equal to comma less than S 1 is 

here, it is between this and this. So, even if we run I equal to 1 and then I equal to 2 

etcetera. If we run J 1, J 2, J 3 etcetera in parallel this dependence will be violated. That 

is the reason why we cannot run the J loop in parallel mode; and it does not matter 

whether we run the outer loop in parallel mode or sequential mode. So, if we run the I 

loop in parallel mode then, these iterations get in parallel and the J loops will all be run 

in sequential mode so, automatically the dependence will be satisfied. 
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Now, let us look at some of the loop transformations for increasing parallelism. What we 

have seen so far, or to check whether existing loops can be run in parallel mode or in 

sequential mode. We did not propose any transformations, which can change the loop 

and make it possible to run it in parallel mode. So, we know that cycles that is 

recurrences create problems. So, recurrence breaking is 1 of the loop transformations. 

So, within that there are many of them. Ignorable cycles, scalar expansion, scalar 

renaming, note splitting, threshold detection and index set splitting, if conversion. We 

will see one example of each. Then loop interchange is a very important transformation, 

loop fission and finally, loop fusion.  
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What are ignorable cycles? It says any single statement recurrence based on delta may be 

ignored. Let us take this example, X of I minus 1 equal to F of X of I; I runs from 2 to 

100. So, what has happened is, if you expand this; this becomes X 2 equal to F of X 1; X 

3 equal to F of X 2 etcetera. So, that means, there is a dependence so, you will have to 

read this first and then you know this will be X. Let us say, I equal to 2; so, this becomes 

X 1 right. This is X 1 and this is X 2, this is X 3, this is for I equal to 2, 3, this becomes 

X 2 and this becomes X 3 and so on and so forth. 

So, we would have read X I first and then return into X I so, X 2 is read then return in to 

the next iteration. So, if this happens there is a dependence from S to S, but that is an 

anti-dependence. So, what this statement says is if it is an anti-dependence on the same 

statement then, it can be ignored; that is because even if it is vectorized the semantics of 

the statement say, the right hand side must be fetched first, evaluated first and then the 

left hand side should be return in to and that is precisely what this is really saying. 

So, there is nothing wrong in, observe that - this is reading ahead and then writing it to it. 

Nowhere does it actually read something, which has been computed in some other cycle. 

So, because of that this is perfectly ok. X 2 to 100 reads all the values; puts them in some 

buffer; and then computes the function f on it and finally, assigns X 1 to 99 to these are 

assigned these values. So, there no violation of any dependence here that is why, any 



single statement recurrence based on delta may be ignored, but it must be delta, delta bar 

may be ignored. 
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What is scalar expansion? Again it is very intuitive. So, let us take this loop, I equal to 1 

to N; S 1 is to t equal to A I; S 2 is A I equal to B I; and s 3 is B I equal to T; T is a 

scalar, A and B are arrays. Now, it is easy to see that from the dependence diagram S 1 

to S 3 there is flow dependence. So, S 1 to S 3; there is a S 1 to S 3; there is a flow 

dependence T is computed here and T is used here, but then if you expand this particular 

loop once, there will be another S 1, S 2, S 3 here; and the next iteration I equal to 2 

would have S 1 with T equal to A of 2. So, this T and the next T would be tight together; 

there is dependence that would be anti-dependence. This is reading here and that is 

righting there. So, we have from S 3 to S 1 an anti-dependence with less than. So, this 

was I equal to 1; the next 1 would be I equal to 2. 

So, that is another. Then we have a dependence from S 1 to S 1. Again look at the 

expanded version of this, there would be another S 1, S 2, S 3 with T. So, that T; the T 

which is in the next S 1 and the T in this S 1 would have an output dependence and so, 

that is - what is shown here. And obviously, between S 1 and S 2 there is an anti-

dependence and between S 2 and S 3 there is another anti-dependence. So, this is your 

diagram. It has many cycles 1 here and another here. So, this cannot be vectorized that is 

very clear. 



Now, suppose we do not want to this problem and we replace T with a vector. So, let us 

say, T becomes T X so, this is called scalar expansion. T is a scalar; it was expanded to a 

vector. So, instead of using same t again and again we are using different locations of the 

array T X. So, instead of  T equal to I; we have T X of I to A I and instead B I equal to T, 

which is supposed to use the same value of T we have B I equal to T X of I. The 

advantage with this is some of the dependences go away so for example, from S 1 to S 2 

the dependence between this A I’s remains the dependence between from S 2 to S 3 

between the B I’s also remains, but when you look at the output dependence on S 1 it 

disappears because, we are not going to write into the same location again and again. 

This is T X of I; it writes into T X 1, 2, 3, 4 etcetera, it never writes into the same 

location. So, this particular loop that the self-dependence has gone. Then we also do not 

have the output dependence from S 3 to S 1. Remember B I equal to t and then the next S 

1 would have t equal to A I so, that anti-dependence was present here, but that does not 

exist here because, the same location is never return into in I equal to it would have be 

the T X of 2. 

So, this S 3 to S 1 disappears. What we have is just S 1 to S 3 with delta equal to so, that 

is because this and this are the same; so this is the delta equal to that we are talking 

about. This code can be vectorized absolutely no problem. But then, during 

parallelization we do not need such vectors. What we really do is each of this iteration is 

going to run as a thread that is what re parallelization is all about. So, we say that at this 

variable T which is here, is a thread private variable called temp. In such a case, the 

program remains as it is temp equal to A I; A I equal to B I; and B I equal to temp; but 

for I equal to 1 it is temp 1; which is private to the thread for I equal to 1 and for I equal 

to 2; it would be temp 2 which is deferent from temp 1 and temp 2 is private to the thread 

owning I equal to 2. So, that is how this for all loops executes with temp as private to the 

thread corresponding to a particular iteration value. If that is so, this particular diagram 

still holds so, we do not have any cycles and it can be run in parallel mode. 
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But then scalar expansion is not always profitable or beneficial. Let us look at an 

example, I equal to 1 to N; S 1 is T equal to T plus A I plus A I plus 2 and S 2 is A I 

equal to T. So, if you draw the dependence diagram for this particular loop so, of course, 

we have the anti-dependence between these 2 T’s so, that is here. So, what was 

computed in the previous iteration is used here. Then we have many other dependences. 

So, between S 1 and S 2 we have this anti-dependence A I and A I so, between S 1 and S 

2 there is an anti-dependence so, that is from here. Then we have A I plus 2 and A I so, 

this is if you have A I equal to 1 you would have A 3, A 1; A 4, A 2; A 5, A 3; and so on 

and so forth. 

So, that is a anti-dependence from S 1 to S 2 with less than as the direction vector S 1 to 

S 2 with anti-dependence that is another. Then of course, you have this dependence from 

S 1 to S 2 which is a flow dependence with equal to direction vector. So, that is also from 

S 1 to S 2 so, that already exists. So, that is here. Then we have this so, there are many 

dependences this is if you expand this we have another S 1, S 2 so, there would be 

another flow anti-dependence from S 2 to S 1 as well. So, we have this dependence from 

S 2 to S 1 so, that is - anti-dependence with less than direction vector. So, these are the 

various dependences that we have in this particular program. Obviously, we have a cycle 

so, it is not vectorisable. Suppose, we do scalar expansion that is, expand this T to an 

array, you get T x of I equal to T x of I minus 1 plus A I plus A I plus 2; A I equal to T x 

of I. So, with this we get this particular dependence diagram that is - you have these 



some of this dependences remain the anti-dependence is the problem here. So, we have T 

x I equal to T x of I minus 1 plus something. So, we still have dependence from T x of I 

minus 1 to T x S 1 to S 1 and now this becomes a delta less than. It was actually a delta 

bar before, but now because it is an array we are using the old value and computing a 

new value here. So, this becomes a delta less than; so, there is another loop here. 

Otherwise, the previous loop went away the delta equal to remains; delta bar equal to 

remains; delta bar less than remains, but then this also remains, but you should observe 

that this particular S 2 to S 1 actually has reversed. So, S 2 to S 1 there is no dependence 

any more that is - the dependence from S 1 to S 2 with equal to as the direction vector. It 

was less than before, but now it is equal to; that is - the difference between this loop and 

this loop; some of these dependences have changed; some of them have a vanished, but 

this loop has changed to a reverse actually, it is delta less than; and it was delta bar less 

than before. So, even after variable scalar variable expansion, we still have a loop and 

this loop cannot be vectorized. So, even those scalar expansion is always legal it may not 

be profitable. So, that is the moral of this particular slide. 
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The next one is scalar renaming. So, you have this program with S 1, S 2, S 3, S 4. Now, 

you have an output dependence from S 1 to S 3; T equal to something and T equal to 

something here also, the output dependence S 1 delta o S 3 just cannot be broken by 

scalar expansion. Why? You have T I equal to something here and T I equal to 

something here so, they both write into the same location of the array, output dependence 



does not vanish at all. The trick here is we should actually, use a different temporary and 

not use the same temporary so, the first one becomes T 1; the second one becomes T 2; 

so, this dependence is from T 1; T 1 here and the second dependence is from T 2 to T 2. 

Once, we do that this particular program can benefit by scalar expansion. So, you now 

make T 1 into a vector and we also make T 2 in to a vector. Automatically, the scalar 

program can be converted to a vector program with T 2, 1 to 100 equal to something 

etcetera. 

So, why is T 2 coming first and why is S 3, S 4 with order why is it in this order S 3, S 4, 

S 1, S 2. Well that is just that the dependences have to be satisfied appropriately and that 

is the reason why we are. So, this S 4 is computing something and then supplying it to S 

1 that is - the reason why S 3 and S 4 come first and then, because S 1 and S 2 are 

dependent on it they come later. Finally, the value of 40 is T 2 of 100, which should be 

retained as it is. So scalar renaming and scalar expansion are two different 

transformations and they may be applied that together as well. 
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Then, we come to node splitting. So suppose, there is a cycle consisting of an anti-

dependence. If we split a node, we may be able to get away with this dependence and 

then, we may be able to actually vectorize the program. But then, we are going to 

introduce new array so, there is a space expression possible. So, let us take an example, I 

equal to 1 to 100; so, S 1 is A I equal to X I plus 1 plus X I; and S 2 is X I plus 1 equal to 



B I so, there is a dependence cycle between these 2. So, S 1 to S 2; there is a delta bar so, 

X I plus 1 is read here and X I plus 1 written into so, that is the delta bar cycle. Between 

S 2 and S 1 this is writing in to X 2; this is reading from X 1 then, this writes in to X 3 

and this reads X 2 that means, there is a dependence of the flow type between S 2, S 1. 

So, there is a dependence from S 2 S 1 the delta, this is a cycle. We can never get rid of 

delta anyway. So, if we break this into S 1 into 2 let us see what happens. 

We get s zero. T I equal to X I plus 1 so, this part is assigned to a temporary. Then we 

have A I equal to T I plus X I so, instead of X I plus 1 then, X i plus 1 equal to B I. So, 

we have broken S 1 in to 2 statements: S 0 and S 1. Let us see what happens here. So, 

between S 0 and S 1 there is an anti-dependence for the T I; S 0 flow dependence 

between this T I and this T I so, that is here, and then we have from S 0 this particular X 

I plus S 1 and this X I plus have an anti-dependence so, that remains as it is. And then we 

have the between S 1 and S 2; we have a flow dependence from S 2 to S 1; so, because 

we broke this node in to 2 now, the dependence cycle has vanished. So, there is no cycle 

both this dependences from S 0 and S 2 to S 1 actually, are in the same direction towards 

S 1. So, there is no cycle at all and this loop can be vectorized now. 
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So, we have T 1, 1 to 100 equal to etcetera vectorization works here. So, this is another 

important in the transformation. Remember if you have an anti-dependence cycle we can 

try to break it using node splitting. So, if there are thresholds sometimes we detect 



thresholds they can be used for vectorization as such. So, if you take this program with a 

loop, which has 1 statement X I plus 5 equal to X I. If we observe it, once you cross the 

value 5 you would have return X X equal to X 1; X 7 equal to X 2; X 8 equal to X 3 

etcetera then, we have X 5 plus 5; X 10 equal to X 5 and then, you get X 11 equal to X 6. 

So, you have written X 6 in the first iteration and then, in the sixth iteration you are using 

X 6 that means, there is a flow dependence with this and that flow dependence actually 

can be somehow gotten rid of by, if we detect that this threshold value is 5. So, we divide 

the loop in to 2: first loop runs from I to I equal to 1 to 20; second loop runs from J equal 

to 1 to 5; and inside we have X of I star 5 plus J equal to I star 5 plus J minus 5. So, it is 

the same loop it is just that we have 2 loop indices here. So, the index values of X here 

and here will be the same. They will become the same actually, the valued at the same as 

I plus 5 and I respectively. 

Once we have this the J loop can be vectorized. So, there is no dependence at the J level 

so, we can vectorize the J loop and the I loop provisioned on in sequentially mode. So, 

we have a very short vector, but still something is better than nothing so, we have reduce 

this iterations space rather the number of iterations to 20. So, if here the threshold value 

is 50; I equal to 1 to 100; A I equal to 101 minus I; so, up to 50 the dependence is in 1 

direction; after 50 the dependence becomes in the other direction. So, because of that you 

cannot vectorize as it is, but once you divide the loop in to 2 parts: I equal to 1 to 2; and 

then J equal to 1 to 50 you can vectorize the J loop and run the I loop in so, rather the 

other way, you can vectorize the I loop and run the J loop 1 to 2 in sequential mode. So, 

that is what we have shown here. 



(Refer Slide Time: 41:32) 

 

So, that is about thresholds. And the next transformation that we consider is the if 

conversion. So, here the problem is you have conditions in the program and if there are 

conditions then, the control can flow in any direction if, the condition is true it flow 

flows in 1 direction and if the condition is false it flows in the other direction. Because of 

this, there is no way we can actually run in vector mode. So, as it is if there are branches 

there can be no vectorization possible. A solution to this is to compute the condition also 

as a vector and for example, here if A I less than equal to 0 then continue; A I equal to B 

I plus 3; so, if A I is greater than 0, then we execute this otherwise, we just go to the next 

iteration of the loop. So, what we do is we compute a vector B R I equal to A I less than 

or equal to 0. So, B R 1 stores a 1 less than or equal to 0; B R 2 stores a 2 less than or 

equal to 0 and so on. Then we use this B R I as a mask wherever B R I set as true. For 

example, not of B R I is true whenever B R I is falls and it is falls whenever B R I is true. 

So, here we wanted to execute A I equal to B I plus 3 whenever, A I is greater than 0 that 

is, whenever B R I is false. So, we added a mask here. Whenever this particular thing has 

not of B R I that is, the B R I if it is set is 0 then, the mask for this particular instruction 

is also set as 1 and the instruction gets executed. So, there must be some hardware 

support for it. If this B R I set as true not of B R I becomes 0. So, this particular 

instruction A I equal to B I plus 3; will not be executed. So, there is a mask which 

executes the instruction if it is set to 1; it does not execute the instruction if it is set to 0. 

So, with that hardware we can actually, vectorize this particular loop. So, B R 1 to N is a 

1 to N less than or equal to 0 so, that is the vector and if not of B R 1 to N so, this is a 



mask A 1 to N equal to B 1 to N plus 3. So, if this is possible then, this masking is 

useful. Another bigger example, we have 4 sentences and condition inside with 2 

sentences inside the condition. 

If this condition is true you want to execute both so, first of all we execute the condition 

rather compute the condition as a vector. Next we have a masked statement where temp 

1: N execute D 2 something so, in vector mode. Then again we have S 1, A 1 to N equal 

to D 1 n plus 1 and another mask statement where temp 1:N, C 1:N equal to etcetera. So, 

this reordering of statements is because of this particular dependence diagram where, this 

C shows control dependence so for example, if B I greater than 0 is the condition, S 3 

and S 4 are dependent on it. So, that is why, there is an arc from S 2 to S 3; this is the 

condition and S 2 to S 4. So, once we have this mask automatically, we can reorder 

statements assuming that this condition dependence has gone. 

So, in other words, this is gone. So, we can execute S 2 first which does not have any 

predecessors but then, you cannot execute S 3 you will have to execute S 4 which does 

not have any predecessors now, then S 1 and finally, S 3. So, that is how the conversion 

of if statements helps in vectorization. 
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Loop interchange is a very important transformation. So, let us understand loop 

interchange. What really we do is, if there is a loop I outside and another loop J inside 

we actually, check whether I or J loop can be run in vector or parallel mode. If it cannot 



be then, we check a condition and see if the I and J loop can be swapped. So, the J 

becomes the outer loop and I becomes the inner loop. Now, it may be possible to execute 

one or more of these loops in vector or concurrent mode. 

So, that is the motivation for the loop interchange. Now, there are 3 very simply 

conditions for simple loop interchange loops L 1 and L 2 must be tightly nested, no 

statements between the loops. So, all statements are in both L 1 and L 2. There are no 

statements in L 1 which are in not L 2. 

The loop limits of L 2 must be invariant in L 1. So, in other words, you cannot have the 

inner loop in a limit dependent on the outer loop inducts. There are no statements S v and 

S w not necessarily distinct in L 1, which is the outer loop with a dependence S v delta 

star less than comma greater than S w. 

So, what really has happened is, if you try to swap the loops L 1 and L 2 this dependence 

this is intuition reverses. So, we should really get greater than comma less than which is 

an illegal loop direction vector. And that is the reason why we should not have such a 

dependence in the first place if you want to do loop interchange. 
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For example, in this loop the inner loop is not vectorisable. So, we have this dependence 

S to S with less than the inner loop. Now, if we swap the 2 loops I becomes the inner 



loop and J becomes the outer loop the dependence changes less than and equal to. Now, 

the inner loop is definitely vectorisable. 
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In this case, outer loop can be run in parallel, but in this case, the outer loop cannot be 

run in parallel. Here the dependence from S to S is less than and equal to. So, you cannot 

run the outer loop in parallel mode. So, let us see if you can swap. You can because, 

there is nothing like less than greater than. So, once we do that it becomes equal to and 

less than. You can actually paralyze the outer loop. 

So, in vectorization you really have a only 1 statement inside the you cannot have 

vectorize the outer loop because, you cannot run a complete loop in vector as a vector 

instruction. A single in a vector instruction cannot be a complete loop. In other words. 

And in the case of concurrentization, if you actually have very less work for the outer 

loop suppose, you vectorize the inner loop. 

Now, there is very less work for the inner loop just this statement. So, there may be too 

much overhead in executing such iterations in parallel. But once you swap and outer loop 

becomes parallelizable for each one of the iterations, parallel iteration, threads of the 

outer loop, we have a complete loop. The I complete I loop runs in sequential mode. So, 

there is more work per thread and therefore, this is desirable for parallelization. 
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What is the intuition behind this loop interchange? So, if we have this is iteration space S 

1 1, S 1 2, S 1 3, S 2 1, S 2 2, S 2 3 etcetera to begin with these are the dependences. So, 

1, 2, S 3 1, S 3 2 etcetera and when we are running sequentially, these dotted lines 

indicate how we go. 

So, we go from S 1 1 to S 1 2 to S 1 3 then, to S 2 1 to S 2 2 to S 2 3 etcetera. If you 

actually, interchange the loops we are going to run in this direction. So, the other index 

runs more frequently. So, this is a legal loop interchange. Why? In the original case, we 

had to compute S 1 1 first; and then S 1 2 and then S 1 3; then S 2 1, S 2 2, S 2 3 

etcetera. 

If you run in this order, there is no dependence between S 1 2 and S 2 1. So, no 

dependence is the dependences are all in this direction only. So, if we execute all these in 

and then come to these and so on. There is no violation of dependence so, loop 

interchange is legal. 
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If you have a dependence from this to this then, instead of running in this direction, if 

you try running in this direction you will not be executing this before this so, there is a 

violation of dependence. So, this is an example of loop illegal loop interchange that is, 

you have less than and greater than. This is the kind of dependence you would have. So, 

you will have a dependence in this direction, which cannot permit loop interchange. 
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Loop interchange is not always beneficial. So, if we have loop dependences in both 

directions instead of just 1 then, loop interchange will still not help you. You cannot 



parallelize the loop whereas, in this case when we said loop interchange is permitted you 

could have run this entire thing the outer loop S delta equal to comma less than so, this is 

a way it was. So, we were running in sequential mode so, we could run this entire thing 

in parallel; this entire thing in parallel and this entire thing in parallel; the dependences 

would have been satisfied. So, that is what this really was. 
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So, loop fission is dividing a given loop into 2 parts. So, you have a single loop here. 

This loop cannot be vectorized as it is. Suppose, you divide it into 2 parts so, that no 

violation have dependences occur then, this loop can be vectorized, but this loop cannot 

be vectorized. But at least partially you are able to vectorize 1 part of the loop if not both 

loops. 
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So, what exactly is the condition for loop fission? If a loop contains statement S k and S, 

where S k follows S j in the loop so, in other words, S j comes first and then S k. There is 

a dependence S k to S j with delta less than. So, that means, there is a backward 

dependence. So, S j comes first and then S k, but the dependence is from S k to S j in the 

backward direction. 
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Then loop fission may not split the loop at any point between S j and S k. So, let us see 

what this really is? So, you have a loop like this we have the dependence from S 1 to S 3 



and S 2 to S 3. Now, S 2 and S 3 are here, the dependence is from S 3 to S 2 with the 

delta less than. That is what this said. They said this is the way it was. 

So, we have a dependence from here to here, but S 2 and S 3 are in sequence; S 3 comes 

after S 2. So, if you try to break the loop between these 2 points; there is a violation of 

the lemma and a loop fission is set to be illegal. How does that show here? Suppose, we 

divide the loop here at this point. Now, this A I and this A I are, but whatever is 

computed in S 3 as A I plus 1 will never be fed to S 2 as A I. 

So, this entire thing will compute using the old values of C I; then the new values of C I 

would be computed, if you divide the loop between S 2 and S 3 which is illegal. 

Whereas, in this case, there are no such backward dependences between S 3 and S 2 

there is no backward dependence; between S 1 and S 2 there is no backward dependence; 

so, the loop can be cut either here or here or in both places and it will still be a valid loop 

fission. 
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The last one is the loop fusion. So, they must have the same index sets. Let loops must be 

adjacent. No conditional branches in either loop. I O only in one of the loops is permitted 

not in both and data dependence requirement must be taken care of. So, if you have loops 

like this and if the loops do not run with the same index set; this is runs from 1 to N; this 

runs from 2 to N; obviously, we cannot fuse these 2. But you can make sure that the loop 

index sets are the same. You can say for example, this can become if I greater than equal 

to then, D I equal to I star 2 and run it from 1 to N. 

So, otherwise, you could change the loop 2 as I equal to 1 to N; D I plus 1 equal to A I 

plus 1 star 2; so, you change this loop expression here subscript expression. So, if we do 

that then, we can fuse the loop. For example, in this case, we simply peeled the loop A 1 

equal to B 1 plus C 1 and ran the loop from I equal to 2 to N; so, this loop this loop. 
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Now, this loop also runs from a 2 to N. So, it can be merged with this particular loop. So, 

illegal loop fusion is like this. Suppose, you have 2 loops S 1 and S 2 so, even if you 

merge these 2 loops, what really has happened is the dependence has changed. So, when 

we had the loop separate we computed A I here equal to B I plus C I and B I plus 1 equal 

to D I star 2 was computed here. So, this was actually an anti-dependence all the b’s 

were used then the b’s were computed. But once you fuse the loops the value computed 

here fed to S 1 so, the dependence has really changed. 

So, because of this it is not always possible to really fuse the loops. You really have to 

look at the dependence from 1 loop to another. For example, there is a dependence from 

S 2, S 1 to S 2 it is an anti-dependence; this is B 1, B 2, B 3 etcetera and this is B 2, B 3, 

B 4 etcetera and because S 1 is completed first and then S 2 it becomes an anti-

dependence whereas, when you fuse the loops it really becomes a flow dependence from 

S 2 to S 1. So, because of such reasons loop fusion is not always legal. So, this is just to 

give you a sampler of various loop transformations that occur in practice. 

This is the end of the parallelization part of our course. So, in the next lecture we will 

begin with instruction scheduling etcetera. Thank you. 


