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Automatic Parallelization-Part 2 

Welcome to part 2 of the lecture on automatic parallelization. Last time, we looked at an 

introduction to automatic parallelization. For example, we understood what exactly is 

automatic parallelization. It is the conversion of sequential programs to parallel programs 

by a compiler without any manual intervention. So the target could be any one of the 

parallel processors such as vector processor, multi core processor or a multiprocessor on 

a network itself. 

(Refer Slide Time: 00:23) 

 

The parallelism extraction is normally a source-to-source translation. The 

transformations are always made on the source simply because an important phase called 

dependence analysis really requires the expressions in the array subscripts. 



(Refer Slide Time: 01:32) 

 

Implementation of available parallelism is also a challenge. For example, can we 

implement two dimensional parallelism; that is, if both the loops of a nested double loop 

can be run in parallel, can be really exploit so much parallelism in practice. We also got 

introduced to data dependence relation such as flow dependence, anti-dependence and 

output dependence. Flow dependence is a definition in S1 is used by S2 without any 

changes to x. 

Anti-dependence says, there is a use of x in the statement S1 followed by a definition of 

x again without any changes to x in between. Output dependence is there is a definition 

of x in S1 followed by another definition of x in S2 without any other changes to x in 

between. 



(Refer Slide Time: 02:14) 

 

So, the concept of data dependence direction vector was also introduced. There are 3 

types of vectors components: one is the forward or less than direction which means, that 

we compute in iteration i and use the value in iteration i plus k. The backward or greater 

than direction vector means, we compute in iteration i and used it in iteration i minus k. 

This is not possible in single loops but possible only in double or higher levels of 

nesting. We will see examples of this as we go on today. There is equal to direction 

vector which means that the dependence is in the same iteration computed in iteration i 

and used in iteration i. 

(Refer Slide Time: 02:59) 

 



So, the concept of data dependence graph is very important for parallelization in general. 

The nodes are the statements of the program and edges are the data dependences between 

the statements. So, if the data dependence graph is acyclic then vectorization is straight 

forward, you simply go through a topological sort order on the DDG and a met vector 

code. Otherwise, we need to find strongly conflict components, reduce the DDG to an 

acyclic graph by treating each of the strongly connected components as single nodes and 

then SCCs cannot be fully vectorized, so we need to run parts of that code as sequential 

code and other parts as vector code. 

(Refer Slide Time: 03:45) 

 

Here is an example to say, what exactly we mean by SCCs and so on. Here is a program; 

here is its data dependence graph. So it has many strongly connected components, so this 

is the biggest strongly connected component. So, we put all that together and say this is a 

SCC and then this is an acyclic graph now. So, we can vectorize S1 straight away and 

S2, S3, S4 needs to have some sequential code in it. 
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So now for example, we run I in sequential mode and then if you look at the level 2 

DDG for S2, S3, S4 this again has a strongly connected component, whereas S4 and S2 

S3 forms the DDG at the next level. So with in this, we generate code for S4 in a tree 

mode and S2, S3 will be generated at the next level. So, this is the final DDG at the S2 

S3 level. So, we see that we really cannot do too much, there is a dependence between 

S2 and S3; so we generate code for S2 in sequential mode whereas, S3 can be vectorized 

to some extent. So, this is a summary of what we did in the last lecture. 



(Refer Slide Time: 05:08) 

 

So today, we look at formal definition of data dependence direction vector and 

understand its implications. Data dependence relations are augmented with a direction of 

data dependence which is expressed as a direction vector, informally I have directly 

shown you some examples. The important thing to notice is there is one direction vector 

component for each loop in a nest of loops. So, this direction vector component has 

nothing to do with the number of subscripts in an array or something like that; again one 

direction vector component for each loop. So, if it is a loop nest of depth 3, so with i 

followed by another loop inside it with j as the index and followed by another loop inside 

the j loop called the k loop. Then, we would have three direction vector components in 

any direction vector associated with these array subscripts. 

So, what exactly is the data dependence direction vector are simply called as direction 

vector. So, this is a vector consisting of d components, so d is supposed to be the depth 

of nesting of the loop and each of this psi1 psi2 etcetera that is psik is one of these seven 

members less than, equal to and greater than. These are the three members which we 

already know (Refer Slide Time: 06:48). Less than equal to is a combination of less and 

equal. Greater than equal to is combination of greater than and equal. Not equal to 

implies everything but equal and star implies any one of the direction vector components 

but, we do not know which one. So, we say that statement Sv is delta psi1 to psid Sw. 

That is, Sv delta Sw with the direction vector components psi1 to psid. 



So, we write this as Sv delta psi Sw, when there must be particular instances of Sv and 

Sw. So, we see Sv and Sw are inside the loops and loop indices keep on changing a S 1, 2, 

3, 4 etcetera. So at any point in time, if we look at the iteration in this values, we would 

have i1 to id ready, so i1 for at loop 1 i2 for loop 2 etcetera. 

So you freeze the loops in time, you would have i1 to id. Similarly, you may have another 

set of values at some other point in time j1 to jd. These two sets of values should be such 

that there is a dependence between Sv i1 to id and Sw j1 to jd. So, Sv of i1 to id is the 

instance of Sv which is running when the counter values are i1 to id; Sw of j1 to jd is the 

statement Sw running when the counter values are j1 to jd (Refer Slide Time: 08:36). 

So, this says there must be a dependence between these two. So that is, whatever is 

computed in Sv of i1 to id must be used in Sw of j1 to jd. Then, it also has a relationship 

between the iteration values theta of ik psik theta of jk. In other words, the k th 

component of the direction vector size that is, ik is related to theta of ik and theta of jk. 

So for example, if psik is equal to then theta of ik equal to theta of jk and if psik is less 

than then it would be theta of ik less than theta of jk and so on and so forth for all values 

between 1 and d, the k values between 1 and d (Refer Slide Time: 09:29). 

So why this theta, if we actually use only the positive increments. So then, we can simply 

say ik psik jk and the theta part is not needed at all. So forward running the loop, so theta 

ik less than theta jk only when iteration ik is executed before iteration jk. So this before, 

there could be interpreted in two ways for example, when the loop is running with 

increment plus 1 or positive increment then, ik is really less than jk but, if the loop is 

running with a negative increment that is for i equal to 100 down to 1 (Refer Slide Time: 

10:25). 

So, then the increment would be minus 1 or minus 2 etcetera. So in such a case ik less 

than jk in absolute value terms will not hold. So, we will have to really look at minus ik 

and minus jk; minus ik less than minus jk will definitely hold. So, theta ik equal to theta 

jk only when ik equal to jk and theta ik is greater than theta jk only when iteration ik is 

executed after iteration jk. 



(Refer Slide Time: 10:54) 

 

So, the function theta Ik is really just Ik when the loop increment is positive, this is what 

I was just mentioning. Theta Ik equal to minus Ik, when the loop increment is negative 

and this definition of theta Ik satisfies our requirements. When we are running with a 

positive increment, we simply use Ik less than jk or Ik equal to jk etcetera. When we are 

running with a negative increment, we use minus Ik less than minus jk etcetera. 

(Refer Slide Time: 11:43) 

 

So this I already mentioned, forward or less than direction means, computed in iteration i 

and used in iteration i plus k and so on and so forth. So let us go on to the next slide. 



Here are now lots of examples to understand what we mean by these iteration - direction 

vector components. Let us take a simple loop, J equal to 1 to 100 do S is X J equal to X J 

plus c.So on this side, we have really unrolled the loop giving values for J, so X 1 equal 

to X 1 plus c, X 2 equal to X 2 plus c, X 3 equal to X 3 plus c etcetera. Now, if you look 

at this, the X 1 is read and then X 1 is assigned but, they are all in the same iteration J 

equal to 1. 

Similarly, X 2 is read and then assigned to X 2 adding c to it and this is done in the same 

iteration J equal to 2 and so on and so forth. Therefore, the relationship between this 

index value on the right hand side and this index value is just the equality relationship, so 

ik equal to jk so 1 equal to 1, 2 equal to 2 etcetera (Refer Slide Time: 13:05). 

The type of dependence is anti-dependence because we are reading and then writing into 

the same location. So the dependence here is S delta equal to bar, delta bar equal to S - S 

delta bar equal to S. The dependence is within the same iteration. 

Let us take the next loop, J equal to 1 to 99 do X of J plus 1 equal to X of J plus c, so 

again just enroll the loop J equal to 1 will get X 2 equal to X 1 plus c, J equal to 2 will 

get X 3 equal to X 2 plus c. Now, similarly X 4 equal to X 3 plus c and so on and so 

forth. 

Now see, whatever was computed in J equal to 1 that is X of 2, is used in J equal to 2 as 

X of 2 again. We compute in iteration k and then use it in iteration k plus 1. This is a 

forward relationship, so we have Ik and jk, Ik is less than jk; Ik can be treated as some j 

value in this case, Ik plus 1 is jk - Ik is less than jk (Refer Slide Time: 14:27). 

Now, because of this relationship Ik less than jk we have the dependences S delta less 

than S. This is a flow dependence because X 2 is computed here and X 2 is used in the 

next iteration j equal to 2. Let us take another example J equal to 1 to 99 again X J equal 

to X J plus 1 plus c; X J plus 1 is on the left hand side here now it is on the right hand 

side. So we get by unrolling the loop for J equal to 1, we get X 1 equal to X 2 plus c and 

for J equal to 2, we get X 2 equal to X 3 plus c. Now, the dependence flow is anti-

dependence X 2 is read here and then assigned. It is read in J equal to 1 and then 

assigned in J equal to 2. 



So, again we have less than as the direction vector component Ik less than jk and the 

dependence is anti. So, S delta bar less than S will be the actual dependence. Here is a 

loop with a negative increment, for J equal to 99 down 2 1 do X J equal to X J plus 1 

plus c. So, the same loop but we are running backwards from 99 to 1. So let us unroll the 

loop; so this is a loop which runs from 99 to 1 with a negative increment of minus 1 X 99 

is X 100 plus c, X 98 is X 99 plus c, X 97 would be X 98 plus c and so on and so forth. 

Now in j equal to 1, we compute X 99 and then in J equal to 2, we use X 99. So, because 

of the loop running in a different direction from 99 to 1 the dependence in this example 

has really turned to a flow dependence - you compute X 99 and use X 99 - and the 

direction of dependence is still less than because, we compute in J equal to 1 and use it in 

J equal to 2, 1 less than 2. 

So, s delta less than S will be the dependence in this case. The last case here for J equal 

to 2 to 101 do X J equal to X J minus 1 plus c, again unrolling the loops you get X 2 

equal to X 1 plus c X 3 equal X 2 plus c and X 4 equal to X 3 plus c and so on. Again it 

is easy to see that here is a flow dependence computing J equal to 1 and use in J equal to 

2, so you have S delta less than S. 

(Refer Slide Time: 17:17) 

 

So, another slightly more complicated example with nested loops. You have I equal to 1 

to 5 do J equal to 11 to 4 do, S1 is A of I J equal to B of I J plus C of I J, S2 is B of I 

comma J plus 1 equal to A I, J plus B I,J. 



The dependence graph is shown here; it shows a dependence from S2 to S1 as delta 

equal to comma less than. There is a dependence from S1 to S2 with delta equal to 

comma equal to and there is an dependence from S2 to S2 with delta of equal to comma 

less than. So, let us see how these arise. 

Again we resort to the familiar technique of unrolling the loop, I equal to 1 and J equal to 

1 to begin with. So, A 1 1 is equal to B 1 1 plus C 1 1, so that is S1 and S2 will be A 1 2 

B 1 2 equal to A 1 1 plus B 1 1. So in this case, please observe that A 1 1 here is 

computed and A 1 1 is used. So this is in the same iterations with values I equal to 1 and 

J equal to 1, so whatever is computed by S1 is used by S2. 

So, the dependencies is from S1 to S2 - delta the flow dependence and the values of I and 

J which are in which the computation takes place and the usage takes place are the same. 

So, I value is the same so delta of equal to J value is also the same so another equal to. 

So, in the same iteration of I and J we compute and use. So this becomes delta of equal to 

comma equal to. So that is the dependence from S1 to S2. Next let us increment J; J 

equal to 2, so A of 1 2 is B 1 2 plus C 1 2 and B 1 3 is A 1 2 plus B 1 2. Now B 1 2 was 

computed in J I equal to 1 and J equal to 1 and B 1 2 is used in I equal to 1 and J equal to 

2. So I value remains the same but J value has increased, so 1 less than 2 and I value is 

the same, so S2 delta S1 computed use so it is a flow dependence but the first component 

is equal to that is same value of I and less than because J equal to 1 is less than J equal to 

2 1 less than 2. So this is the S2 delta equal to comma less than S1, so this is the 

dependence that we have shown here. 

So, let us look at the third dependence J equal to 3. We have A 1 3 equal to B 1 3 plus C 

1 3 and B 1 4 equal to A 1 3 plus B 1 3. So B 1 3 was computed here in J equal to 2 and 

then B 1 3 is used in J equal to 3. So it was computed in S2 in J equal to 2, I equal to 1 

and j equal to 2 and computed in S2 again in I equal to 1 and J equal to 3. So here - this 

is what we are looking at - this is the computation part and this is the usage part this 

usage is this is this computes first and in some later iteration this uses it. 

So, between these two there is a flow dependence S2 delta S2; it happens in the same 

iteration of I, so the first component is equal to and between J equal to 2 and J equal to 3 

2 less than C, so that the second component is less than. So we have S2 delta equal to 



comma less than S2. So this is the third arc that we have written here, so these are the 

three dependences in this example along with the direction vector components. 

(Refer Slide Time: 21:34) 

 

So the next example, I promised to give you an example with the greater than direction 

vector in the last class, so I will do it now. Look at this for I equal to 1 to N do and then 

the nested inside that is for J equal to 1 to N do, S1 is A of i plus 1, J equal to something 

and S2 is something equal to A of I, J plus 1, so let us unroll the loops. 

I equal to 1 and J equal to 2, so you get A of 2 and 2, so A 2 2 equal to something. Then 

for considering S2 look at a different values of I and J, I equal to 2 and J equal to 1. So 

S2 will be again A 2 2 because this is I and J plus 1 so 2 and 2. 

So, observe that there is a dependence from this instance of S1 that is A 2 2 equal to 

something to this instance of S2 is again equal to A 2 2 with different values of I and J. 

The relationship between I values is 1 less than 2, so the first component is less than. The 

relationship between the J values is too greater than. So the second component is greater 

than so S1 delta S2 with the 2 direction at the components less than or greater than. 

What we need to observe here is, when the I value is 1, the J loop completes; it runs with 

J equal to 1, 2, 3, 4 etcetera up to N. In the next iteration of I that is I equal to 2 another 

set of J values the J loop completes again - now they are executed. So, in that particular 

instance there is a J equal to 1 in which A 2 2 is occurring, so it is perfectly ok because 



the J loop for I equal to 1 gets executed before the J loop for I equal to 2. So there is no 

violation of any execution order here and everything is legal. Whereas with a single loop, 

we cannot do this. We cannot have some value computed and then you use it in a 

previous iteration, we cannot go back. 

Here, we are really not going back, we are going forward; it is just that the relationship 

between the J values is different but they occur in two different instances of the I loop, I 

equal to 1 and I equal to 2. So everything is going forward, no invalid loop executions 

here. 

One more example with S2 delta less than comma greater than S1. So similar loop I 

equal to 1 to N J equal to N S1 is equal to A of I, J plus 1 and S2 is A of I plus 1,J. So, 

we have just swapped the left and right hand sides of S1 and S2. 

Again take A I equal to 1 J equal to 2 so you get A 2 2 equal to something that is S2 and 

take I equal to 2 and J equal to 1 you get S1 which is A 2 2. So again the relationship 

between the I value is 1 less than 2, so the first component is less than and the second 

component is 2 greater than 1, so it is again greater than. So again it is just the same 

story, I equal to 1 the entire J loop completes. So when it is J equal to 2 you compute A 2 

2 with I equal to 2 another set of J values is going to execute, so in that J equal to 1 you 

are going to use the previous computed value of A 2 2. So again the execution is going 

forward and there is no violation of any aspect. 

(Refer Slide Time: 25:26) 

 



So this is an example which we saw before, let me quickly run through this. There are 2 

dependences S1 to S2 with delta of equal to comma less than and another one from S2 to 

S1 with delta of less than and equal to. 

So, again when we unroll the loops with I equal to 1 J equal to 1 I equal to 2 J equal to 2 

J equal to 3 etcetera, these are the dependences. So X 1 2 K, some value of K will be all 

right any value will do here between 1 and 50 that is all and the same value of L can be 

taken in this case. So X of 1 comma 2 comma K is computed in I equal to 1 and J equal 

to 1 and it is used in I equal to 1 and J equal to 2 X of 1, 2, L. 

So, arbitrarily you can say K equal to 25 and L equal to 25 so then these two become 

identical 1 to 25 and 1 to 25. So, whatever is computed here is used here let us look at 

the relationships between I and J in this case it is the same iteration of I. So the first 

component would be equal to here. It is a different iteration of J with 1 less than 2 

computed in 1 used in 2 so the second component would be less than. So another 

instance here again X of 1 3 K and X of 1 3 L. 

Now for this other dependence so this was the dependence from S1 to S2. What about 

the dependence S2 to S1? So A of 2, 1, L is used as A of 2, 1, K again put some arbitrary 

values of L and K, which are within these bounds and which are equal then, you can see 

that is A to 1 L is computed in I equal to 1 and J equal to 1 and it is used in I equal to 2 

and J equal to 1. So observe that this J and in I equal to 1 and I equal to 2 or two different 

instances of J. They are two different loops which are executing in with different values 

of I. 

But, if we just look at the values of J as before they are equal. So there is dependence 

from here to here; it is first component I equal to 1 and I equal to 2 - 1 is less than 2 - so 

it is less than 1 is less than 2. The second component has the same value of A therefore 

the second component is equal to. So there are two other instances here so that is the 

dependence from S2 to S1. 
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Finally, this is a very complicated example which we saw before that needs justification 

of all the dependences. So, let us look at all the dependences here. Let us finish off the 

dependences between S2 and S3. So there are many dependences here; so there is a self 

loop on S2 and S3. Then there are two dependences S3 to S2 and another two 

dependences from S2 to S3. 

So first of all, if we look at S2 delta equal to equal to S3 that is here S2 delta S3 with 

equal to equal to. So, you can get this by I equal to 1 J equal to 1, you have B of 1 equal 

to something there is a K loop inside here and then there is a B here which is 

independent of K that is again B of 1 J only. So B 1 is computed here and B 1 is used 

here, so it is a same value of I and J. 

So since this B 1 is outside k, we do not have k component in the direction vector. 

Values of I and J are equal so equal to equal to S3. The next one is B 1 is read here and 

then B 1 is computed here in I equal to 2 and J equal to 1, so from here to here. So that 

gives rights to other S3 delta bar S2 - so S3 delta bar S2. The I value has changed so 1 

less than 2 so less than, J value remains the same so it is equal that is here. 

Then, we come to S3 equal to less than S2. So again S3 to S2, first equal to and less than 

this particular dependence. Now, you have I equal to 1 and J equal to 1 so this is A equal 

to 1 comma N so that is here equal to this particular thing and then A 2 comma N is here 

this is S3. 



So, from this A 2 comma N when J equal to 2, we have A of 2 comma N; that is, S2 this 

particular component (Refer Slide Time: 30:46). So, we compute here and then in the 

next iteration of J, we use it in this so that is, what is shown here J equal to 1. You 

compute A 2 N and J equal to 2 - you use 2 A 2 N. So the computation happens in S3, 

usage happens in S2 in the next iteration of J. 

So, that gives rise to S3 delta S2. I value is the same, so first component is equal to. J 

value 1 less than 2, so second component is less than, so that is also taken care of. 

Similarly, you have A to N in J equal to 2 so that is usage here in S2 and then you have 

A to N which is computed, so that is S3. There is also an anti-dependence A to N here 

and A to N here. These two instances that is, usage here and computation here and for 

that you have different values of I; I equal to 1 and I equal to 2, so less than and different 

values of J as well; this is J equal to 2 and this is J equal to 1, so greater than (Refer Slide 

Time: 31:52). 

So, S2 delta bar S3 and this is an anti-dependence with less than and greater than is here. 

Then, this takes care of all the four dependences here in this case. Now, let see between 

S3 and S4. You have A to N computed that is in S3 for some value of J; we have started 

from I equal 2 and J equal to 1 to just reduce the amount of space that is consumed for 

the picture. Then you have A of 2, N in S4. So this and this component, this particular 

expression. 

So, you compute here and you use here between these two and the value of I and J are 

identical. So, it is a flow dependence between this and this with equal to comma equal to 

so that is taken care of. 

Next, between S4 and S1here is another dependence with a delta bar. This is S4, this is 

S4 and S1 - S4 and S3- it should have been S3 not S1 so S4 to S3 with a delta bar. We 

actually use S2 A 2 N here with I equal 2 and J equal to 1 that is the usage that we are 

talking about here. Then, we have I equal to 3 and J equal to 1 that would be A to N 

equal to that is S3 again this S3 and this is S4. 

So, from S4 we are actually using something and which is computed in S3, a little we 

have used something that is a read the old value and then the new value is computed in 

S3, so this would be S3 so S4 delta bar S3 with less than or equal to, so that would be S4 

to S3 this particular component. So, here is a usage followed by a definition so that 



would be an anti-dependence I value is 2 and three so this is less than J value is 1 and 1 

so it is equal. 

(Refer Slide Time: 34:26) 

 

So, these are the couple of these 4 plus these 2 that we have taken care of and now there 

are more here. So, between B 1 here and B 1 here - this is B 1 - S2, S2 to S2 is the other 

dependence that we need to take care of, it is an output dependence. So I equal to 1, J 

equal to 1 and then I equal to 2 J equal to 1. So, we have 1 less than 2, so less than and 

equal J equal to 1 and J equal to 1 it is less equal to so it is an output dependence from S2 

to S2 so that is the loop that we have taken care of here. 

Then, we have S4 to S4 and S4 to S1; S4 to S4 this one and S4 to S1. So this is 

interesting, this is the one that really causes the dependences from S4 to S4. So if I equal 

to 1 and J equal to 4 we have Y 5 equal to and obviously this is just sum so I equal to 4 

and A equal to one also we get Y 5 equal to so that is an output dependence between 

these two. 

I value is less than, 1 less than 4, J value 4 greater than 1 so the second component is 

greater than. Then we have between these two S4 and S1, so S1 is here. So we are really 

computing Y of I plus J here and using Y I here. So with I equal to 5 this would become 

Y 5 and Y 5 was computed here. So between these two we again have a dependence so 

this is 4 and this is 5, so less than S1- S4 delta less than S1. 



So, this how the dependence arises. The last part is here S3 delta o, S3 with less than 

equal to and equal to, so this loop. There are 3, so this the inside nested loop in all the 

three loops it has been nested. Now, you compute A to 1 equal to and use A to 1 equal to 

again with the value I equal to 1, J equal to 1, k equal to 1, I equal to 2, J equal to 1 and 

K equal to 1; that is, this is this, this particular thing (Refer Slide Time: 36:41). 

So, the values are identical A to 1 and A to 1, so this is an output dependence and I value 

is 1 less than 2 so the first component is less than. J value and k value are equal, so other 

2 components are equal to. So this is a very large example to show the various 

dependences in this particular program and how they arrive. So typically, the moral of 

the story is computation of dependences cannot be done by a machine by unrolling loops 

like this. 
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We need to actually have mathematical test which determine whether the dependence or 

not and that is precisely, what we want to study a little later. Before this, we have to look 

at the data dependence vector is what we saw. Let us look at what is known as execution 

order dependence and execution order dependence direction vector. Why are these 

needed? These are going to be useful later, so we will consider these as legal direction 

vectors and these can be computed by looking at the syntax of constructs. 

So, when we compute the data dependence direction vectors this will be of great use in 

reducing the computation. So, the execution order dependence is denoted by the big 



theta. So Sv theta Sw, if Sv can be executed before Sw in the normal execution of the 

program a very simple definition this is just execution order. So, it is clear if Sv delta psi 

Sw only if Sv theta psi Sw in other words, theta may hold but delta may not hold, so let us 

see how? 

Here is S1, a equal to b plus c; then S2, a equal to c plus d, assigning another value of a. 

S3 equal to a plus f, so S1 occurs before S2 and S3, so S1 theta S2 and S1 theta S3 both 

hold. Similarly, S2 theta S3 also holds, because the order of execution is first S1 then S2 

and then finally S3. 

So, all these three are true S1 theta S2, S2 theta S3, S1 theta S3 but, then S2 redefines a 

value of a; a was assigned a value b plus c here but, again it redefines the value as c plus 

d. So the value of a which is used in S3 is from S2 and not from S1 there is no 

dependence between S1 and S3 as far as the delta is concerned, data does not flow from 

S1 to S3 only it flows from S2 and S3. So, S2 delta S3 is true but, we do not have S1 

delta S3; we do not have S1 delta S2 none of these are true but, S1 delta o is true is 

definitely true but, S1 delta of delta of any kind with S3 is not true, because nothing 

flows from S1 to S3. 

So, hence execution ordering is weaker than delta data flow, the data dependence. The 

reason is many more dependences are possible under theta but few are dependences are 

possible under delta. Execution order direction vector is very similar to the data 

dependence direction vector. We already defined the data dependence direction vector; 

we want to compute similar vector for this and not all direction vectors are legal in the 

case of execution order dependence and the legal once are possibly we can guess them, 

compute them by using the syntax of the constructs let us look at some examples. 
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Why are we looking at such examples? The point is legal direction vector as for as the 

execution order can be constructed using the syntax of the program. Here we are looking 

at the most important constructs of any program and by looking at similar constructs we 

can say, the compiler can construct these direction vectors and dependences. 

So here is a single loop, I equal to L to U lower bound and upper bound of loop, positive 

increment S1 S2, it could even be negative increment that really does not matter as far as 

execution order goes. So let us look at I equal to 1, so S1 and S2 we have unrolled the 

loop, I equal to 2 again we have unrolled the loop S1 and S2. So any possible execution 

order among this gives rise to S1 S2 executes first in I equal to 1 and then followed by 

S1 and S2 in I equal to 2. 

So, theta is possible between S1 and S2, this S1 and this S1, this S1 and this S2, this S2 

and this S1 finally this S2 and this S2, so that is what is said here. S1 theta less than or 

equal to S2, so why S1 in I equal to 1 is related to S2 both in I equal to 1 so that is taken 

care of by the equal to component and in the I equal to 2 component 1 less than 2, so this 

and this are also related by this execution also related by this execution order. Similarly 

S2 theta less than S1, S2 is here; S1 is here so, I equal to 1 and I equal to 2, 1 less than 2 

so that is theta less than S1. S1 theta less than S1 is also possible, so I equal to 1, I equal 

to 2 this is the S1 we are considering S1 and S1, so this is true. 



Similarly, S2 theta less than S2 is also possible this and this, I equal to 1 I equal to 2 we 

are comparing these two. But note that S2 theta equal to S1 is not possible S2 theta equal 

to S1 because we cannot reverse the execution order of these two. We can execute S2 

first and then this S1 but that will be in I equal to 2 not in the same I equal to 1. 
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So, these are the only legal direction vectors possible with a single loop. What about a 

loop with an if then condition, so in this case the same loop either S1 or S2 will be 

executed but not both in the same iteration. In different iterations they can be in any 

order but in the same iteration either S1 or S2 executes. So I equal to 1, S1 let us say 

executes I equal to 2, perhaps S2 executes, I equal to 3 again possibly S2 I equal to 4 

possibly S1. 

So again, we look at the ordering here and then guess the theta. So this S1 is here, theta 

equal to S2 S1 theta equal to S2 is not possible, because S1 and S2 cannot execute in the 

same iteration at all. S2 theta equal to S1 is also not possible, because of the same 

reason. S1 theta less than S2 is possible, S1 is here S2 is here so I equal to 1 I equal to 2 

1 less than 2. S2 theta less than S1 is possible, so S2 is here S1 is here so 2 and 4, 2 less 

than 4. 

S1 theta less than S1 is possible S1 here and S1 here so 1 less than 4. S2 theta less than 

S2 is also possible S2 here S2 here 2 less than 3. So these are all possible legal direction 

vector as far as this single loop is concerned. 
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What about multiple loops. So here is I going from L I to U I, J going from L J to U J. So 

we have again S1 and S2. Let us unroll the loops for J equal to 1 S1 S2, J equal to 2 

again S1 S2. Similarly, I equal to 2, J equal to 1 and J equal to 2 so any possibility theta 

between these is valid. So, what is not possible let us look at that it is easier. S2 theta 

equal to equal to S1. So, S2 is here in the same iteration of I and J we cannot reverse S2 

and S1. Therefore S2 theta S1 with equal to equal to direction vector is not possible. 

Similarly, S1 theta equal to greater than S2 is not possible; this greater than implies S1 

theta greater than theta S2 is not possible with equal to because I cannot execute S1 in 

later iteration than S2 but with the same value of I that is not possible; whereas the others 

are all possible, let us take 1 or 2 of them - S1 theta less than equal to S2. So S1 theta 

equal to equal to S2 is possible, so S1 is here same value of S1 S2, I equal to 1 J equal to 

1. So here is S1 and here is S2, so that is possible no problem at all. If we want to relate 

it to another value of S2 with J value greater that is here, so this S1 and this S2 I equal to 

1 J equal to 1 J equal to 2. So J 1 less than 2 whereas I value is the same so this S1 this 

S2 are related by the less than relationship here. 

So, S2 theta equal to comma less than S1. So, S2 is here and the same value as I, so S1 is 

here with the different value of J, so 1 less than 2 you rise to this and so on and so forth. 

So these are all the possible direction vectors as far as a multiple loop is concerned one 

can argue similarly with the others as well. 
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What happens if we have an if then else inside multiple loop. Again, the only change is 

S1 and S2 cannot execute at the same time, either S1 or S2 will execute in any iteration 

of J. Again, the trace indicates various possibilities. Again as usual, let us see what is not 

possible. S2 theta equal to equal to S1 is not possible, well for the same simple reason 

that S2 and S1 cannot even execute in the same iteration. So, S1 theta equal to equal to 

S2 is not possible. 

Let us see, how S2 theta equal to comma less than S1 is possible. We have to look at the 

same value of I, but different values of J. We are looking at S2 here and S1 here, so this 

is same value of I and different values of J. This gives you S2 theta equal to comma less 

than S1, so these two give you that. 

What about S1 theta equal to comma less than S2? That is given by this (Refer Slide 

Time: 48:32) S1, S2 same value of I and different values of J. Similarly you can get, S2 

theta less than, less than S1. So, pick any S2 here and pick any other S1 in another one 

S2 is here and S1 is here, so this is equal to these two are this is gives you I equal to 2 

and I equal to 3 component is less than J equal to 1 and J equal to 1 second component is 

equal to. If you wanted less than, you have to pick some other value of I where J equal to 

3 or something like that has S1. That is how, the legal direction vectors are all computed 

using the syntax of the loop. 
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Now, we come to the data dependence equation. Suppose, we are given a program 

segment such as I1, it is a nested loop Sv and Sw are the two statements which are nested 

inside a d depth loop. 

First loop is I1 equal to L1 to U1 by N1. Second would be I2 equal to L2 to U2by N2 

etcetera; Id would be Ld to Ud by Nd. Sv the exact statement itself does not matter to us, 

we are only interested in the two array expressions in Sv and Sw because the data 

dependence has to be computed between any pair of array expressions. So, X and X 

same array that is very important for us, first one has a subscript f of I1 to Id - a function 

of the loop indices I1 to Id and if the same subscript Sw has X of g I1 to Id. 

Again is a function of I1 to Id but, a different function g. This is the generalized program 

segment that is given to us and we want to check whether, there is dependence from S 

given Sv to Sw or from Sw to Sv.. 
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So, the formulation is follows. Suppose, I bar is I1 to Id. Now, I bar can be written as V 

A0 plus sigma of k equal to 1 to d Ak Ik, why? Recall that we want to impose certain 

restriction on the array subscripts. The dependence testing that is dependence analysis 

cannot be done on arbitrary subscripts. We do not have the mathematical techniques to 

do that. We always restrict them to some form of equations and the easiest and most 

widely used form is the linear dependence equation. The subscripts are the linear 

functions of the loop indices. 

So, A0 is a constant Ak Ik is a linear dependence on Ik, so Ak Ik. We would have A0 plus 

A1 I1 plus A2 I2 A3 I3 plus Ad Id, so that is going to be f of I. Similarly, g of I would be 

some other constant B0 not plus B1 I1 plus B2 I2 etcetera Bd Id. We would have these 

two as the linear functions of I1 to Id, which are the subscripts and we want to check 

whether f of i bar equal to g of j bar for some value of i bar and j bar. What are i bar and j 

bar? They are the values of various loop indices, so I1 to Id. 

Freeze the loop at any point as we have seen, do we get some values of i bar and j bar for 

this i bar, which make f i bar equal to g j bar. In this, we want to make sure that they 

have exactly the same value. If that can happen, then the direction vector is should also 

be satisfied theta ik psik theta jk so this could be less than greater than etcetera. 

We want to find some loop instance values I1, I2, I3, Id. Similarly, another set of loop 

instance values J1, J2, J3, Jd for same set of loops again, such that f of i bar is same as g 



of j bar. So if this happens, then that is going to be a conflict when we access an array. In 

other words, we are going to produce a value in some particular configuration of loop 

indices and use that value in some other set of loop indices. If you try to run these two 

sentences - statements in parallel - then the dependences would be lost and hence that 

would be some incorrect computation. 
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You could also use a normalized index in other words L lower bound is 1, increment is 1 

etcetera. So, if we use a normalized index then Ik would be Ik N which is a normalized 

index Nk plus Lk. We already saw some transformation to do this. Then the dependence 

equations can be read written using normalized index also. 

We will assume that, all our indices are normalized, so we do not want to do 

normalization; this is just a transformation which is done by the compiler. Finding 

solutions - normalized solutions i n bar and j n bar for i n bar to the normalized equation 

is equivalent to finding solutions to the original equation. 



(Refer Slide Time: 54:39) 

 

Let us very quickly look at the GCD test. The GCD test determines whether the 

dependence equation that is A1x1 plus A2x2 etcetra Anxn minus B1y1 minus B2y2 etcetra 

minus Bnyn is equal to B0 minus A0, that is this equation (Refer Slide Time: 55:33). 
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So, f i equal to g j, so f i equal to g I. So this A0 plus sigma AkIk is equal to B0 plus 

sigma BkIk expanded will really give you this particular equation (Refer Slide Time: 

55:17). 
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We are assuming N loop depth so this is the expanded version. This has a solution if and 

only if the GCD of all the coefficients A1, A2, Ad; B1, B2, Bd divides this constant B0 

minus A0. This is a very well known theorem and this is called as a Diophantine equation 

and this is easy to apply. The GCD test is extremely quick but, it is not very effective in 

practice that is the problem. 

We are going to see examples in the next class. The GCD test really indicates 

dependence, whenever the dependence equation has a solution anywhere but not 

necessarily in the region imposed by the loop bound. What happens is GCD test will say 

there is a solution, the loop may run from 1 to 10 but the solution may be given when i 

equal to 20 or something like that so this is not relevant to us. GCD test simply tells you 

that there is a solution but it does not worry about the loop bounds. This is the difficulty, 

we are going to see some examples and continue with other powerful test in the next 

class. Thank you. 


