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Module No. # 14
Lecture No. # 35
Automatic Parallelization-Part 2

Welcome to part 2 of the lecture on automatic parallelization. Last time, we looked at an
introduction to automatic parallelization. For example, we understood what exactly is
automatic parallelization. It is the conversion of sequential programs to parallel programs
by a compiler without any manual intervention. So the target could be any one of the
parallel processors such as vector processor, multi core processor or a multiprocessor on

a network itself.
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The parallelism extraction is normally a source-to-source translation. The
transformations are always made on the source simply because an important phase called

dependence analysis really requires the expressions in the array subscripts.
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Implementation of available parallelism is also a challenge. For example, can we
implement two dimensional parallelism; that is, if both the loops of a nested double loop
can be run in parallel, can be really exploit so much parallelism in practice. We also got
introduced to data dependence relation such as flow dependence, anti-dependence and
output dependence. Flow dependence is a definition in S1 is used by S2 without any

changes to x.

Anti-dependence says, there is a use of x in the statement S1 followed by a definition of
X again without any changes to x in between. Output dependence is there is a definition
of x in S1 followed by another definition of x in S2 without any other changes to x in

between.
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So, the concept of data dependence direction vector was also introduced. There are 3
types of vectors components: one is the forward or less than direction which means, that
we compute in iteration i and use the value in iteration i plus k. The backward or greater
than direction vector means, we compute in iteration i and used it in iteration i minus k.
This is not possible in single loops but possible only in double or higher levels of
nesting. We will see examples of this as we go on today. There is equal to direction
vector which means that the dependence is in the same iteration computed in iteration i

and used in iteration i.
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So, the concept of data dependence graph is very important for parallelization in general.
The nodes are the statements of the program and edges are the data dependences between
the statements. So, if the data dependence graph is acyclic then vectorization is straight
forward, you simply go through a topological sort order on the DDG and a met vector
code. Otherwise, we need to find strongly conflict components, reduce the DDG to an
acyclic graph by treating each of the strongly connected components as single nodes and
then SCCs cannot be fully vectorized, so we need to run parts of that code as sequential
code and other parts as vector code.

(Refer Slide Time: 03:45)

Vectorization Example 3.1

forl=1 bo 100 do |
LK1= Yl s+ 10
for | = 1 to 100 do |
E(J = A{N)
for K = 1 §o 100 dao |
All+1, K} = Bi) + ), K}
]
Wils )b = &)+ 1, M)
l
|

for =1 ta 100 da |
code for 52, 53, 54
generated at higher levels
I
S X(1:000) = Y1000« 10

Here is an example to say, what exactly we mean by SCCs and so on. Here is a program;
here is its data dependence graph. So it has many strongly connected components, so this
is the biggest strongly connected component. So, we put all that together and say this is a
SCC and then this is an acyclic graph now. So, we can vectorize S1 straight away and

S2, S3, S4 needs to have some sequential code in it.
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So now for example, we run | in sequential mode and then if you look at the level 2
DDG for S2, S3, S4 this again has a strongly connected component, whereas S4 and S2
S3 forms the DDG at the next level. So with in this, we generate code for S4 in a tree
mode and S2, S3 will be generated at the next level. So, this is the final DDG at the S2
S3 level. So, we see that we really cannot do too much, there is a dependence between
S2 and S3; so we generate code for S2 in sequential mode whereas, S3 can be vectorized

to some extent. So, this is a summary of what we did in the last lecture.
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So today, we look at formal definition of data dependence direction vector and
understand its implications. Data dependence relations are augmented with a direction of
data dependence which is expressed as a direction vector, informally | have directly
shown you some examples. The important thing to notice is there is one direction vector
component for each loop in a nest of loops. So, this direction vector component has
nothing to do with the number of subscripts in an array or something like that; again one
direction vector component for each loop. So, if it is a loop nest of depth 3, so with i
followed by another loop inside it with j as the index and followed by another loop inside
the j loop called the k loop. Then, we would have three direction vector components in

any direction vector associated with these array subscripts.

So, what exactly is the data dependence direction vector are simply called as direction
vector. So, this is a vector consisting of d components, so d is supposed to be the depth
of nesting of the loop and each of this psiy psi, etcetera that is psik is one of these seven
members less than, equal to and greater than. These are the three members which we
already know (Refer Slide Time: 06:48). Less than equal to is a combination of less and
equal. Greater than equal to is combination of greater than and equal. Not equal to
implies everything but equal and star implies any one of the direction vector components
but, we do not know which one. So, we say that statement S, is delta psi; to psig Sw.

That is, Sy delta S,, with the direction vector components psi; to psig.



So, we write this as S, delta psi Sy, when there must be particular instances of S, and
Sw. So, we see S, and S, are inside the loops and loop indices keep on changinga S 1, 2,
3, 4 etcetera. So at any point in time, if we look at the iteration in this values, we would
have i; to iq ready, so i, for at loop 1 i, for loop 2 etcetera.

So you freeze the loops in time, you would have i; to ig. Similarly, you may have another
set of values at some other point in time j; to j4. These two sets of values should be such
that there is a dependence between S, i; to ig and Sy, j1 to jg. S0, Sy of i; to iq4 is the
instance of S, which is running when the counter values are i; to ig; Sy of j; to jq is the

statement S,, running when the counter values are j; to j4 (Refer Slide Time: 08:36).

So, this says there must be a dependence between these two. So that is, whatever is
computed in S, of i to ig must be used in S, of j; to j4. Then, it also has a relationship
between the iteration values theta of ix psix theta of jk. In other words, the k th
component of the direction vector size that is, ik is related to theta of ix and theta of jy.
So for example, if psik is equal to then theta of iy equal to theta of jx and if psik is less
than then it would be theta of iy less than theta of jx and so on and so forth for all values
between 1 and d, the k values between 1 and d (Refer Slide Time: 09:29).

So why this theta, if we actually use only the positive increments. So then, we can simply
say ik psik jk and the theta part is not needed at all. So forward running the loop, so theta
i less than theta jx only when iteration iy is executed before iteration jx. So this before,
there could be interpreted in two ways for example, when the loop is running with
increment plus 1 or positive increment then, iy is really less than jx but, if the loop is
running with a negative increment that is for i equal to 100 down to 1 (Refer Slide Time:
10:25).

So, then the increment would be minus 1 or minus 2 etcetera. So in such a case iy less
than ji in absolute value terms will not hold. So, we will have to really look at minus i
and minus ji; minus ik less than minus jk will definitely hold. So, theta iy equal to theta
jk only when iy equal to jx and theta iy is greater than theta jx only when iteration iy is
executed after iteration jy.
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So, the function theta Iy is really just Ix when the loop increment is positive, this is what
I was just mentioning. Theta Iy equal to minus Ix, when the loop increment is negative
and this definition of theta Iy satisfies our requirements. When we are running with a
positive increment, we simply use I less than ji or Ik equal to ji etcetera. When we are

running with a negative increment, we use minus Iy less than minus jy etcetera.
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Direction Vector Example 1

fﬂrJlltﬂlmdﬂ" X1y = X(1) +¢
5:} XU = XU +c S0.5 x(2) = X(2}ec
far | = 1 to 9% dao |
S X{J=1) = X+
|

far ) =1 to 99 da {

X(2y = X{1} +c
s X(3) = X(2h+c

X(1} = X{2) +c
X(2) = X{F}se

S X(D=X(+l)+c | S5B.5
|

Ton | = 9 downte | do | X{99) = X{100) +¢
LT ) = A{da ) @ ’ X{GR)Y = ¥{59)+c
! note -we' increment
for = 2 ta 101 do |
S X{D = X{J-1) #c 58,5
H

X(2) = X(1} +&
X(3) = X(2)+c

So this | already mentioned, forward or less than direction means, computed in iteration i

and used in iteration i plus k and so on and so forth. So let us go on to the next slide.



Here are now lots of examples to understand what we mean by these iteration - direction
vector components. Let us take a simple loop, J equal to 1 to 100 do S is X J equal to X J
plus c.So on this side, we have really unrolled the loop giving values for J, so X 1 equal
to X 1 plus ¢, X 2 equal to X 2 plus ¢, X 3 equal to X 3 plus c etcetera. Now, if you look
at this, the X 1 is read and then X 1 is assigned but, they are all in the same iteration J

equal to 1.

Similarly, X 2 is read and then assigned to X 2 adding c to it and this is done in the same
iteration J equal to 2 and so on and so forth. Therefore, the relationship between this
index value on the right hand side and this index value is just the equality relationship, so

ix equal to jk so 1 equal to 1, 2 equal to 2 etcetera (Refer Slide Time: 13:05).

The type of dependence is anti-dependence because we are reading and then writing into
the same location. So the dependence here is S delta equal to bar, delta bar equal to S - S

delta bar equal to S. The dependence is within the same iteration.

Let us take the next loop, J equal to 1 to 99 do X of J plus 1 equal to X of J plus c, so
again just enroll the loop J equal to 1 will get X 2 equal to X 1 plus c, J equal to 2 will
get X 3 equal to X 2 plus c. Now, similarly X 4 equal to X 3 plus ¢ and so on and so
forth.

Now see, whatever was computed in J equal to 1 that is X of 2, is used in J equal to 2 as
X of 2 again. We compute in iteration k and then use it in iteration k plus 1. This is a
forward relationship, so we have Iy and jk, Ik is less than ji; Ik can be treated as some j

value in this case, Ik plus 1 is jk - Ik is less than ji (Refer Slide Time: 14:27).

Now, because of this relationship I less than jx we have the dependences S delta less
than S. This is a flow dependence because X 2 is computed here and X 2 is used in the
next iteration j equal to 2. Let us take another example J equal to 1 to 99 again X J equal
to X J plus 1 plus c; X J plus 1 is on the left hand side here now it is on the right hand
side. So we get by unrolling the loop for J equal to 1, we get X 1 equal to X 2 plus ¢ and
for J equal to 2, we get X 2 equal to X 3 plus c. Now, the dependence flow is anti-
dependence X 2 is read here and then assigned. It is read in J equal to 1 and then

assigned in J equal to 2.



So, again we have less than as the direction vector component Iy less than jx and the
dependence is anti. So, S delta bar less than S will be the actual dependence. Here is a
loop with a negative increment, for J equal to 99 down 2 1 do X J equal to X J plus 1
plus c. So, the same loop but we are running backwards from 99 to 1. So let us unroll the
loop; so this is a loop which runs from 99 to 1 with a negative increment of minus 1 X 99
is X 100 plus ¢, X 98 is X 99 plus ¢, X 97 would be X 98 plus ¢ and so on and so forth.

Now in j equal to 1, we compute X 99 and then in J equal to 2, we use X 99. So, because
of the loop running in a different direction from 99 to 1 the dependence in this example
has really turned to a flow dependence - you compute X 99 and use X 99 - and the
direction of dependence is still less than because, we compute in J equal to 1 and use it in

Jequal to 2, 1 less than 2.

So, s delta less than S will be the dependence in this case. The last case here for J equal
to 2 to 101 do X J equal to X J minus 1 plus ¢, again unrolling the loops you get X 2
equal to X 1 plus ¢ X 3 equal X 2 plus ¢ and X 4 equal to X 3 plus ¢ and so on. Again it
IS easy to see that here is a flow dependence computing J equal to 1 and use in J equal to
2, so you have S delta less than S.

(Refer Slide Time: 17:17)

Direction Vector Example 2
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So, another slightly more complicated example with nested loops. You have | equal to 1
to 5 do J equal to 11 to 4 do, S1is A of I J equal to B of I J plus C of I J, S2 is B of |
commaJ plus 1 equalto A l,Jplus B I,J.



The dependence graph is shown here; it shows a dependence from S2 to S1 as delta
equal to comma less than. There is a dependence from S1 to S2 with delta equal to
comma equal to and there is an dependence from S2 to S2 with delta of equal to comma
less than. So, let us see how these arise.

Again we resort to the familiar technique of unrolling the loop, | equal to 1 and J equal to
1 to begin with. So, Al lisequaltoB11plusC11,sothatisS1and S2willbe A1l2
B1l2equalto A1l1plusB 11 Soin this case, please observe that A 1 1 here is
computed and A 1 1 is used. So this is in the same iterations with values | equal to 1 and

J equal to 1, so whatever is computed by S1 is used by S2.

So, the dependencies is from S1 to S2 - delta the flow dependence and the values of | and
J which are in which the computation takes place and the usage takes place are the same.
So, I value is the same so delta of equal to J value is also the same so another equal to.

So, in the same iteration of | and J we compute and use. So this becomes delta of equal to
comma equal to. So that is the dependence from S1 to S2. Next let us increment J; J
equalto2,so Aof12isB1l2plusCl12andB13isA12plusB12 NowB12was
computed inJ lequal to 1 and Jequal to 1 and B 1 2 is used in | equal to 1 and J equal to
2. So | value remains the same but J value has increased, so 1 less than 2 and | value is
the same, so S2 delta S1 computed use so it is a flow dependence but the first component
is equal to that is same value of I and less than because J equal to 1 is less than J equal to
2 1 less than 2. So this is the S2 delta equal to comma less than S1, so this is the

dependence that we have shown here.

So, let us look at the third dependence J equal to 3. We have A 1 3 equal to B'1 3 plus C
13and B 1l4equalto Al3plusB13.SoB 13wascomputed here in Jequal to 2 and
then B 1 3 is used in J equal to 3. So it was computed in S2 in J equal to 2, | equal to 1
and j equal to 2 and computed in S2 again in | equal to 1 and J equal to 3. So here - this
is what we are looking at - this is the computation part and this is the usage part this

usage is this is this computes first and in some later iteration this uses it.

So, between these two there is a flow dependence S2 delta S2; it happens in the same
iteration of I, so the first component is equal to and between J equal to 2 and J equal to 3

2 less than C, so that the second component is less than. So we have S2 delta equal to



comma less than S2. So this is the third arc that we have written here, so these are the

three dependences in this example along with the direction vector components.
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Direction Vector Example 3
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So the next example, | promised to give you an example with the greater than direction
vector in the last class, so | will do it now. Look at this for I equal to 1 to N do and then
the nested inside that is for J equal to 1 to N do, S1 is A of i plus 1, J equal to something

and S2 is something equal to A of I, J plus 1, so let us unroll the loops.

I equal to 1 and J equal to 2, so you get A of 2 and 2, so A 2 2 equal to something. Then
for considering S2 look at a different values of | and J, | equal to 2 and J equal to 1. So

S2 will be again A 2 2 because this is | and J plus 1 so 2 and 2.

So, observe that there is a dependence from this instance of S1 that is A 2 2 equal to
something to this instance of S2 is again equal to A 2 2 with different values of | and J.
The relationship between | values is 1 less than 2, so the first component is less than. The
relationship between the J values is too greater than. So the second component is greater

than so S1 delta S2 with the 2 direction at the components less than or greater than.

What we need to observe here is, when the I value is 1, the J loop completes; it runs with
Jequal to 1, 2, 3, 4 etcetera up to N. In the next iteration of | that is | equal to 2 another
set of J values the J loop completes again - now they are executed. So, in that particular

instance there is a J equal to 1 in which A 2 2 is occurring, so it is perfectly ok because



the J loop for | equal to 1 gets executed before the J loop for | equal to 2. So there is no
violation of any execution order here and everything is legal. Whereas with a single loop,
we cannot do this. We cannot have some value computed and then you use it in a

previous iteration, we cannot go back.

Here, we are really not going back, we are going forward; it is just that the relationship
between the J values is different but they occur in two different instances of the I loop, |
equal to 1 and | equal to 2. So everything is going forward, no invalid loop executions
here.

One more example with S2 delta less than comma greater than S1. So similar loop |
equal to 1 to N J equal to N S1 is equal to A of I, J plus 1 and S2 is A of I plus 1,J. So,
we have just swapped the left and right hand sides of S1 and S2.

Again take A | equal to 1 J equal to 2 so you get A 2 2 equal to something that is S2 and
take | equal to 2 and J equal to 1 you get S1 which is A 2 2. So again the relationship
between the | value is 1 less than 2, so the first component is less than and the second
component is 2 greater than 1, so it is again greater than. So again it is just the same
story, | equal to 1 the entire J loop completes. So when it is J equal to 2 you compute A 2
2 with I equal to 2 another set of J values is going to execute, so in that J equal to 1 you
are going to use the previous computed value of A 2 2. So again the execution is going

forward and there is no violation of any aspect.

(Refer Slide Time: 25:26)

Direction Vector Example 4
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So this is an example which we saw before, let me quickly run through this. There are 2
dependences S1 to S2 with delta of equal to comma less than and another one from S2 to

S1 with delta of less than and equal to.

So, again when we unroll the loops with I equal to 1 J equal to 1 | equal to 2 J equal to 2
J equal to 3 etcetera, these are the dependences. So X 1 2 K, some value of K will be all
right any value will do here between 1 and 50 that is all and the same value of L can be
taken in this case. So X of 1 comma 2 comma K is computed in | equal to 1 and J equal
tolanditisusedin lequaltolandJequalto2 Xof1,2, L.

So, arbitrarily you can say K equal to 25 and L equal to 25 so then these two become
identical 1 to 25 and 1 to 25. So, whatever is computed here is used here let us look at
the relationships between | and J in this case it is the same iteration of 1. So the first
component would be equal to here. It is a different iteration of J with 1 less than 2
computed in 1 used in 2 so the second component would be less than. So another
instance here again X of 1 3 Kand X of 1 3 L.

Now for this other dependence so this was the dependence from S1 to S2. What about
the dependence S2 to S1? So A of 2, 1, L is used as A of 2, 1, K again put some arbitrary
values of L and K, which are within these bounds and which are equal then, you can see
that is A to 1 L is computed in | equal to 1 and J equal to 1 and it is used in I equal to 2
and J equal to 1. So observe that this J and in | equal to 1 and | equal to 2 or two different
instances of J. They are two different loops which are executing in with different values
of I.

But, if we just look at the values of J as before they are equal. So there is dependence
from here to here; it is first component | equal to 1 and I equal to 2 - 1 is less than 2 - so
it is less than 1 is less than 2. The second component has the same value of A therefore
the second component is equal to. So there are two other instances here so that is the

dependence from S2 to S1.
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Direction Vector Example 5.1
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Finally, this is a very complicated example which we saw before that needs justification
of all the dependences. So, let us look at all the dependences here. Let us finish off the
dependences between S2 and S3. So there are many dependences here; so there is a self
loop on S2 and S3. Then there are two dependences S3 to S2 and another two

dependences from S2 to S3.

So first of all, if we look at S2 delta equal to equal to S3 that is here S2 delta S3 with
equal to equal to. So, you can get this by | equal to 1 J equal to 1, you have B of 1 equal
to something there is a K loop inside here and then there is a B here which is
independent of K that is again B of 1 J only. So B 1 is computed here and B 1 is used

here, so it is a same value of | and J.

So since this B 1 is outside k, we do not have k component in the direction vector.
Values of | and J are equal so equal to equal to S3. The next one is B 1 is read here and
then B 1 is computed here in | equal to 2 and J equal to 1, so from here to here. So that
gives rights to other S3 delta bar S2 - so S3 delta bar S2. The | value has changed so 1

less than 2 so less than, J value remains the same so it is equal that is here.

Then, we come to S3 equal to less than S2. So again S3 to S2, first equal to and less than
this particular dependence. Now, you have | equal to 1 and J equal to 1 so this is A equal
to 1 comma N so that is here equal to this particular thing and then A 2 comma N is here
this is S3.



So, from this A 2 comma N when J equal to 2, we have A of 2 comma N; that is, S2 this
particular component (Refer Slide Time: 30:46). So, we compute here and then in the
next iteration of J, we use it in this so that is, what is shown here J equal to 1. You
compute A 2 N and J equal to 2 - you use 2 A 2 N. So the computation happens in S3,

usage happens in S2 in the next iteration of J.

So, that gives rise to S3 delta S2. | value is the same, so first component is equal to. J
value 1 less than 2, so second component is less than, so that is also taken care of.
Similarly, you have A to N in J equal to 2 so that is usage here in S2 and then you have
A to N which is computed, so that is S3. There is also an anti-dependence A to N here
and A to N here. These two instances that is, usage here and computation here and for
that you have different values of I; | equal to 1 and | equal to 2, so less than and different
values of J as well; this is J equal to 2 and this is J equal to 1, so greater than (Refer Slide
Time: 31:52).

So, S2 delta bar S3 and this is an anti-dependence with less than and greater than is here.
Then, this takes care of all the four dependences here in this case. Now, let see between
S3 and S4. You have A to N computed that is in S3 for some value of J; we have started
from I equal 2 and J equal to 1 to just reduce the amount of space that is consumed for
the picture. Then you have A of 2, N in S4. So this and this component, this particular

expression.

So, you compute here and you use here between these two and the value of | and J are
identical. So, it is a flow dependence between this and this with equal to comma equal to

so that is taken care of.

Next, between S4 and Slhere is another dependence with a delta bar. This is S4, this is
S4 and S1 - S4 and S3- it should have been S3 not S1 so S4 to S3 with a delta bar. We
actually use S2 A 2 N here with | equal 2 and J equal to 1 that is the usage that we are
talking about here. Then, we have | equal to 3 and J equal to 1 that would be A to N
equal to that is S3 again this S3 and this is S4.

So, from S4 we are actually using something and which is computed in S3, a little we
have used something that is a read the old value and then the new value is computed in
S3, so this would be S3 so S4 delta bar S3 with less than or equal to, so that would be S4
to S3 this particular component. So, here is a usage followed by a definition so that



would be an anti-dependence | value is 2 and three so this is less than J value is 1 and 1

so it is equal.

(Refer Slide Time: 34:26)

Direction Vector Example 5.2

far =1 o 100 do |
51 X{y=Y{lh+ 10
fior | = 1 to 100 do |
52 E(l} = A{]N)
for k = 1 to 100 da |
53 Af+1, K} = By) + C{), K}
]
54 Wilse)hm &)+, M)

So, these are the couple of these 4 plus these 2 that we have taken care of and now there
are more here. So, between B 1 here and B 1 here - thisis B 1 - S2, S2 to S2 is the other
dependence that we need to take care of, it is an output dependence. So I equal to 1, J
equal to 1 and then | equal to 2 J equal to 1. So, we have 1 less than 2, so less than and
equal J equal to 1 and J equal to 1 it is less equal to so it is an output dependence from S2
to S2 so that is the loop that we have taken care of here.

Then, we have S4 to S4 and S4 to S1; S4 to S4 this one and S4 to S1. So this is
interesting, this is the one that really causes the dependences from S4 to S4. So if | equal
to 1 and J equal to 4 we have Y 5 equal to and obviously this is just sum so | equal to 4
and A equal to one also we get Y 5 equal to so that is an output dependence between

these two.

I value is less than, 1 less than 4, J value 4 greater than 1 so the second component is
greater than. Then we have between these two S4 and S1, so S1 is here. So we are really
computing Y of | plus J here and using Y | here. So with I equal to 5 this would become
Y 5and Y 5 was computed here. So between these two we again have a dependence so
this is 4 and this is 5, so less than S1- S4 delta less than S1.



So, this how the dependence arises. The last part is here S3 delta o, S3 with less than
equal to and equal to, so this loop. There are 3, so this the inside nested loop in all the
three loops it has been nested. Now, you compute A to 1 equal to and use A to 1 equal to
again with the value I equal to 1, J equal to 1, k equal to 1, I equal to 2, J equal to 1 and
K equal to 1; that is, this is this, this particular thing (Refer Slide Time: 36:41).

So, the values are identical A to 1 and A to 1, so this is an output dependence and | value
is 1 less than 2 so the first component is less than. J value and k value are equal, so other
2 components are equal to. So this is a very large example to show the various
dependences in this particular program and how they arrive. So typically, the moral of
the story is computation of dependences cannot be done by a machine by unrolling loops
like this.

(Refer Slide Time: 37:23)

Execution Order Dependence and Direction Vector

e 5,88, i 5 can be executed belore S, (In the normal
exacution of tha :ur:-grarn]

@ 5,495, only il 5,845,
@ ie., & may hold but 4§ may not hold
@ Exampla:
£1: a=Dsg | 51852, 52 957, and 51 053
52: a=c+d | are all true, but 51 452 and 51 453
53t e=a+l | ane false; only 52 453 is true
Hence execution ardering is waaker
Execulion order direclion vecior is similar {o the data
depandance directon veclor (sirmilar dalinitan)
Mol all direction vactors are possible
W will now consider legal exed order d.v. by loaking at tha
symiax of consiructs

¥H Rehd [T N

We need to actually have mathematical test which determine whether the dependence or
not and that is precisely, what we want to study a little later. Before this, we have to look
at the data dependence vector is what we saw. Let us look at what is known as execution
order dependence and execution order dependence direction vector. Why are these
needed? These are going to be useful later, so we will consider these as legal direction

vectors and these can be computed by looking at the syntax of constructs.

So, when we compute the data dependence direction vectors this will be of great use in

reducing the computation. So, the execution order dependence is denoted by the big



theta. So S, theta Sy, if Sy can be executed before Sy, in the normal execution of the
program a very simple definition this is just execution order. So, it is clear if S, delta psi
Swonly if S, theta psi Sy, in other words, theta may hold but delta may not hold, so let us

see how?

Here is S1, a equal to b plus c; then S2, a equal to ¢ plus d, assigning another value of a.
S3 equal to a plus f, so S1 occurs before S2 and S3, so S1 theta S2 and S1 theta S3 both
hold. Similarly, S2 theta S3 also holds, because the order of execution is first S1 then S2
and then finally S3.

So, all these three are true S1 theta S2, S2 theta S3, S1 theta S3 but, then S2 redefines a
value of a; a was assigned a value b plus ¢ here but, again it redefines the value as c plus
d. So the value of a which is used in S3 is from S2 and not from S1 there is no
dependence between S1 and S3 as far as the delta is concerned, data does not flow from
S1 to S3 only it flows from S2 and S3. So, S2 delta S3 is true but, we do not have S1
delta S3; we do not have S1 delta S2 none of these are true but, S1 delta o is true is
definitely true but, S1 delta of delta of any kind with S3 is not true, because nothing
flows from S1 to S3.

So, hence execution ordering is weaker than delta data flow, the data dependence. The
reason is many more dependences are possible under theta but few are dependences are
possible under delta. Execution order direction vector is very similar to the data
dependence direction vector. We already defined the data dependence direction vector;
we want to compute similar vector for this and not all direction vectors are legal in the
case of execution order dependence and the legal once are possibly we can guess them,

compute them by using the syntax of the constructs let us look at some examples.
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Single Loop Legal Direction Veclors - 1

e 518,52 528 1,81 &, .51, and 52 8,52 ara all
possitla

@« Mote that 52 &, _, 51 iz not possibe because 52 comes
after 51 in lexical ordering

forl=LtoUWdao |

Why are we looking at such examples? The point is legal direction vector as for as the
execution order can be constructed using the syntax of the program. Here we are looking
at the most important constructs of any program and by looking at similar constructs we
can say, the compiler can construct these direction vectors and dependences.

So here is a single loop, | equal to L to U lower bound and upper bound of loop, positive
increment S1 S2, it could even be negative increment that really does not matter as far as
execution order goes. So let us look at | equal to 1, so S1 and S2 we have unrolled the
loop, | equal to 2 again we have unrolled the loop S1 and S2. So any possible execution
order among this gives rise to S1 S2 executes first in | equal to 1 and then followed by
Sland S2inlequal to 2.

So, theta is possible between S1 and S2, this S1 and this S1, this S1 and this S2, this S2
and this S1 finally this S2 and this S2, so that is what is said here. S1 theta less than or
equal to S2, so why S1 in I equal to 1 is related to S2 both in | equal to 1 so that is taken
care of by the equal to component and in the I equal to 2 component 1 less than 2, so this
and this are also related by this execution also related by this execution order. Similarly
S2 theta less than S1, S2 is here; S1 is here so, | equal to 1 and | equal to 2, 1 less than 2
so that is theta less than S1. S1 theta less than S1 is also possible, so | equal to 1, I equal

to 2 this is the S1 we are considering S1 and S1, so this is true.



Similarly, S2 theta less than S2 is also possible this and this, | equal to 1 I equal to 2 we
are comparing these two. But note that S2 theta equal to S1 is not possible S2 theta equal
to S1 because we cannot reverse the execution order of these two. We can execute S2
first and then this S1 but that will be in I equal to 2 not in the same | equal to 1.

(Refer Slide Time: 43:25)

Single Loop Legal Direction Veclors - 2

e 518 .52 and 52 8,51 cannot happen
2 518, 52 528, .51 518,51, and 52 8;_ .52 ara &l

possiig

forl= L todo {
51 and 52 may be
if [ then in any oider, bul
21 .. both 51 and §2
LTy cannoi oour
52 s tapathed if any
endil iteration

]

So, these are the only legal direction vectors possible with a single loop. What about a
loop with an if then condition, so in this case the same loop either S1 or S2 will be
executed but not both in the same iteration. In different iterations they can be in any
order but in the same iteration either S1 or S2 executes. So | equal to 1, S1 let us say
executes | equal to 2, perhaps S2 executes, | equal to 3 again possibly S2 | equal to 4

possibly S1.

So again, we look at the ordering here and then guess the theta. So this S1 is here, theta
equal to S2 S1 theta equal to S2 is not possible, because S1 and S2 cannot execute in the
same iteration at all. S2 theta equal to S1 is also not possible, because of the same
reason. S1 theta less than S2 is possible, S1 is here S2 is here so | equal to 1 I equal to 2
1 less than 2. S2 theta less than S1 is possible, so S2 is here S1 is here so 2 and 4, 2 less
than 4.

S1 theta less than S1 is possible S1 here and S1 here so 1 less than 4. S2 theta less than
S2 is also possible S2 here S2 here 2 less than 3. So these are all possible legal direction

vector as far as this single loop is concerned.
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Multi-Loop Legal Direction Vectors - 1

i1, 518, 52, 526
32 are all possible

52 are not possibla

for 1= L1 1o U do {
for J=LJ o W do {
81:

What about multiple loops. So here is I going from L 1to U I, J going from L Jto U J. So
we have again S1 and S2. Let us unroll the loops for J equal to 1 S1 S2, J equal to 2
again S1 S2. Similarly, I equal to 2, J equal to 1 and J equal to 2 so any possibility theta
between these is valid. So, what is not possible let us look at that it is easier. S2 theta
equal to equal to S1. So, S2 is here in the same iteration of | and J we cannot reverse S2
and S1. Therefore S2 theta S1 with equal to equal to direction vector is not possible.
Similarly, S1 theta equal to greater than S2 is not possible; this greater than implies S1
theta greater than theta S2 is not possible with equal to because | cannot execute S1 in
later iteration than S2 but with the same value of | that is not possible; whereas the others
are all possible, let us take 1 or 2 of them - S1 theta less than equal to S2. So S1 theta
equal to equal to S2 is possible, so S1 is here same value of S1 S2, | equal to 1 J equal to
1. So here is S1 and here is S2, so that is possible no problem at all. If we want to relate
it to another value of S2 with J value greater that is here, so this S1 and this S2 | equal to
1 Jequal to 1 Jequal to 2. So J 1 less than 2 whereas | value is the same so this S1 this

S2 are related by the less than relationship here.

So, S2 theta equal to comma less than S1. So, S2 is here and the same value as I, so S1 is
here with the different value of J, so 1 less than 2 you rise to this and so on and so forth.
So these are all the possible direction vectors as far as a multiple loop is concerned one

can argue similarly with the others as well.
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Mulli-Loop Legal Direction Vectors - 2

Loop 2
e 51 € 52,518, .52 528 =1, and 52 &
are all possible
o 52 ¢ Sland 51 & 52 are not possible

Laap 32

for 1= LI o Ul do {
for Jm L to U do
it i...) thien

elae

What happens if we have an if then else inside multiple loop. Again, the only change is
S1 and S2 cannot execute at the same time, either S1 or S2 will execute in any iteration
of J. Again, the trace indicates various possibilities. Again as usual, let us see what is not
possible. S2 theta equal to equal to S1 is not possible, well for the same simple reason
that S2 and S1 cannot even execute in the same iteration. So, S1 theta equal to equal to

S2 is not possible.

Let us see, how S2 theta equal to comma less than S1 is possible. We have to look at the
same value of I, but different values of J. We are looking at S2 here and S1 here, so this
is same value of | and different values of J. This gives you S2 theta equal to comma less

than S1, so these two give you that.

What about S1 theta equal to comma less than S2? That is given by this (Refer Slide
Time: 48:32) S1, S2 same value of | and different values of J. Similarly you can get, S2
theta less than, less than S1. So, pick any S2 here and pick any other S1 in another one
S2 is here and S1 is here, so this is equal to these two are this is gives you | equal to 2
and | equal to 3 component is less than J equal to 1 and J equal to 1 second component is
equal to. If you wanted less than, you have to pick some other value of | where J equal to
3 or something like that has S1. That is how, the legal direction vectors are all computed

using the syntax of the loop.
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Data Dependence Equalion

Given a program sagment such as

far Lyto U by Ny da |

fot [y = Lgto Uy by My do |
Xlooow Kl ba)

X 1P ) T

Now, we come to the data dependence equation. Suppose, we are given a program
segment such as |4, it is a nested loop S, and S,, are the two statements which are nested

inside a d depth loop.

First loop is I; equal to L; to U; by N;. Second would be I, equal to L, to U,by N
etcetera; 14 would be Lg to Uy by Ng. Sy the exact statement itself does not matter to us,
we are only interested in the two array expressions in S, and S,, because the data
dependence has to be computed between any pair of array expressions. So, X and X
same array that is very important for us, first one has a subscript f of I; to I - a function

of the loop indices I; to I4 and if the same subscript S, has X of g I; to Ig.

Again is a function of I, to I4 but, a different function g. This is the generalized program
segment that is given to us and we want to check whether, there is dependence from S

given S, to S, or from S, to S,
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Data Dependence Equation

@ Supoose that | = (1 14}, andfi i) and g {} arg grdan Dy

@ W iry 1o lind solutsans ¢ and | for | thal satssty th
dapendance agqualon

[ETA] gl

such that the DV is also satisfed

So, the formulation is follows. Suppose, | bar is I; to 5. Now, | bar can be written as V
Ay plus sigma of k equal to 1 to d Ak Ix, why? Recall that we want to impose certain
restriction on the array subscripts. The dependence testing that is dependence analysis
cannot be done on arbitrary subscripts. We do not have the mathematical techniques to
do that. We always restrict them to some form of equations and the easiest and most
widely used form is the linear dependence equation. The subscripts are the linear

functions of the loop indices.

So, Ay is a constant Ay Ik is a linear dependence on I so Ak k. We would have Ag plus
A1 I plus Az 17 Az I3 plus Ag lg, so that is going to be f of I. Similarly, g of I would be
some other constant By not plus By 11 plus B, I, etcetera By 145. We would have these
two as the linear functions of 1, to lg, which are the subscripts and we want to check
whether f of i bar equal to g of j bar for some value of i bar and j bar. What are i bar and j

bar? They are the values of various loop indices, so I; to Ig.

Freeze the loop at any point as we have seen, do we get some values of i bar and j bar for
this i bar, which make f i bar equal to g j bar. In this, we want to make sure that they
have exactly the same value. If that can happen, then the direction vector is should also

be satisfied theta ix psik theta jk so this could be less than greater than etcetera.

We want to find some loop instance values Iy, I, I3, I4. Similarly, another set of loop

instance values J1, Jo, J3, J¢ for same set of loops again, such that f of i bar is same as g



of j bar. So if this happens, then that is going to be a conflict when we access an array. In
other words, we are going to produce a value in some particular configuration of loop
indices and use that value in some other set of loop indices. If you try to run these two
sentences - statements in parallel - then the dependences would be lost and hence that

would be some incorrect computation.
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Data Dependence Equation

@ I'vwe use a normadzad indax £ insteaxd of /, wihana
I l-. Ny + L

@ [ satsfies the inequality 0 [
WRCrEIment O

@ [ ha dependencd aqualions now Decome
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You could also use a normalized index in other words L lower bound is 1, increment is 1
etcetera. So, if we use a normalized index then I, would be Iy N which is a normalized
index Ny plus Lk. We already saw some transformation to do this. Then the dependence

equations can be read written using normalized index also.

We will assume that, all our indices are normalized, so we do not want to do
normalization; this is just a transformation which is done by the compiler. Finding
solutions - normalized solutions i n bar and j n bar for i n bar to the normalized equation

is equivalent to finding solutions to the original equation.
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The GCD Test - 1

@ The dependence equation

_|l1.||. ' -"1: H._].-- l.ql.-' B. .l"L

has & solution i and omly if
GCINA,, A Az By B By) divides B, — A,

@ Tha GCD 1est is quick but not vary elfective in praclice

@ Tha GCD fest indicates depandence whanaver tha
dapendance equabon has a solution amywhara, nol
mecessarily within th region imposad by the loop bounds

Let us very quickly look at the GCD test. The GCD test determines whether the
dependence equation that is A;x; plus AzX; etcetra A,X, minus B1y; minus B,y etcetra

minus B,y is equal to By minus Ay, that is this equation (Refer Slide Time: 55:33).
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Data Dependence Equation

@ Suppose that f = [ L), andri i and o [} are given by
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such that the DV is also satisfed

So, fiequal to gj, so fiequal togl So this Ag plus sigma Aglk is equal to By plus
sigma Bylx expanded will really give you this particular equation (Refer Slide Time:
55:17).
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The GCD Test - 1

@ Tha R e MNCD @qLanon
Ay x, Anxa = By B.y

has & solution i and oy if
GOCINA,. A Ay By B By divdes B, — A

# Tha GCD 1ast is quick but nol vary elléctive in praclice

@ Tha GCD fest indizates depandence whanaves tha
dapendancea egquabon has a solulion ampahars, ol
necessarily within the region imposed by the keop béunds

We are assuming N loop depth so this is the expanded version. This has a solution if and
only if the GCD of all the coefficients A;, Az, Aq; B1, B, By divides this constant By
minus Ao, This is a very well known theorem and this is called as a Diophantine equation
and this is easy to apply. The GCD test is extremely quick but, it is not very effective in

practice that is the problem.

We are going to see examples in the next class. The GCD test really indicates
dependence, whenever the dependence equation has a solution anywhere but not
necessarily in the region imposed by the loop bound. What happens is GCD test will say
there is a solution, the loop may run from 1 to 10 but the solution may be given when i
equal to 20 or something like that so this is not relevant to us. GCD test simply tells you
that there is a solution but it does not worry about the loop bounds. This is the difficulty,
we are going to see some examples and continue with other powerful test in the next

class. Thank you.



