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Automatic Parallelization 

Welcome to the lecture on automatic parallelization, typically we look at conversion of 

sequential programs to parallel programs by a compiler this is a process of automatic 

parallelization. 
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First of all, we must understand why automatic parallelization is essential, you see the 

parallel programming of vector processors or multi core processors or multi processors is 

an extremely difficult task; for example, even with 4 core processors, we can have 4 

threads. You can even have 10 threads, if enough speed of the processor is high. 

Managing all the 10 threads, their communication and sharing of data structures etcetera, 

is definitely not easy for a programmer. 

Specially now, programmers cannot write concurrent programs without difficulty that is 

the reason why automatic parallelization which converts sequential programs to parallel 

programs, which actually guarantees correctness of the program- parallel program and 

that has become popular. 



Research in this direction has been going on from 1969 by David Cook and others. It 

actually reached some saturation point somewhere in the early 90s, but with the advent 

of multicore processors it has really picked up vigorously all over again. The target for a 

parallel automatic parallelizer may be a vector processor in which it is called 

vectorization; it could be a multicore processor and we call this process as 

concurrentization; it could be a cluster of loosely coupled distributed memory 

processors, so we call this processor parallelization in general. 

Parallelism extraction process is normally a source to source transformation, there are 

reasons for this. Possibly, we could do this on binary but the effectiveness is much lower. 

What happens is, when we look at sequential program the loops with array access are the 

most important, the others scalars and non-loop parts of the program are important, but 

they do not really give you too much of speed up even when it runs on a parallel 

processor. 

When you have arrays, the basic question that we must ask during parallelization is, 

when we have two array accesses are these two accesses to the same location of the 

array. If it is a read access from both of them then there is no problem, but if one of them 

writes and the other reads or both of them writes to the same location then they cannot do 

so in parallel, they must be asked to do in the program order. This is the basic question 

that is asked and this is as during a phase called dependence analysis. 

To answer this question we require the expression of the array subscript itself, when we 

use an array we have an index expression, so we need the expression in order to perform 

this dependence analysis. That is the reason why we would like the parallelism 

transformation sequential to parallel program transformation to be a source to source 

transformation. This requires dependence analysis to determine dependence between 

statements, which is what I mentioned just now, the implementation of available 

parallelism is also a challenge. 

If you have a single loop, let us say it runs from 1 to 1 million, there are 4 processor’s 

cores available, you could simply say 2.5 lakh iterations per thread would run on each 

processor and there would be 4 threads running. So, within the threads the 2.5 lakh 

iterations would run in sequential mode, but what if there is a doubly nested loop? Let us 

say both the loops can run in parallel, in such a case, can we actually benefit from 



parallelizing both the loops, one nested inside another. Does the processor have enough 

parallelism, enough number of processors to give you benefit in such a case? This is the 

question that is asked when we look at implementation of available parallelism. 
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Let us start with some simple examples, some of these we saw during introduction to 

optimization. Here is a for loop, for I equal 1 to 100 do X I equal to X I plus Y I, this 

code can be very easily converted to a vector processor code X of 1 colon 100 equal to X 

of 1 colon 100 plus Y of 1 colon 100. The code can run on a vector processor in constant 

amount of time - O 1 amount of time. The reason is we assumed that there is enough 

number of vector registers available, let us say 100 of them. The X and Y components 

are fetched in parallel, then they are added and then they are written into the X vector 

register, this is how it goes. In the entire read process, 100 items of X and Y will happen 

in constant amount of time, the addition takes constant amount of time and the writing 

also takes constant amount of time. 

This vectorization is possible because there is no dependence between these iterations; 

for example, this writes X1 equal to X1 plus Y1, the second iterations writes X2 equal to 

X2 plus Y2. Each iteration writes and reads different X and Y items, so there is no 

dependence from one iteration to another. 
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The same example, the program can also run on a multi core processor. So, what we 

write is for all I equal to 1 to 100 do X I equal to Y I X I plus Y I. What happens is there 

will be 100 iterations running as separate threads assuming that there are 100 cores 

possible. Each thread actually owns a different I value, so for I equal to 1 there is a 

thread, for I equal to 2 there is another thread and so on. Each thread is responsible for 

executing one of the iterations, so X I equal to X I plus Y I. Since, the I values are all 

different, again each thread writes and reads from a different X location and Y location 

that is how it runs on a multi core processor, weather it is useful to run 100 threads or not 

is a matter of detail. In practical situations we may not be using so many threads that we 

will see later. 
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In the next example something that cannot be parallelized, so you have for I equal to 1 to 

100 do X of I plus 1 equal to X I plus Y I. If you simply right these as vector code X of 2 

colon 101 equal to X of 1 colon 100 plus Y of 1 colon 100 this would be wrong, the 

reason is the dependence informally. Let us see what this dependence is, so let us 

substitute I equal to 1, 2, 3 etcetera and see what happens to these statements. With I 

equal to 1, the statement becomes X2 equal to X1 plus Y1; with I equal to 2, it becomes 

X3 equal to X2 plus Y2; with I equal to 3, it becomes X4 equal to X3 plus Y3 etcetera. 

You can see that with I equal to 1, we write into X of 2; in I equal to 2, we read from X 

of 2. In other words, what is written in the first iteration is read in the second iteration. 

Similarly, what is written into in the second iteration that is X of 3 is read in the third 

iteration X of 3 again. 

 There is a dependence from one iteration to the next iteration, what is written in this 

iteration is read in the next iteration. Because of this dependence we cannot run this code 

in vector mode, because the vector statement which is given here implies that all the X 

values are at first and then added to the Y values and placed in X, which would be 

incorrect, the dependence is not actually satisfied. This is a very simple example of code 

that cannot be parallelized. 
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There are some assumptions on the programs in the form of array subscripts, things like 

that must be satisfied for performing dependence analysis, which is one of the most 

important steps in parallelization. For example, array subscripts should be linear 

functions of loop variables. I already mentioned that array is the most important in 

parallelization, so the form of the subscripts, the index expressions in the array access 

should be linear functions of loop variables. In other words, I cannot have I square plus J 

square or I star J and things like that, I must have K star I plus m star J etcetera, where K 

and m are constants, so linear functions of loop variables only. 

Loop lower bound should be 1 and loop increment should be 1, so this is to make the 

analysis simpler and this is easy to actually make sure of as we will see very soon. A few 

transformations on loops are carried out to ensure the above conditions. You cannot 

really make a non-linear function of linear variables into a linear function, but some 

normalization is possible, so loop normalization is possible, induction variable 

substitution is possible, expression folding and forward substitution are possible, we will 

see what these are. 
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Let us take a simple example, the original loop is like this I equal to 1 to 100 do KI equal 

to I for J equal to 1 to 300 by 3 do and there are some statements inside. The first and for 

most transformation is we want to make the loop lower bound 1 and the loop increment 

as 1. In both loops, the loop lower bound is indeed 1, so this is I equal to 1 and this is J 

equal to 1, so that is satisfied already, but the loop increment is not 1 in both the loops. In 

this loop it is 1 but in this loop it is 3, so we want to change the loop to look as in this 

picture I equal to 1 to 100 do KI equal to I, J equal to 1 to 100 do, so we want to change 

the increment to 1. 

Obviously, when the increment is changed to 1, the expressions which use J inside will 

have to undergo some change. Here, if you just expand J equal to 1, 2, 3 etcetera we 

would have had U1 equal to U1 star WKI, U2 equal to U2 star WKI, etcetera. Sorry then 

not J equal to 2 J equal to 1 and then plus 3 J equal to 4, so U of 4 equal to U of 4 plus 

into W of KI etcetera. We must jump J by 3, so the way of doing it is multiply J by 3 and 

then subtract 2. We have U of 3 star J minus 2 equal to U of 3 star J minus 2 star W of 

KI. If you have J equal to 1 this would be 3 minus 2 which is 1. If you have equal to 2 

this becomes 3 into 2, 6 minus 2, 4 etcetera. The array subscripts are going to take the 

same values as before, but the loop has been changed to run from 1 to 100. 

Similarly, this is V of J plus 4, so we would have V of 5, V of 8, etcetera. This 3 star J 

plus 1 is similar, J equal to 1 this becomes V of 4, J equal to 2 this would be 3 into 2 6 



plus 1 etcetera. We will actually have 7 here and 7 here, then you know 7 plus 3 10, so 3 

into 3 plus 1 is 10 etcetera, so the loop indices are changed and the subscripts have been 

changed in order to satisfy this loop increment equal to 1. 
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The next preprocessing on the loop is called induction variable substitution, so recall we 

had induction variable elimination and along with it we had strength reduction. Here, we 

are going to do something similar but in inverse fashion, let us see what we are doing. 

Recall this, keep this in your mind we have normalized loop, we changed the loop 

indices, now the loop runs from 1 to 100 as usual then KI equal to I and J equal to 1 to 

100 that was the normalized loop. U equal to 3 star J minus 2 etcetera this was as before, 

V of 3 star J plus 1 etcetera this was also as before, then we have KI equal to KI plus 200 

and J equal to 301. 

What has changed? The change is in the W part not in the U or V part, the reason is here 

is a variable KI which is used in the W part; W of KI, W is accessed using the KI alright. 

Actually, KI is incremented by 2 in the J loop, so it is actually an induction variable 

dependent on J for the increment. It starts with I, then K equal to I, then I plus 2, I plus 3, 

I plus 4, I plus 5, etcetera in the J loop. 

This fact it is actually made use of what we do, is we have KI equal to I and then instead 

of having KI equal to KI plus 2 in the loop we actually insert W of KI plus 2 star J, so 

every time J increments, this increment is by 2. We effectively do KI plus 2 right here, at 



the end we must give the value of KI that it would have got previously, so that would be 

here KI plus 200. That is how we have eliminated the addition to KI incrementing KI by 

2 every time, so now KI is a constant in the J loop; this does not vary in the J loop that is 

the advantage. 

This is the inverse of operator strength reduction that we perform during induction 

variable elimination; we have actually introduced 2 star J here. In fact, we had KI equal 

to KI plus 2, but we have introduced KI plus 2 star J here, so we are doing more work. 

But, we have eliminated the dependence on the incrementing of KI within this loop; KI 

now is a constant within this loop. 
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So, with that done the next step is expression folding and forward substitution. See this, 

we had KI equal to I here, so we just do forward substitution and replace this KI by I, so 

that is what we do here. So W I plus 2 star J is what we get here, the rest here also I plus 

2 star J, the rest of the program remains the same here, since KI was a constant we could 

replace it by I, so KI is I plus 200 and J is 301. Suppose KI and J are actually not used, 

later on they do not live after this point, then in that case we can delete these two 

statements, they will not be needed, otherwise we need to retain them. 

Now, you can see that all subscripts are linear functions of loop variables as needed for 

the dependence analysis. If you had looked at the original loop, see this KI is something 

they are in the loop not normalized, once we normalize it this KI was still a problem, 



because it was some variable which was not linearly dependent on I and J. So, in various 

steps we actually converted KI - the dependence on KI to dependence on I and J. 

Thereby the subscripts in this particular loop are all now linear and they are ready for 

dependence analysis. 
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Then, how does one generate vector code? Let us say, let us look at a glimpse of this 

process and then take up the details. You are given a loop like this, it has all the loops 

that are normalized, all the subscripts of arrays etcetera are all linear functions of the 

index variables, so then what we do? Suppose, you look at the previous loop, this 

particular loop expands it by giving values for I and J, so that is what I have done here. 

So I put I equal to 1 and then J equal to 1, the statement S1 is this statement. You can 

observe that 3 star J minus 2 3 star J minus 2 I plus 2 star J, this is identical, this and this 

are identical. Similarly, 3 star J plus 1, 3 star J minus 2 and then I plus 2 star J, so just 

remember this. Now, S1 becomes U1 equal to c1 U1 plus something, S2 becomes V4 

equal to V1 plus something. When we change J to 2 S1 becomes U2 equal to U2 plus 

something and S2 becomes V7 equal to V4 plus something. 

You can observe that this particular U1 is read and then written into; this is called as 

anti-dependence, so this type of anti-dependence U2; then U2 here is harmless for 

vectorization. It does not really pose any problems, because all the vector registers are 

supposed to be read first and then written into, so this does not pose problems. But, the 



dependence S2 delta S2 prevents vectorization of S2. So, S2 is here and then it is writing 

into V4, then S2 in J equal to 2 is actually reading from V4; that means form this 

sentence S2 to this sentence S2 there is a dependence that dependence is denoted as 

delta, it is write and then read, it is called as a flow dependence. If you observe the I 

index, J index and their relationships this is happening in the same value of I, so there is 

a small subscript called equal to here. Then it is happening in different values of J, 

writing is happening in J equal to 1 and reading is happening in J equal to 2 with 1 less 

than 2, so the second subscript is less than, so that is the relationship between the two 

subscripts that we have indicated here. This will become very clear, this is called as a 

direction vector and this will become very clear much later. 

So, the dependence and direction vector are the two items that we need to compute very 

accurately for vectorization and parallelization, because of this dependence vectorization 

of S2 is not possible, vectorization of S1 is definitely possible. We do partial 

vectorization for I equal to 1 to 100 do the statement S1 is vectorized, U of 1 to 298 

colon 3, U colon 1 to 298 colon 3 star W and etcetera. 

The S1 statement has been completely vectorized, it runs in vector mode, whereas for J 

loop it contains the statement S2 which cannot be vectorized, so the J loop and I loop 

runs sequentially on this particular S2. This is the vector code generation process, so 

essentially we compute the dependences and the direction vectors. Then we are going to 

look at some conditions on the dependences in order to tell us whether vectorization is 

possible or not possible. 
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So, let us formally look at the dependence relations, this was an introduction that they 

give you to vectorization so far. There are three types of dependence which are very 

important, one is the flow or true dependence, the second is the anti-dependence and the 

third is the output dependence. In flow dependence the two statements S1 and S2 share a 

variable X, S1 writes into it and then S2 in the same execution order reads form it. Later 

this is called as flow dependence because the value flows from this particular definition 

of X to this use of X. 

Anti-dependence is the other way, S1 reads from X and then S2 writes into X, so you 

first read and then write, so this is called as an anti-dependence; this is shown as delta 

bar. Output dependence is S1 writes into X and then S2 also writes into X, but then you 

cannot really change the order of S1 and S2, so this is called as output dependence. For 

example, if output dependence is violated and the output device is a printer then the 

printed output may appear in jumbled form. 

Here we may actually end up, you know if you write first and then read you may get the 

wrong value, whereas if you read first and then write you will still get wrong value. In all 

the three forms of dependence we are really very seriously worried about the flow 

dependence, it is called as true dependence and it cannot be removed by any means. In 

the case of anti-dependence, if we really store the value of X in some temporary right 

from the beginning, then we can write into X any time. So, in that particular dependence 



we do not have to make S to wait until S1 is completed, if we have stored the value of X 

in some temporary variable we can dispense with that. 

Instead of X, in that case, we are actually going to use the variable t in S1 and thereby 

get rid of the dependence. So, t would have stored the value of X right in the beginning 

of the group of statements, so anti dependence can be gotten rid of by using some 

temporary variables. 

In the case of output dependence, it is not possible to get rid of it by using temporaries, 

but we can rename variables and get rid of it. For example, instead of using X and X in 

both places if we simply change this to X and Y two different variables, such renaming is 

always possible, we can get rid of output dependence. Since, we can get rid of anti and 

output dependences they are not treated on par with the flow or true dependence; flow or 

true dependence cannot be gotten rid of. Most of the time we worry about the flow 

dependence, but definitely if there is a need we will look at anti and output dependence 

as well. 

(Refer Slide Time: 26:34) 

 

What exactly is this direction vector that I mentioned just now informally let us to 

understand? The direction vector and the exact computation of direction vectors, it will 

be taken up later. There are three types of direction vector components possible, one is 

the forward component, the other is the backward component, third is the equal to 

component. 



If we have the symbol less than it is called as a forward direction vector component, it 

means that the dependence from iteration I to the iteration I plus K. In other words, we 

compute a quantity in iteration I say X equal to something and then use it in the iteration 

I plus K, K greater than say 0. So it is computed in iteration I and used in iteration I plus 

K that is why this is called as a forward dependence. This less than is a relationship 

between I and I plus K, I is less than I plus K that is why the symbol is less than but it is 

read as a forward dependence, the value is carried forward in the iteration space. 

Backward dependence is denoted as greater than, so this direction means dependence is 

from iteration I to the iteration I minus K, in other words you compute in iteration I and 

you are using it in a previous iteration I minus K, so this sounds a bit weird. Definitely it 

is weird, it is not possible to have this type of a direction vector component in single 

loops, because loops run in 1 direction, you cannot come back and execute one of the 

previous iterations again. As we will see later in doubly nested or higher levels of nesting 

it is possible to have this type of a component in one of the inner loops. Outer loop 

cannot have greater than component, but one of the inner loops can definitely have the 

greater than component in its direction vector. 

Equal to direction vector is denoted as equal and that means the dependence is in the 

same iteration, in other words computed in iteration I and used in iteration I. 
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So here, we had that example. For example, here you know U1 was here and U1 was 

here, we are actually reading something here and then writing into it again, so this is in 

the same iteration of I and also J, so that is why the two direction vectors are equal here. 

Whereas, wrote into V 4 in I equal to 1 and J equal to 1, read in I equal to 1 and J equal 

to 2 that is why the direction vector component is equal to and less than. 

Now, what exactly is a data dependence graph and how is it related to vectorization? 

You take each statement, so we are considering statements we are not looking at binary 

or intermediate code here. Each statement is a node, so in the data dependence graph 

individual nodes are statements of the program and edges depict data dependence among 

the statements, so we are going to see some examples to understand all this better. 

If the data dependence graph is acyclic then vectorization of the program is straight 

forward, so we will see how this happens. Vector code generation can be done using a 

topological sort order on the data dependence graph. If suppose, the data dependence 

graph is cyclic then there is a complication, so what we do is we find all the strongly 

connected components of the data dependence graph and then reduce the DDG to an 

acyclic graph by treating each strongly connected component as a single node. So the 

SCCs - the strongly connected component themselves cannot be fully vectorized, the 

final code will have some sequential part and some vector part. Again, we are going to 

see some examples of this. 
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We will come back to this particular slide a little later, after looking at vectorization 

example. Here is the original program and here is the vectorized program, so you have 

for I equal to 1 to 99, S1 is X I equal to I, S2 is B I equal to 100 minus I, then you have 

another loop for I equal to 1 to 99, S3 is A I equal to F of X I, F is some function of X I 

and X of I plus 1 is G of B I, again G is some function of B of I. 

Here is the data dependence graph for these four statements S1, S2, S3, S4 correspond to 

the four statements S1, S2, S3, S4, this shows that there is a dependence from S1 to S3, 

so let us understand it. This is S1, this is S3, so this says X I equal to I, so that means X1 

equal to 1, X2 equal to 2, X3 equal to 3, etcetera; there is some initialization which has 

happened. Then in S3 A I equal to F of X I, F is some function some expression of X of I 

say X I plus 1,  X I plus 2, etcetera, so that means we are reading X of I here and writing 

into X of I here. There is flow dependence from S1 to S3 that is what is shown here S1 to 

S3. Since these two are in two different loops, this is I loop and this is another 

independent loop, there is no direction vector component shown here, direction vector 

components are shown for accesses within the same loop. 

Then we have other dependence from S1 to S4 that is output dependence. So, S1 is again 

X I equal to I, S4 is X I plus 1 equal to G of B I, so here we have X1 equal to 1, X2 equal 

to 2, etcetera, here we have X2 equal to something, X 3 equal to something, etcetera. So, 

we write into X in S1 and after the I loop here terminates the second loop, here 



terminates the second loop again and writes into locations of X; that means, there is 

output dependence from S1 to S4. 

What about S2 and S4, there seems to be a dependence from S2 to S4 which is of the 

flow kind. S2 is B I equal to 100 minus I and S4 is X I plus 1 equal to G of B I. So that 

means, we write into B I here and read B I here, but these two are in two different loops. 

So, there is no direction vector component, just a dependence writing into B and reading 

from B, So S2 to S4 there is a flow dependence, which is shown as an arc. 

It also shows an arc from S3 to S4 labeled as delta, so S3 to S4, so F of X I means you 

read from X I, X I plus 1 equal to means you write into X I, but you should observe here 

that this runs as the right hand side, runs as X1, X2, X3 etcetera, whereas the left hand 

side in S4 runs as X2, X3 and X4 etcetera. In other words, in I equal to 1 we write into 

X2, but we read from X1, in I equal to 2 we write into X3, but we read from X2, X2 was 

written with in the value I equal to iteration I equal to 1. So that means, whatever was 

written into in S4 is being read in S3, so there is a flow dependence from S4 to S3 which 

is of the form delta; not from S3 to S4, it is from S4 to S3 the picture is correct. 

So this is how the dependences are in this particular dependence graph and there is no 

dependence from S1 to S2. You can see that it does not even share variables arrays, so 

there is no dependence. Now, it is easy to see that this particular graph is acyclic; you 

know there are no cycles in graph. So what we said is if the graph is acyclic then vector 

code generation can be done using a topological sort order on the data dependence graph. 

 If you do a topological sort order on this particular graph you can actually vectorize S1 

and then you can vectorize S2, because there is no dependence from S1 to S2, then you 

vectorize S4 and finally you vectorize S3, why? S1 is easy to understand, there are no 

statements which actually S1 is dependent on, so X of 1 to 99 is just a constant 1 to 99 

and this is corresponding to S1 here. Then S2 is also not dependent on any other 

statements, so we can vectorize S2 also straight away. This is S2 B I equal to 100 minus 

I and we have B of 1 to 99 equal to 99 colon 1 colon minus 1, so this is 100 minus I the 

constant. 

Now, it is not possible to vectorize S3 before S4, because the dependence says whatever 

is computed in S4 is used in S3. But, we have finished S1 and S2, so we can actually 

vectorize S4 after them, but we could not have vectorized S4 before S1 and S2 because 



there are dependences to S4. So S4 is X of I plus 1 equal to G of B I, so X of 2 colon 100 

is G of B colon G of B of 1 to 99. 

Now the last statement which remains is S3, so that can be very easily vectorized, this is 

A I equal to F of X I, so A of 199 if F of X of 1 to 99. So we did a topological ordering 

of the nodes which gave us S1, S2, S4, S3 and we have emitted a vector code because 

this graph is acyclic. 
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Let us look at a slightly more complicated example, this loop is nested, so for I equal to 1 

to 100 do, then for J equal to 1 to 100 do, then inside that we have another K loop and a 

an L loop. So I and J loops are common to both these statements S1 and S2, but S1 is 

nested only inside K loop and S2 is nested only in the L loop. So K equal to 1 to 100 do 

X of I comma J plus 1 comma K is equal to A of I comma J comma K plus 10 and L 

equal to 1 to 50 do A of J I plus 1 comma J comma L is X of I comma J comma L J 

comma L plus 5. 

If you look at this code, here is the dependence graph and it shows that there is a 

dependence from S1 to S2 which is of the flow kind that is delta, the dependence vector 

is equal to and less than. Similarly, there is a dependence from S2 to S1 which is of the 

flow kind that is delta and direction vector is less than and equal to. There is dependence 

from S1 to S2 rather two dependences from S1 to S2 and both are written in brackets, let 

me explain why. 



As I told you K and L are actually two different depend you know loops, so the only 

dependence between them can be written as flow and T R output, there can be no 

direction vector components. That is why just to indicate that the loops are K and L, I 

have shown this as delta of K L. Delta bar of K L that corresponds to the dependences 

from S1 to S2. So here is the left hand side and here is the right hand side, so there is a 

write possibility from here to here and the read possibility from here to here, so that 

gives you both delta and delta bar for different values of K and L, so that is what this is. 
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Now, let me show you why the dependences occur, so we have I equal to 1, I equal to 

etcetera; here, J equal to 1, J equal to 2, J equal to 3, etcetera along this path. Along this 

column we have expanded the expressions here and substituted I equal to 1, J equal to 1 

etcetera. So, the first statement S1 becomes X of 1 comma 2 comma K and here we have 

A of 1 comma 1 comma K, the second 1 becomes S2 is A of 2 comma 1 comma L which 

is X of 1 comma 1 comma L, I did not write 5 and 10, I just skipped it for brevity. 

Similarly, for I equal to 2 you get X of 2 comma 2 comma K etcetera, so similarly for J 

equal to 2 I equal to 1 here are the enumerations. It is easy to see that this X 1 2 K is 

same in I equal to 1 and J equal to 2 X 1 2 L, so for different some values of K and L 

these are going to be the same and therefore, they will be a dependence from this to this. 

Similarly, X 1 3 K and X 1 3 L there is going to be a dependence from S1 to S2. 



So that is really what is shown as delta equal to and less than, why is it equal to? It is in 

the same iteration of I, why is it less than? This is J equal to 1 and this is J equal to 2, 1 

less than 2, this is J equal to 2 and this is J equal to 3, 2 less than 3 etcetera; delta of 

equal to and less than is here, so this is the dependence from S1 to S2. 

What about the dependence from S2 to S1? So, S2 is A of 2 comma 1 comma L and in I 

equal to 2 and J equal to 1, you have A comma 2 A of 2 comma 1 comma K, so for some 

values of K and L these will be equal and therefore, whatever is written it to here in I 

equal to 1 and J equal to 1 is read in I equal to 1 I equal to 2 and J equal to 1. So, you can 

similarly see that A 2 2 L and A 2 2 K are identical, A 2 3 L and 2 3 K are also identical. 

This corresponds to the dependence delta of less than and equal to, why? The first 

component is I, so I equal to 1 and I equal to 2, so written into I equal to 1, read in I 

equal to 2, so that means 1 less than 2 that is why the first component is less than. 

The second component is equal to because both the dependences are in the same value of 

J, J equal to 1 and J equal to 1, but I must point out that the J equal to 1 here and the J 

equal to 1 here are in two different values of I; that mean, S2 different instantiations of 

the same J loop, but that is not what we consider. We just look at the values of the J this 

is one of the limitations of the direction vector, it does not consider differenced 

instantiations of the inner loops but it suffices for our work. 

We have the two direction vectors written here, now this is where the problem arises, 

there is a cycle here right, whenever there is a cycle like this the rule that we are going to 

follow is given in this particular slide. So, any dependence with a forward direction in an 

outer loop will be satisfied by the serial execution of the outer loop. If an outer loop L is 

run in sequential mode then all the dependences with a forward direction in the outer 

level of L will be automatically satisfied, even those of the loops inner to L all these will 

be automatically satisfied. But, the problem is if this is not true for those dependences 

with equal to direction at the outer level, the dependences of the inner loops will have to 

be satisfied by appropriate statement ordering and loop execution order. 

So, dependence with less than direction vector in an outer loop will be satisfied by serial 

execution of the outer loop, this is what is important for us in this case. The I loop cannot 

be vectorized because of the cycle, so you can see that the cycle is in the I loop. Then 

once we actually run the I loop in sequential mode the dependences of the inners loops 



will automatically satisfied, this is what I said. I will show you examples of how this 

happens a little later, but here just believe that the J K L loops can be vectorized once the 

I loop is run in sequential mode. The reason is if we run I equal to 1, I equal to 2etcetera 

in sequential mode, all these executions happens first and then these executions happen. 

Because of that this dependence which runs from 1 to 2 of I value will be automatically 

satisfied right, we run this first and then this so this would have been written into first 

and then we written I equal 2, so this will can be read appropriately without any trouble. 

What about this here, the I equal to 1 all these are going to run, so here is the value of I 

and here is the value of J. We are going to run all the iterations of I in sequential mode 

and all the iterations of J possibly in parallel mode, so that is the way it is. Let us assume 

that this works properly, I will show you examples of why this works properly a little 

later. 

Assuming that this is correct J K loops can be vectorized, so I loop run in sequential 

mode then the J loop and the K loop can actually run in parallel mode. So, X of 

something equal to A of something plus 10 and A of something equal to X of something 

plus 5, so this is exactly how it happens. 
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Here is the reason why I promised that I will give you reasons why vectorization can 

happen in the J loop and the K loop. Here is the reason, let us assume that I loop run in 

sequential mode, then the dependence diagram changes as I have shown here. The 



dependences changes for example, the I dependences are all gone, so there was a 

dependence here from this to this S2 to S1 right on the less than part, so that is gone, so 

we take it away there is nothing at all. Whereas, we had dependence from S1 to S2 on 

the second 1, the equal to part is trivially satisfied, so there is no need to worry about the 

equal to component from S2 to S1, because we do not reorder statements, we just keep 

the statement ordering as S1 to S2, automatically the equal to part is satisfied. 

Now, there will be one dependency which is less than from S1 to S2 that is here, S1 to 

S2 with delta. We have shown I in red that means, it is run in sequential mode, so the 

only dependences are from this to this and from this to this. You see that there are no 

cycles in this particular graph anymore, because of the absence of cycles it is possible to 

vectorize these loops that is the basic reason why it can be vectorized. 
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Suppose the program is changed even little bit, the previous program had I J plus 1 K 

and I plus 1 J L, whereas here we have I plus 1 J plus 1 L, so that is the only change that 

we made, the dependences change. The previous one had dependence from S2 to S1, S1 

to S2 and S1 to S2, here we have S2 to S1, S1 to S2 and S1 to S2 again, but the direction 

vector components have changed. Please observe that the previous direction vectors 

where less than or equal to and equal to less than, whereas here it is less than less than 

and equal to less than, so these are two different once. 

Even now, I loop can run in sequential mode and the J loop can be vectorized, so this is 

the vector code that will be produced. Reasons for this will become a little clearer a little 

later. So here are the dependences for this particular changed program, so the 

dependences are from here to here and here to here, here to here and here to here that is 

why the dependences have changed to delta less than less than, so this part and delta 

equal to less than remains as it is, so this is the changed part. 
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Then we take up another example which shows what happens if we actually have to 

generate code computing the strongly connected components. So here is a program S1, 

S2, S3, S4, there is an I loop in which there is a statement S1, then there is a J loop in 

which there is a statement S2, then there is a statement S3 which is inside the K loop and 

the finally S4 is one more which is inside the J loop. So the K loop has only S3, whereas 

J loop has S2 and S4 along with this K loop. 

Dependences are complex so we will understand these dependences later, but please 

observe that there are number of cycles here. See S4 to S1 is a dependence, here is S4, 

this is S1, so Y of I plus J to Y I is the dependence from S4 to S1. There is a dependence 

on S4 itself that is because of this particular loop I, which is enclosing this, it is 

independent. This is Y of I plus J equal to A J plus 1 comma N, so when the I loop 

changes there is going to be a dependence from S4 to S4 itself. 

Then we have dependence from S4 to S3 and S3 to S4, finally dependence from S3 to S2 

and S2 to S3. One more, there are again dependences from S3 to S3 and S3 to S3; this is 

a very complex data dependence graph. For the present we are only interested in the loop 

structure of these data dependence graphs. 
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Because of the loop structure at I level cannot really vectorize this code directly, let us 

assume that we run the I loop in sequential mode. There are strongly connected 

components, here 1 is here and another 1 is here, so both these together actually come 

into the same; there are 2 loops, so both these actually come into the same strongly 

connected component, S2, S3, S4 together forms an S C C because of the 2 loops here 

which are connected. So, S1 is not in the S C C, so we have S1 and then the S C C, S2, 

S3 S4 together, so we can generate vector code for S3, but S2, S3, S4 run with in the 

sequential I loop. Now what happens? Actually the level 2 diagram becomes like this, we 

had this and we are now expanding this ok. 

So there is a loop from S2 to S3 but there is no other loop in the system, the outer loop 

has been removed, this loop has been removed, the I loop has been removed, only this 

particular loop at the lower level at the J level remains. So here with this loop this is a 

strongly connected components, so S2 and S3 are grouped together, S4 remains as it is. 

We can vectorize S4 within J for the J loop, but S2 and S3 have to be embedded within J. 

J has to run sequentially and S2 S3 are inside. So I run sequentially, J run sequentially, 

S2 and S3 are inside, S4 is vectorized for the J loop and S3 is vectorized for the I loop. 
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Then we have this particular data dependence graph level 3, S3 to S2 with single 

dependence, so this can be vectorized at the K level. What we really have done is 

vectorize S3 at the K level and S4 has already been vectorized. So please see that S4 has 

already been vectorized, S1 has also been vectorized, only S2 and S3 remain. 

So we cannot do much for S2, it remains within J loop and it is not vectorisable as it is 

because it has nothing more to vectorize. Whereas, S3 is embedded within, look at the 

original program, it is embedded within the K loop which can be vectorized. So we have 

vectorized the K loop and here this is the vector code for the K loop. This is the final 

code that has been generated for this particular cyclic data dependence graph.  

Hierarchically, we constructed the S C Cs then grouped the statements appropriately, 

generated code for the statements outside the group - the S C C and finally considered 

the S C C one by one. Then again we looked at the loops and strongly connected 

components within this data dependence graph and we again isolated the loop statements 

which are outside the strongly connected component generated code for it, this goes on. 

Finally, you may end up generating only sequential code, there is a loop even at the 

lowest level, but hopefully this does not happen in all data dependence graphs. 
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So this is the end of today’s lecture and next time we will start discussion on data 

dependence direction vectors, thank you. 


