Compiler Design
Prof. Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 13
Lecture No. # 23
The Static Single Assignment Form:
Construction and Application to Program Optimizations
Part 3

Welcome to part 3 of the lecture on the Static Single Assignment form. To recap a bit,

here is an example of the SSA form and the non-SSA form as well.

(Refer Slide Time: 00:18)

The Slatic Single Assignment Form:

Construction and Applicafien to Program Optimizations
Pait 3

¥.N. Srikant

NPTEL Couwrsa on Compiber Dassgn

(Refer Slide Time: 00:31)

Program 3 in non-SSA and SSA Form

famir

L=3
B i,

"

e

L W F
Ay 1

B Sy EI'H‘ (L7}

- - I' -
g W AR Ay 1 e)
Bl

Mg ™ WAyl BT

The non-SSA form is just a flow graph; whereas, in the SSA form some of the join nodes
will have phi functions for the incoming parameters. For example, i in the original flow
graph flows from B1 into B2 and also from B7 into B2. So in B2, the SSA form we have
a phi function which really takes two parameters I3 and I;; I3 corresponds to the first
parameter coming from B7 and I, corresponds to the second parameter coming from BL1.
Similarly, the variable n is read here, so that is like a definition and later, we have

definitions of n in B5 and B6 as well.

So in B7, we have a phi function for n which has two parameters n; and ng,
corresponding to these two predecessors. Then, in B2 we have another phi function for n,
which takes care of n coming from B1 and this ng which is coming from B7? So that is
how phi functions are. So, we also saw how to insert phi functions and how to rename

the parameters of the phi function etcetera.

(Refer Slide Time: 01:53)

Optimization Algorithms with SSA Forms

o Dead.code aliminabon
» Vory simple, since thede i= evactly one delinition neaching
anch use
& Exnming the du-chain of each variable 1o see i its use lisl is
Ly |
Femaoye such vanables and thair defmibon statemers
& I & statement such as x ¥+ Iorx { ¥ 2 | &5 ewbed
corg muyal b losen i3 remove the doleled statomend rom
e cu-chaerss of 3 and §
@ Simple consiani propagation
o Copy propagaton
@ Conditional consiant propagation and constant foldemg

a Giobhal valug NLIFTIEEring

So, we were looking at the optimizations with SSA forms. There are many optimizations
which are very fruitful on such forms. For example dead-code elimination, simple
constant propagation, copy propagation, conditional constant propagation, constant
folding, global value numbering these are all optimizations which can be done very
effectively on the SSA form.

(Refer Slide Time: 02:19)

Simple Constant Propagalion

| Simipde = (S5]S 15 a statemant in 1he |_|||:|:,Jr.|r||:-
WL 5'.I'I'||'_“:;E' 15 mod -I:-I"!T.-!'ln' :
S = revnove Stmipila)
5 is of tha form x | C.C c) lor soama consiant ¢
replace Sby ¥ = ¢
55 of tha lorm x = ¢ lof Somd constant ¢
dalate S from the PrOgram
for all siataments T in 1he du-chain al x do
qubstituie ¢ bor xin T
Stmitpile = Stmilpsbe L [T]

E-'_‘-L"-"E.' propagaton is simdar 1o constant propagahon

@ As I'!qlE'--'I‘l.'i..l'!E""| -funchion, x L ¥}, 8 copy
statament, ¥ = y can ba dalated and y substiviad o
DY USe al X

Simple Constant Propagation is really simple. Take all the statements put them in a

statement pile and then take one at a time from the statement pile. If they are trivial phi

functions with all parameters being equal and constant, then such statements can be
replaced by x equal to c. Otherwise, if there is a statement x equal to ¢ then we take the
du-chain of that particular x. Then for all uses of x, we can really substitute ¢ and then
the new statement is also added to the statement pile, so that we can propagate constants
further.

Copy propagation is very simple, if there is a single argument function x equal to phi y
or a copy statement x equal to y, these can be deleted. We can substitute y for every use
of x. This is possible because every use is read exactly by one definition in the SSA
form.

(Refer Slide Time: 03:24)

The Constant Propagation Framework - An Overview

The Conditional Constant Propagation is special. Let us recapitulate the transfer function
of the Conditional Constant Propagation Frame work. So this is monotonic, but it is not
distributive and here is the lattice of the constants. So, all the constants are in comparable

there is an undefined value at the top and not a constant value at the bottom.

(Refer Slide Time: 03:54)

Conditional Conslant Propagation - 1

@ S5A forms along with extra edges comasponding o a-u

Mormatsn ang used naro
Edlg# Trom eeery dalinilicn 1o each of ils usaes in the SSA
lonm [cofled hencelorth as 554 edges

@ Lzes bath fow graph and S5A edges and mamlains two
oot Work-RaEs, o foF gach [Flowpde and SSApig
resp. §

& Flow grapgh edges are used D keap lrack of reachable
coda and S54A |;-:‘|!'_||'-,|_-| halp in propagatan o valuas

@ Flow grage E'ﬂ-:i':':!-i are sodad o |:.'-:3"|1',I.'|-'E‘. wWinenever
branch nodd 1S symbobcally execidad or whoniee
assagnm ert node nas a 'S-H:ﬂ'll‘I BURCCEES0r

So, how does conditional constant propagation on SSA forms work? So, SSA forms
along with extra edges corresponding to the definition use information are used here. So
edge from every definition to each of it uses in the SSA form hence, we call these as
SSA edges. So, they are also available in the graph. It uses both flow graph edges and the
SSA edges and maintains two different work lists. This is a work list based approach

exactly like simple constant propagation. So, we have a Flowpile and an SSApile.

So, it is important that flow graph edges are used to keep track of reachable code. So,
whatever code cannot be reached will have all the edges incoming into it marked as non-

executable and therefore, we can never reach that node.

SSA edges are helpful in the propagation of values, whenever there is a change of value
in a node; the SSA edge is used to activate that particular node and put it into a SSApile.
So, the flow graph edges are added to the flowpile, whenever a branch node is

symbolically executed or whenever an assignment node has a single successor.

(Refer Slide Time: 05:12)

Conditional Constant Propagation - 2

& 55A edges coming out of a node are added 1o the S5A
work-lisl wienover thane 15 a changa in iha value of the
a 3'5-'5.]IIE"E| variabde at the noda

& This ensures that all uses of a dalindtion are |.'|II3IZ~E"£-“F|I."'I.1
whaneser a datinilssn -;:h.'ll'-;;{:-'_; 1% laitice value

@ Thisa -;i:lll|"!'! neacs Z-l'l::l' onea lathce cell par vanade
aiobally, not on a par node bases) and two Wibhcoe calls par
maae o store exprassson values

& Conditional BXprEssIoNs Al branch nodes arg evalualad
and ".!Els.'-E'lll“l”g on ihe value, aither omne of '!?lll':j-'.i ng E‘Lfi_.]li"':'-
comaspondmng to frue or falks) or both edges
LEOrraspondes] (0 L) arng acd 20 1o e workksl

& Howeewar, al any joim node, the mead oparalion considars
G":!' lhose pradacassors wiech are marked evecilalye.

Whereas SSA edges coming out of a node are added to the SSA work list, whenever
there is a change in the value of the assigned variable at the node. So the algorithm really
needs only one lattice cell per variable not on a per node basis and two lattice cell per

node to store expression values, so not too much of extra space.

The Conditional expressions at branch nodes are evaluated and depending on the value,
either one of the outgoing edges corresponding to true or false or both edges
corresponding to not a constant are added to the work list. So, if you are able to evaluate
it to either true or false, only one edge is added otherwise, both edges have to be added.
At any join node, the meet operation considers only those predecessors which are

marked executable. So that is an extra point to be noted here.

(Refer Slide Time: 06:05)

CCP Algorithm - Conld.

i = LA£,E,) is the 55A graph,
with tlow odges and S5A adgas, and
15 the set of variables used in the 554 grapt
Bagin
Flowpile = {(Sfarl —+ n) | (Starf — n) & & |
S54pie =
for all @ ¢ £y do a.exscufable = Llse; end for
v.call is the Lathce cell associaled with the vanable v
lor all v ¥V oo v .ol = L g B
yoolaoval and p,nasal slone the Laitice values
iof exprassons al node
forall y = A" do
¥ ofdval = ¥ mevnal
and bar

So let us look at the algorithm, we saw an example. We will learn through that example
again a little later. So, G is the SSA graph N E¢ and Es; so E; is the flow graph edges, Es
are the SSA edges. Now, V is the set of variables used in the SSA graph that is the
program itself. So, we initialize the flowpile with the first edge start to n, so all the edges
which go out of the start node are added to the flowpile, whereas the SSA pile kept
empty.

For all the edges in the E¢ set that is, all the flow graph edges; they are made as
e.executable equal to false, so that nothing is marked as true to begin with. Then v.cell is
the cell associated with the variable v, so we must initialize that also it is initialized to
top, that is the undefined value. Then y.oldval and y.newval store the lattice values of
expressions at a particular node y. So these need to be initialized as well. So both
y.oldval and y.newval are initialized to top the undefined value.

(Refer Slide Time: 07:27)

CCP Algorithm - Conld.

1 or {S5Apde
bagin
if (Flowpie
bagin
[J, ¥] = r@rmdnmi Fhowmie)
1T (nod (x,) execurae) then
gy
X, ¥ erecuiabie = e
f [c-presant(i) then visd-ofy)
ofs 1 (frsrs e wsdi) than vosl-gopn ¥
visii-expr is called on y only on the first visit
1o ¢ Thedegh & fow edogd; subsaquantls, iFis callgd
on ¥ on vigits through 354 edges only
| [Fow-ouldagreedy 1) than
Linly ong SUCCaSSor TIow ooge o0 y
Flowpile = Flowpile U [(y.2) | (y. 2

and
P | ey g i

Then there is a big loop which goes on until both flowpile and SSA pile become empty.
So the first one is, if flowpile is not equal to phi that is flowpile is not empty, what we
do? We remove an edge from the flowpile. If the edge is not marked as executable that
means, we are now entering through an edge which is not yet seen before. Now mark

that particular edges executable that is executable equal to true for that edge.

Now, we check couple of things; is it a phi node so if phi present y, so this is true if it is a
phi node then we call the function visit phi y, we are going to see some details little later.
So if it is not a phi node, then it is an ordinary expression node. So, first time visit y is
checked and is saying are we visiting it for the first or are we visiting it second third time

etcetera.

If it is first time then visit expression; the point is visit expression is called on y only on
the first visit y through a flow edge. Subsequently it is called on y on visits through SSA
edges only. So, if first time visit y is false then we do not visit that expression right now,
we are going to visit it later, if any values of the parameters in the expression change.So,
if flow-outdegree is 1; that means, we have exactly 1 successor for the node after doing
some processing, then we just add that to the flowpile.

(Refer Slide Time: 09:19)

CCP Algorithm - Conld.

if tha adge is already marked, than do nothing
and
it {SEAmle # i) than
bagin
(. ¥ = remova] S>40n],
if {«-preseni{y]} then waif-o{y]
alse il [already - visiad| ¥} then wsi-expr(y):
A Laige rolurmed by already-wsied mplies
that y is nat yel reachabla through llow edges
and
end /' Bath piles are emply
and
henction «-present(y) & ¥ & A
bagin
| ¥ i3 a c-node then ralurn e
aise relurm ke
and

4 g Vg | pmey wners g P WL raes,

(Refer Slide Time: 09:24)

CCP Algorithm - Conld.

wihila |Flowpile +) or (S5Apie # it} do
bagin
il (Flowpdle + 0] then
bagin
[,] = rarmdnmi| Fiomia)
I Encd (X,). execufane) then
Im-:J:."
| %,) erecufabie = g
f --J:l"ESEl'lfl_l-': | then vasa- Ly
afs@ i (frsr - wsiiy)) than vs-gnn ¥,
visil-expr 15 called on p only on fha lirst wisi
10 ¥ Thegogh & Fow |:||'II:J-Q|_ subsaquanily, it is callad
an ¥ on visits through SSA edqes only
[[Fow-ouldeqrae ¥ 1) than
LNty ong SUCCOSSor 10w OO for Yy
Flowpile = Flowpdle L [(y. 20 | (y- 2 & £

and
T] Ve e wmers wwi P B o

Then, if the edge has already been marked that is this part so is it first time y etcetera is

where we are.

(Refer Slide Time: 09:32)

CCP Algorithm - Conld.

if the edge is already markad, 1han oo |:l:l"|l'llli|
and
it | S5Amda + 1) than
o2gin
£, ¥l = Mmool SSA0ng)
presani{y]} then waif-o{y)
alse i {aiready -visded| y]) than v ey
& Laise rolurmed by alreadlyswsied implies
thal y is not yel reachabla through flow adges
and
end /' Bolh pilas are E!'!![i':-'
and
[uamction «-present|y yeN
bagin
1 %13 a8 c-node than raburn rue
aise relurmn false
and

Now we look at this SSApile. Alternately, we are going to look at the SSApile and the
flowpile. So, remove an edge from the SSApile again check whether it is a phi node then
call visit phi y; if it is already visited then visit expression again because, we are now
coming through the SSA, so nothing wrong with that. The point is, if it is not visited
already - the node y - is not visited already that means, it is not yet reachable through any
flow edges. Therefore, we are not going to visit it at all. Unless a node is already visited,
we are not going to visit it when we visit through a necessary edge because it may not be
reachable at all. So this loop goes on until both piles are empty. Now let us look at the

details.

(Refer Slide Time: 10:36)

CCP Algorithm - Conld.

[umction wiswf y ¥ &N
bagin
¥ _newval : yansirvchon. mputs | 1S the number ol
paramadors of 1he c-malruction al noda ¥
1ar | 110 || pansiruchon.inpins | oo
Lal p be the ™ predecessar of y
{2, ¥lexeculabie) than
bagin
Lat & = p.msfrichon, inputs]r];
a; is the ™ input and &, cell is the [attice call
associalad with thal variable
¥R = e 1 O oo
amd

So phi present y is simple; if y is a phi node then returns true otherwise return false. So
what does visit phi y do? So y is a node, take y.newval as undefined value. Let
y.instruction.inputs be the number of parameters of the phi instruction at the node .
Now, we are going to take each one of the inputs and then check whether the edge

corresponding to that input is executable.

Why we want to actually take the meet of only those parameters, whose corresponding
edges are marked as executable otherwise we do not want to touch them. So, let p; be the
ith predecessor of y, i running from 1 to y.instruction.inputs. If p;.y is executable then

take the corresponding input y.instruction.inputs I, so the ith input is taken in the i.

Then take y.newval and meet it with a;j.cell, so you get the new y.newval - updated value.
This is done for all the inputs and we leave out those inputs which come through edges
not marked as executable, we do not want to touch them. So it is easy to see that if a
node has not been visited at all not even once, then nothing gets done at the phi node,

this loop will run many times but in an empty fashion doing nothing.

(Refer Slide Time: 12:13)

CCP Algorithm - Conld.

| {v.newval « p.insiructhon, oufout.cadl) then
Bagin
y.instruction oufpul.call = . newval
S55Apie = SSApie L [(y, 2) | [¥. 2)
g
ana

[unchion Sy - vrsad| ¥ ¥iEN

This function is called when processing an S54 edge
bagin ' Chack in-coming fow gragph aoges of j

lor all & = [ix ¥l | L e & =

i @ areculabg 13 trua lor at least ondg adge @
thn felumm frue alse reluin aise
and ol
@nd

Now, if the new value is less than y.instruction.output.cell the old value that means, the
value has changed. Remember, we go from undefined to constant to not a constant that is
downwards in the lattice cell that is y is less than. If y.instruction.cell equal to y.newval,
take the new value as the output value and add the outgoing SSA edges to the SSApile.
So, y comma z, where y comma z is in es, so all the edges going out of phi are added to
the SSA pile because the value has changed. If the value has not changed, there is

nothing to do, you do not add anymore edges to the SSA pile.

So already visited it is simple, it simply checks the incoming edges of y. If one of them is
marked as executable then it is already visited otherwise it is not visited at all. Check
incoming edges of y for all e in X y such that X y in e, so y is in our node so X y is the
incoming edge. If e.executable is true for at least one edge e, then return true otherwise

return false. So, it is a fairly straight forward function.

(Refer Slide Time: 13:34)

CCP Algorithm - Conld.

Inchion frsh-rme-wrsiivl Vv & A
This function i calliad when procassing & llow gragh adop
bagin f Check in-coming llow gragh adges of §
lor &l & c (X, ¥ (X ¥IE &
il @ .axecutable s trua lor mosa than ona E"UqE' e
then relurn fadse alsa ralum frue
&ng hor
Al least one M-COETNnNg l:"'ljg‘E‘ will fiave axecuialie rue
BaCAUSE T 2 e I"|Ii'.l||l:|h wihch noda ¥ 15 amangd 1S
marekad as aveciilabie Delgre ca na this funchon
and

What does first time visit y do? Exactly one of the edges must be marked as executable
and other should not be. So, if e.executable is true for more than one edge then return
false, otherwise return true. At least one incoming edge will have executable true,
because the edge through which the node is entered is marked as executable before
calling this function. The first time you come to v, it will be one of the edges - incoming
edges - will be true, so you will get something as true. But if more than one edges is true

then we are entering for the second time, so this will be returned as false.

(Refer Slide Time: 13:34)

CCP Algorithm - Conld.

Inchion visA-or]) o p W
bagin
Let inputy = y.insfrechon oz 1]
Let inpity = ¥ msfrischon. inpubs|2)
| [nedly W] == Of it o0 == L) Than
¥ .newwvar
g 1 | npoty . ol == oF iDL cell == T than
¥R B
alsa |/ evaale expression at ¥ a5 par Ialnce evaealion ruies
¥R = INATRO
ks easy 1o handla inslruclhions with one operand
I ¥ i% an ASSQNEON oda Than
| mawv = yoanstroeihon sulsed colf) then
bgpin
V. nSIrLChaove, CLIE. coll = . nasvail
S5Apile = SSAnde U [[y.2) | [y 2)
EHED

0 ke P

What does visit expression do? It really processes the expression whether it is an
assignment statement or a branch condition. Take the 2 inputs; input one equal to
y.instruction.inputs 1 and input two, as y.instruction.inputs 2. If I recall the transfer
function, if one of the inputs in x plus y either x or y is not a constant, then the output is
also not a constant. So, if input 1.cell equal to n a ¢ or input 2.cell equal to n a c then

y.newval is n a ¢ not a constant.

We have covered the n a c part. If one of them is undefined input 1 or input 2 is
undefined, then y.newval is undefined. If this is also not true then both are really neither
top or bottom values in the lattice, so we can do some evaluation. Evaluate the
expression as per the lattice evaluation rules, evaluate y, so the expression is evaluated.
Of course, it is easy to modify this to handle instructions with one operand. So copy
instructions are easy to handle.

If y is an assignment node then if y.newval is less than y.instruction.output.cell. So the
newval that we got here by evaluating the expression is less than the old value. That
means, the value has changed. So remember, we always go down in the lattice. Take the
new value as y.newval, store it in the instruction.output.cell of y and add all the edges
going out of y to the SSApile so for it is as we did before.

(Refer Slide Time: 16:31)

CCP Algorithm - Conld.

alsa il ¥ is & branch noda then
bagin
il L) . Wl ¥ oiohvall than
bagin
¥ ovchal = ¥ el
W i"."ll_r' FRE YT |
caA%a Bath frue and faise branchas arg aauially Liksly

Flowpie = Flowpde U [(y. 20 | ly. 2

case frue Flowpide = Flowpile U [(y. 2) | (y. 2) £ £ and

¥.) 15 ihe frug Dranch odge al ¥ |

I
case fafse: Flowpie = Fiowpile U [(y.2) | (¥.2) € & and
¥. Z) i the falke branch gdoe at y |
@nd swaich
and

g

What if it is a branch node if the value has changed, y.newval is less than oldval then

y.oldval is equal to y.newval. Now check whether, what is the value of y.newval, if it is n

a ¢ not a constant that means, both a true and false branches are equally likely. We add
both branches to the flowpile. If it is evaluated to true then we add only the true branch

edge to the flowpile; in the case of false, we add the false branch edge to the flowpile.

This is where, if the condition has become a constant and as evaluated to either true or a
false. Then, we can avoid some of the nodes which can be entered through either the true

or false edges. So, we actually remove those as read code finally.

(Refer Slide Time: 17:31)

CCP Algorithm - Example - 1

(Refer Slide Time: 17:41)

CCP Algorithm - Example 2

B b= Y
el=g

-

Bd = Sibd, b
€2 = el o)
f 3« nid

(Refer Slide Time: 17:45)

CCP Algorithm - Example 2 - Trace 1

B = Spd, By
2= ded o)
el = RO

So here is a simple example, let us run through the more difficult example, because this
is a2 simple example, which we ran through last time. So this example, we start with the
first node B1 after start, al, b1, cl are all initialized. This particular edge actually is the
only one coming of B1, we add this edge to the flowpile and that makes this particular

node to be interpreted next.

(Refer Slide Time: 18:13)

CCP Algorithm - Example 2 - Trace 3

(Refer Slide Time: 18:15)

CCP Algorithm - Example 2 - Trace 2

fawir

So what happens here, see that b4, bl; bl is the only parameters which is defined. This

part is not yet to marked as executable, so nothing is coming out of this.

(Refer Slide Time: 18:26)

CCP Algorithm - Example 2 - Trace 3

T fawir
Bt L L
El=g

B2 = Ebi)= i
o2edcij=d
P o W00 e

So only b1; bl is 1, so b2 becomes 1 phi bl of is just b1, which is 1. Similarly, phi cl is
cl is 0, so c2 becomes 0. Therefore, c2 less than 100 is obviously true, O less than 100
and that makes this particular edge to be added to the flowpile and this is not yet added;
it does not mean it will never be added it may be added little later.

(Refer Slide Time: 18:58)

CCP Algorithm - Example 2 - Trace 4

(Refer Slide Time: 18:26)

CCP Algorithm -

Example 2 - Trace 5

=1
At Bl = 1
El=Q

i

Bl = Sh1i= 1

B3 c2edycijel
F el @ W00 e

fasir

Now, we evaluated b2 less than 20 that is also true, so again the true part is true edge is

taken and become to B5. Now in node B5 b3 evaluates to 1 and c3 evaluates to 1 both

are constants as so far. This particular edge which is the only successor is taken we come

to BY.

(Refer Slide Time: 19:23)

CCP Algorithm - Example 2 - Trace 5

=1
A bl = 4
El=0

i

Bl = b= 1

B2 2= dcly=0
F ol = W00 e

bl = 7DD, 28]
ol = e, o]

famir

(Refer Slide Time: 19:30)

CCP Algorithm - Example 2 - Trace 6

B famir
Bt LR
El=0

L]
B = Wp1y =1
B2 2= dcly=0
Pl = W s
il

NI T B ™

Once we evaluate B7, again this parameter is not yet available, only B3 is available and
similarly, only c3 is available when evaluate b4 it becomes 1 and c4 becomes 1. This

edge is added to the flowpile that means, we come to B2 once more a second visit.

(Refer Slide Time: 19:41)

CCP Algorithm - Example 2 - Trace 7

Bl fasir
b=
el

scord Al Changs r vy e
b= Sl i) =1 o £ Sl gE i el o b

bl = PpT} =
cladlch=1

So second visit change in the value of c2 to not a constant, but there is no change in the
value of b2. Even with this available b4 is 1, bl is 1, so this b2 becomes 1 but, in the case

of c2; c4is 1 but c1 is 0, so phi function is not a constant.

(Refer Slide Time: 20:12)

CCP Algorithm - Example 2 - Trace 8

Tl fawir
Bt MR
El=0

e e eEdbl) e
= — fRedipdelisd -
P2 & 10 uricown

-

fmae

o

(Refer Slide Time: 20:21)

CCP Algorithm - Example 2 - Trace 7

al fawir

bl o= 4
El=Q

snCord vl Changs v e
- T

“| b= ey | o = mocta
—
a— ,.‘-_
:

Pl

s of |

| 1| B D A N e

-

b oelegied
f gl s gTetn}

el = GRTY =
il =By =1

Now, this ((s h j)) edge actually activates the node B5 and B6 both of them. Let us take
this particular node, b3 now evaluates to 1 and ¢3 becomes not a constant because c2
plus 1 is the value; c2 is less than 100 which is not known. So at this point, we do not
know whether c2 is 100 or not it has been evaluated to bottom. Actually, we add both

edges to the flowpile, so this edge and this edge both are added.

(Refer Slide Time: 20:50)

CCP Algorithm - Example 2 - Trace 9

fasir
El=Q

4

= s)i

= — fRedipdaljsd -
el 4 100 urkcaren

(SR T IER]
4’?.-:1-'_'.'1'-1

k___ el = T ¢

=B =1

(Refer Slide Time: 20:55)

CCP Algorithm - Example 2 - Trace 8

4
“ g i)t
o= cRedrlaljed —
Fel 4 100 urkawn

1
(SR T TER]
q*r}.-;u-;'--.l-

k___ b = AT = !

ol B{eH) = 1

(Refer Slide Time: 21:09)

CCP Algorithm - Example 2 - Trace 9

Bl fawr
b=
clsg

= Sl Bl =1
wrdel)ed -
2 & B urk-aen

=

[T X EER]

firf | oarDehe L oy FT Holring napeens n BE

= ppchinss B @ Aot e

l v 1 v el

5‘“*-\.___ bl = 1II-'.I:-Z"-' L

pl=dcH=1

We actually, in this particular basic there is nothing happening which has been entered
through this particular SSA edge. So B6 there is nothing happening because this
particular edge is not marked as executable. After this we evaluated this B5, c3 becomes
not a constant again, b3 is a constant. We would have already come here, through the

SSA edge we come here again.

(Refer Slide Time: 21:24)
CCP Algorithm - Example 2 - Trace 10
=LE i TR

3wl al) e L :'_:: g
= |00 Uk b

Now evaluate B7 again, so when we evaluate B7 as a second time, b4 remains as 1 but
c4 becomes not a constant. There is change value that means we need to propagate the

value to this through the SSA, this goes on the SSA pile.

(Refer Slide Time: 21:40)

CCP Algorithm - Example 2 - Trace 11

al fanir
0 bl =9
ElEQ
1¥%
il n e 2 o
S bl Sl &
clelrdaljed = T =
Fel & 100 uri-aown

L
™

- b= DT
s Bl =

Now, we come to the third visit of B2. There is no change in b2 and there is no change in
c2. The b2 remains at 1 c2 remains at not a constant value. So there are no more SSA
edges added to the SSApile, there were no flowpile edges added either this was evaluated

long back or nothing was done for this particular edge.

(Refer Slide Time: 22:12)

CCP Algorithm - Example 2 - Trace 11

a1 faair
B Bl =9
El&Q
] vmdl
il n e 52 or gl g
Sl b AR | RO
2 e el aljsd = 7~ o
Pl & 100 urknawn

(Refer Slide Time: 22:18)

CCP Algorithm - Example 2 - Trace 12

ARw firel ssurnd of
3 [PR 0N

(Refer Slide Time: 22:56)

CCP Algorithm - Example 2 - Trace 13

Finally, we can remove some of these dead edges; this is dead, this is dead so this node is
removed (Refer Slide Time: 22:14). Then we get a simplified SSA graph. Here b2 is 1,
c2 has not been evaluated, so it became not a constant and it remains as phi of c4, cl. If
c2 is less than 100 remains as it is, in this case b3 was evaluated to 1; c3 was not a

constant so it remained as c2 plus 1.

Here b4 was evaluated to 1 and c4 was evaluated as phi of ¢3, which is c3 itself but no

for the value as such. Now we can do some copy propagation and removal of course such

as b2 equal to 1, b3 equal to 1, b4 equal to 1 and simplify the entire flowgraph to every
small one like this. You see that the b variable is completely drawn; this was possible

because of conditional constant propagation.

(Refer Slide Time: 23:13)

Value Numbering with SSA Forms

@ Gobal value numbenng schama
& Similar o the schame with extended bassc Hocks.
& Soope of the lables is over the dominator ree
o Therelore more redundancies can be caught (e.g
sAprEssians in blodk B8, swch as d T
souivaient i Ay in block B1)
2 NO G-y or -0 adges nadad
@ Uzas reverse post order on tha DFES e of the S5A graph
o procdss the domenatss iraa
® This ensures that daliniicns e processed balom uss
a Back SOCpeS MXKE TN ALGONTNam Tirkdl ey dgLIVISENCHE
mare on thes Lo
@ "_"".-CGFE.'!- HashTable [scope over the domsnalor tree
AEEAMEE AN assigrameni 8 ¥ Im ko
15 Can usd 1he vaus of the axpressson ¢

81, simoe B is o dominator of B9

(EET] Ve | e s

So that is the conditional constant propagation algorithm, that we saw until now. Let us
move on to the next optimization known as value numbering. We have seen value
numbering before; we did value numbering on basic blocks. We used a hash table, we
entered expression into that hash table and whenever we found another expression with

the same value number we said these expressions are identical.

So, the variables are also entered into the table but not exactly the same table, it was
entered into the name table. Then we saw value numbering with extended basic blocks
that actually found a few more cost the commerce of expressions and did few more copy
propagation etcetera. The reason was the scope of the expressions and so on and so forth

were extended.

Now with SSA forms we can do even better. This is a global value numbering scheme
which is very similar to the scheme with extended basic blocks. But the scope of the
tables is over the dominator tree. So it is not the extended basic block that rules scope of
the tables but it is the dominator tree. Therefore, more redundancies can be caught for
example, I am going to show you picture now, in block B8 suppose you had d; equal to

uz plus v, as extra which are equivalent to a; in the block B1.

(Refer Slide Time: 25:15)

Example: An SSA Form

ot
" AT R]
B et

=
FrR ey
Hoe | Bl mulewd
el ol

4 u-..-q-.-:r i | e

-
a0 e el Wl aly
BT L bL b
ks LA L

Fipu i n] Qe
B1, K}, 07 B, B2 B2, B, B Bep

Suppose, let us stay look at this picture, in block B8 we had d; equal to u; plus v, we
had something here and a; equal to u; plus v; is here, so B1 dominates B8. If we had d;

equal to u; plus v, we could have use to a; as the value of d; directly that was possible.

(Refer Slide Time: 25:43)

Value Numbering with SSA Forms

@ Giobal value numbanng schama
& Similar 1o the scheme wilh extended basic biocks
& Soope of the lables 15 over 1he S3minolon nes
& Therelore more redundancies can be caughl (g,
papressions in bigak B3, such as g uhy 4 vy, wiech are
guvalent b 8, in block B1)
@ Mo o=y or u-0 adges neadad
o Uszas reverse post order on the DFS wee of the 554 graph
0 procdss the domenatss iraa
nsures that delinilicns e prosessnd belone Lss
@ Back edges make the algonihm find fewwer aquivalencds
{mare on thes el
L] ?n:l:lpﬂ'_'ﬁ HashTable [scope over the domenator tree

& For axample, an assignmeant &, Ly + W In block
pressnl) can uss the value of the expression u

block 51, simos 81 is & domingtor of B9

§4 Aa rgram |y s

So with dominator as the leading theme; the scope of the table is over the dominator tree.
Therefore, we can catch a few more redundancies. We do not need any d-u or u-d
change; definition use or use definition, changes are edges are not needed here. They

were needed for the conditional constant propagation but they are not needed here.

Another interesting feature is it uses the reverse post order on the DFS tree, so what we

will do is we take the SSA graph I will show you that also in a minute.

(Refer Slide Time: 26:35)

Exampla: An S5A Farm

St
ol
Bl i mnded

=
Erilirio]

8. | b= ulevd 3 .
- E alw uierd

4wl m el E | Y e o ow plerd B wide]
B cd & ulred * ehw el

pn il w il aT)
bl @b Y, BAj

b
84 Eal, sl &l
P | e b L
ol i, ok 0l
Froa i) ke]
01,1 0T B B2 B2, B BN B Llnp

(Refer Slide Time: 26:38)

Dominator Tree and Reverse Post arder

Frrarar pesierfict on e 594 prach el v el wilh
D LT TR Ehovr

B AN T Pk P77 P PR PP S

'

Fro e cam w [e
o, B, 0, B, B0, L T,

This was the SSA graph, so we do a DFS-depth first search on this. This is the DFS tree,
now do a post order on this DFS tree, we get stop B9, B8, B4, B2, B6, B7, B3, B1, and
start. Now take the reverse of this so that gives your start B1, B3, B7, B6, B2, B5, B4,

B8, B9 and stop. So, start from the start node and use this order on the dominator tree.

We can see that we do a start, then we do B1, then we do B3, then we do B7, then we do
B6, then we do B5, then B4then B8, then finally B9 and then stop.

The idea is by the time you actually look at these children; you would have finished the
processing of their dominators. Therefore, the expressions which were defined in these
dominators are all available for use in these children, so that is what really is the basis of

this ordering.

(Refer Slide Time: 28:03)

Value Numbering with SSA Forms

@ G0Dal value numbenng schama
& Similar o the schame wilh sxtended basss Bocks
& Scope ol the lables 15 over (he dominator ines
» Therelore mare redundancses can be caught (e.q.,
papressions in biodk B3, such as as = 1y 4 v, which ae
aounenben] ba @, in block BY)
@ Mo osyor =0 adges nipecad
@ U345 reverse post orgar on the DFS Wae of the S5& graph
10 process the dominalorn iraa
This ensures that definitions aoe processed belonme use
a Hack n'l-':-:J &5 Takd 1 .'|:-'J¢'|I"'.'| Il Fedve SaUnvasENCHs
more on thes Ll
@ '.';:Gﬁﬂl HashTable [scope over the domenator trea)
o For axamphe, an assignmanl & Ly ¥ Ir Block B9 (|
presen]) can ves the volue of the expression o vy of

block B1, since B is a dominator of B9

EN e

This ensures that the definitions are processed before use that is a succession clip. The
back edges they may be present in the SSA graph, our example does not have a back
edge right now, but later I will show you an example with a back edge. So back edges
make the algorithm find fewer equivalences. So some expressions which we know are
equivalent will not be marked as an equivalent when there is a back edge. This is bad but
there is not much we can do about it.

(Refer Slide Time: 29:08)

Example: An SSA Form

Hari

=
FrR iy
Hoe Bl mulewd
et mudewl

PR it | Bl e g

T

po 8w il al)
bl & b} K3

-
a0 w el Wl aly
| b L
o w e, ad ad)

Frim s Deche
01K, DT B, B2 B2, B, B8 Bep wp

The hash table that we used to store expressions is scope over the dominator tree. For
example, an assignment ajp equal to u; plus v, in block B9, if it is present, this is not
present in the example but suppose it present, it can use the value of the expression u;
plus v; of block B1 since, B1 is the dominator of B9.

Let me show you that if you had any d; equal to u; plus v, or what was that? That was
aio equal to u; plus vy here. B1 is the dominator; it defines u; plus vi. So, we would
have use that directly need not have defined yet and again we could have just used a; in
place of ajg this is possible because B1 dominates B9.

(Refer Slide Time: 29:35)

Value Numbering with SSA Forms

@ Global value numbering schama
Similar 1o the scheme wilh extended bassc biocks
& Soope of the lables i3 over 1he Saminolor ras
& Therelore more redundancies can be caLght (e,
aApressions in biodk B3, such a8 a4 = uy - vy, which ane
oouivaient to 8 in block B1)
@ No a-L4 07 U |,I'L'|t1-!]|}!: g
o Usas reverse post order on the DFS wee of the 554 graph
0 procdss the domenalss iraa
® This ensures that deliniicns e procassed Balons Lse
@ Back adges make tha algonihm hind fewer aquivalences
{mare on thes Lt
Scoped HashTable [scope over the domenator trea)
s For axampla, an assignmeant & Ly + % in block 59 {d
presenl) can use the vale ol the axprassion u vy Of
block 51, simos 81 is & domingtor of B9

T] Ve | ey s i P WL e,

So that is how the hash table works. If you had not used to scoping over the dominator

tree, we would not have caught this.

(Refer Slide Time: 29:46)

Value Numbering with SSA Forms

@ Variable names are nol reused in 554 forms
» Henca, nd need o resiore ol antres o the scoped
Haah Tabie whan he procesiang of o block s completsd
» Just dedeting new entries will be sulficent
@ .l'-'|"-:.' COpies -:';E'I'IE"T.?IEE'IJ DeCause of Common St.biiFTES-E $ons
can ba deleted immediately

@ Copy propaganon is carmied oul :!nl:r:n:'_‘; waliag nLmbaring

@« Ex: Copy staternents genarated due to value numbearing in
blocks B2, B4, B5. BE. BT, and B8 can be delaled

@ Tha Wanum Trbie stores tha S54 name and its valee
niEmbar and 15 l:||CEI.'I| it 18 ol scopad over the dorminalon
frea (reasons naxl shsoa)

& Valua NUMDEnng transiormation retains tha donwnance
proparty of the S5A form

» Ewvery dehindion dominaies ol 48 usss of predecessons ol
uses (in casa of ph-luncticns)

HH g Vg gy ey g P T E e,

Now recalls that each name is unique in an SSA form, so variable names are not reused
in SSA forms at all. There is no need to store old entries in the scoped hash table when
the processing of a block is completed. Remember in the recall that in the case of
extended basic blocks, we actually had to remove all the new entries and restore the old

entries when we went out of scope. So when we return to the parent we had to remove

the new entries which were inserted by the children and then we had restored the old

entries also.

That is not necessary here because the old entries are corresponded to old definitions of
the same variable, which were redefined in the new scope, here that cannot happen. The
each name is going to be defined exactly once so no more redefinitions, just deleting new

entries will be enough there is no question of restoring old entries here.

(Refer Slide Time: 31:09)

Exampla: An S5A Farm

DRt
o]]
EY e uded

=
ErRliri g
1. | bl = ulewd
e @]

5 sleded + | wamugena "

-~

o S il al)
bl = b} b

-
A @ oAl Bl
P2 | bl bL
ol = s, a8 d§

By el] (e
01, Y07 B B2 B2, B, AN B

So any copies generated because of common sub expressions can be deleted
immediately. For example, we will see that a, equal to u, plus v,, bl is u, plus v, so this
becomes a, equal to bl; bl is a-eter of b2 see. This is a copy we do not have to retain this
copy at all wherever a, occurs we will be able to use bl directly, we do not have to

worry whether there is a conflict of interest are something like that.

So how we do that? We are actually going to replace the value number of a, with the

value number of b1, so whenever we want to search for a, automatically get b1.

(Refer Slide Time: 31:46)

Value Numbering with SSA Forms

& Variable names are nol reusaed in SSA forms
» Henca, na need 1o restone okd entries in the scoped
Hash Tishie whan the processng of & block is completsd
Jusl dedeting new antries will be sulficlant
L .l'-'-"-:.' COpEs Qenear aled Decausa of Comimon Sm.tli'lir.'rﬂ‘i-ﬁ s
can ba deleted immeediately
@ Copy propagaison 15 can a1 | ;‘Ilu!"-:_; vl -nurmbaring
@ Ex 'L'-:-p-; slatermants ;I’."I'II'."I'.'I'.I'."Ij dua 1o valua I'Il.III'It‘.'I'."I'I"_.} 1
blocks B2, B4, BS, Be. BY, and BB can be delabed
@ Tha Vainum Table stores the S5A name and its value
neembar and 18 l:||-\.‘i'.".'l= it 15 ol scoped over the dorminalon
frea (reasons naxl sheie)
@ Valua MLITEDETING transior mation redains tha domvnance
proparty of the S5A form
vy dahanicn daminates ol 88 usss of prodesessors ol

LERES (o G O O -TURChonS

LS =] [

So that is how these copies can be deleted immediately. Copy propagation is carried out
during value numbering itself the way I just now mention. Copy statements generated
due to value numbering in the blocks B2 B4 B5 B6 B7 B8 can be deleted. So we are
going to see how the deletion happens? The valnum table store the SSA name and its
value number and is also is a global table. It is not scoped over the dominated tree I will

show you the reasons for it very soon.

Value numbering transformation retains the dominance property of the SSA form. What
is the dominance property? Recall this every definition dominates all its uses or
predecessors uses in the case of phi functions. So the condition constant propagation did
not violate any of this, it actually preserved the dominance property the value numbering

transformation, also preserves the dominance property.

(Refer Slide Time: 33:01)

HashTable and ValnumTable

HashTable entry
{indexed by exprossion hash value)

i riete Fr .
Expression Value number Parsmetors for I.'.klln:s'.:""
Apre §-fumeticon variahle

almuen Table
{indeswed by rinrne hash value)

Wari: B di
:I::.Elk Value number Constant valoc I.:I_Filt:!;ns

So | wanted to show you the picture of the valnum table that is here, so hash table entry
has expression and it is indexed by expression hash value; when we say an expression, a
phi function is also an expression; along with the value number of the expression we
must also have the parameters of the phi function, there are many parameters those are

also stored these will be useful later.

There is something called defining a variable that we need to store here. So the first time
that the expression has occurred and of course we take that and the variable on them left
hand side of the expression is stored here. Whenever we find expressions equivalent to
the expression here within the scope of course, we can use the defining variable in place

of the new variable that we have encounter.

The valnum table is simple; it stores the variable name and it stores the value number
also, it is actually indexed by name hash value. This constant or not, etc is stored here; if
it is a constant, it is a constant value and then the replacing variable. As | told you copies
need not be kept, for each copy that variable name we need to have the variable replacing

the variable as well.

(Refer Slide Time: 34:30)

Example: An SSA Form

Hart
L
Bl et

FES adw udawi

-
B3 w el
[SIET- Lo]

L
a0 e el ol aly
o | T L L
ol s, 0l 83

Prom o Deche
B1,)BT B, B2 B2, B4, B B

(Refer Slide Time: 34:53)

Dominator Tree and Reverse Post order

=

th‘..ul

5] L& Hi il BT

Farrrrsr posioniion on fhe 554 gragh dhel o el il
b rnstor mor shor

eI L5 T B 1 P e
L

Pt et o n [e
e, 0, L B0, L T,

This is our example that we are going to run through; it has many many redundancies so
uy plus v ;1 is defined here, u, plus v, is defined here, so u, plus v, is here, again here,
where usz plus vs another us plus vs, but remember B2 and B3 do not dominate each
other nothing at all. For example, see here B2 and B3 are not dominators of each other.

(Refer Slide Time: 34:57)

Example: An SSA Form

Hart

=
o m e F
Ho | Bl mulewl
el o el

T e A LT

T

o S el aT)
bl & b} L)

-
a0 e dal, ol aly
| b L
o w s, ad adp

Prim s g (ece
01 00T B B2 B B DA B

So the ujz plus v3 which has defined here and B2 cannot be reused here, if it was actually
define here like u, plus v, it could have been reuse, but not now. Now whatever is
defined in B1 can be used in B2 and whatever is defined in B1 and B2 can be used in B4
the reason being B1 and B2 dominate B4. Similarly, whatever is defined in B1 and B2

can be used in B5.

Finally, what about B8? B1 of course dominates B8 so whatever is here can be used
here, B2 dominates B8 so whatever here can be used here, but neither B4 nor B5
dominate B8, so whatever is used here defined here, cannot use as a commerce of
expression here. But we must remember that B4 and B5 supply parameters to the phi
function here. For example, a5 is phi of a4 comma a2, a4 comes from here and a2 comes
along this path. So it would actually come with this way, a2 is defined here, but it comes

this way.

(Refer Slide Time: 36:47)

Global Unscoped ValnumTable

N aadad for nsiruchons
A rrsiruchon recares inputs from several varnabées along
ditferent predecassors of A biock
These inputs are delined in the immediate F-'n':ﬂt‘in'.—iiﬁl'b'- of
daominatons ol the predecassorns af the curment block
Thr_\-:,.' may be daleed m any black that has a contral path 1o
thia currant ock
For example, while processing bisck B9, wa naad
dalinitions of 8s, Ag. and Ay

& 3. & dofined in the predecassor block, 55 and

& 3y dofmad in the dominator of the peedocessor of 8%, Ia

H'|

Howewer, each Incom ng arc cormesponds (o exact
el imaiar al tha c-insimaction

Hence we nead an unscoped Valnnm Table

e] T e | e s

(Refer Slide Time: 37:36)

Example: An S5A Form

T

B i

=
o w e F

Ho Bl ®ulewd o

i FES | ad e wiawi

4wl @ Ul G5 | bl gl T
j - R]

-
a0 @ el ol aly
BT B b
ol s, 0l 83

Lt

Similarly, B6 gets B2 from here like that and B3 directly; the same is true for B5, B6 and
B7. When we come to B9 we get one parameter from here that is for a7, a5 is defined in
B8 so that comes here, a6 is defined in B6 that comes here, and a3 is defined in B3 is at
comes via B7, for B7 it is similar, c4 is also similar (Refer Slide Time: 36:30).

Let us see why the valnum table should be unscoped and then run through the example,
so the unscoped valnum table is really needed for processing phi instructions. For

example, a phi instruction receives inputs from several variables along different

predecessors of a block; these inputs are defined in the immediate predecessors or the

dominators of the predecessors of the current block.

(Refer Slide Time: 37:46)

Global Unscoped Valnum lable

Maadgd for -nstruchons
A rrsfruchon recenes inputs trom several vanabées along
different predecesscrs Of A Diock
These inputs are delined in the immediata predecassos of
CREInaor S o 1ha P aEs0rs of e Curmgnl Bk
Thay may be delned m any block that has a contrel paih o
thia cusrant Mock
For examplo, while processing Dock B9, wae noad
dadiniftions of as, Ag. and A,

® A ay: defined in the peedecossor block, BS. and

& 3y dofinaed i the dominator of the predocnssor of

=3

HOowesar, each Incom N Arc Cormesponds b0 axactly
paramadar ol the c=instraction

Hance we need an wriscoped Valmm Table

L e

This is obviously true because of the dominance property, so phi gets many variables
along its incoming edges and they could be defined in immediate predecessors. For
example here a4 is defined in the immediate predecessor, but a2 is defined in the
dominator that is upwards that is what it is saying or dominators of the predecessors of

the current block.

(Refer Slide Time: 38:09)

Example: An SSA Form

Tt L
L
B i

-
el]
B | bl @ulewl e
B il ES e wulesl
= a .
5 | B m e i _— L
j © 2 e uled Y e uleed

o
ad & al, il ady
BT bl b b
ol e, 0l 8N

Fopu i n] Qe
B1, K}, 0T B, B2 B2, B, A B mp

(Refer Slide Time: 38:38)

Global Unscoped ValnumTable

@ Meadad for nsiruchions
a A medruchaon recen'as inputs from several vanatées alang
different predecessors of a biock
& These imputs are delined in the immediate predecessors of
daominalons ol the predecassars af the curment block
& Tllr_\-',' may be delened m any bicck that has a contral path 1a
thia cumrant pock
@ For gxample, while processing biack B9, wa noad
dalinifions of s, g, and Ay
& 3. 8 dofined in the peedecassor block, 85 and
& 3y defmaed in the domidator of the peedocessor of 8%, ie
=%
@ However, each iIncoming arc comesponds bo exactly omne
el imaiar al ha c-insirschion

@ Hence wa need an unscoped Vakwnm Table

T] Ve | e e e L

Of course, they may be defined in general in any block that has a control path to the
current block subject to the dominates property. For example, while processing block B9
we need ab, a6, and a3, Let us look at that a5, a6, and a3. | already showed that a5 comes
from here, a6 also comes from here, but a3 comes from this point (Refer Slide Time:
38:10). Whereas if you take b7, b6 comes from here, b1 actually comes from all the way

from the top and b5 comes from here.

So in general the variable could come from anywhere subject to the dominants property
of course, anyone of the dominators. However each incoming arc corresponds to exactly
one parameter of the phi instruction. Since, the parameter can come from any of the
dominators or the predecessors, we need an unscoped value number table it is not

possible to use a simple scoped table, we need an unscoped valnum table for this.

(Refer Slide Time: 39:06)

HashTable and ValnumTable

HashTable entry
{indexed by exprossion hash value)

1 i Parameters for. Defining
!'J,Frz-.:u:-n Walue mumber *_rmdml variahle

almuen Table
{indewed by rarme hash value)

Variahle ; . Replacin
name Value number Constant valuc '-.|.1'Fil.|.l!!-¢ €

(Refer Slide Time: 39:10)

SSA Value-numbering Example - 1.0

T

B il

=
FrR iy
Hoe | Bl mulewd

i
i FEA | i w uiawl

a
ul o uleed

| bl i
3 © £l e ul

=

Al e el ol aly
BT B L b
ol 1, 0l 83

Frim s Dece i
B 1K1 BT B, B2 B2, B4, B8 B o e

e

This is the picture just now | showed you, let us run through this particular example and
see exactly how value numbering happens. There are more points to be noted as we go

along and we will define them at the end of the example.

(Refer Slide Time: 39:27)

SSA Value-numbering Example - 1.1

T
Faccaawsg L'

FS el w wiawd

-
B3 w e]
(S T- L]

-
ad @ il ufl, alp
BT bl b b
ol S, 0l 8N
Froaaer ng Qe]
B 1K} DT B, B2 B2, B, BN B mp

The processing order is always given here, we are now processing the block B1 (Refer
Slide Time: 39:32). It has two assignment statements a; and bl equal to u; plus v; and
u, plus v, So u; plus vy and u; plus v, are entered into the hash table and then a; and bl
actually get entered into the valnum table no problem at all.

(Refer Slide Time: 39:52)

SSA Value-numbering Example - 1.2

Dot
Faseeamy X

Fi | alw wiewd

&

a
o w ulved L B

B e udeed 1 etm et

-

o w il ol ady

[N]

ol S, 6l 83
Prim s Dece .
011,07 B, B2 B2, B, DA B wp

e

(Refer Slide Time: 40:03)

SSA Value-numbering Example - 1.3

Dot
Facesaasg 18 (IR]
Ll L LT

=
FrR LTy
Ho | Bl mulewl
et o el

T e A T

-
ol @ el ol aly
| T bR L
ol s, a6l 83

P (ege
1,00, BT Bl B3 55, B B8 B

Then the next node to be visited is B3, so a3 is defined here as a same treatment u3 plus
v3 is entered into the hash table and into the valnum table. Then B7, so this defines u3
plus v3 which was already defined before, because the hash table is scoped over the
dominator B3 dominates B7. We find this b5 equal to u3 plus v3 is nothing but defined
already, so we have b5 equal to a3 as equivalent a3 is right here then c3 is equal to u3

plus v3 that is also equivalent to a3 (Refer Slide Time: 40:30).

So we delete these two statements because copy propagation can be directly done, we
can store in place of b5 and c3 as a3 itself and that value number automatically takes care

of these two usages later.

(Refer Slide Time: 40:56)

SSA Value-numbering Example - 1.4

0w el ol ady
BT bl b b
ol il il 8}
Prom s Dece .
B 1K} BT B, B2 B2, B, B8 B mp

LS =] P

(Refer Slide Time: 41:13)

SSA Value-numbering Example - 1.5

ot
Fasesamy [TSN
B pmaded

=
afwufewl okl 0%

Bl | bl s ulewd | 810 B -

Fi el w udasl

DL L

L i - bl @l

@Bl chial
- .

4wl ®uFewd el - R . malee] ;¢ el
; R e Y etwuteet

i

po 8w el al)
bl & Wb} B3I

-
a7 el W8 83
B | T L
ol 6l 80

Pipa i n] Qe i
01K DT B, B2 B2, B, BB Bep mp

Then we process B6 in that reverse post order, here we find a6 as b1 so u2 plus v2 which
is defined here in the dominator scope and c2 as b1 again, so that is also defined here and

we can delete these two (Refer Slide Time: 41:10).

Then we process B2, so here we find a2 as b1 which was defined before, b2 as u3 plus
v3 which is not defined before, because this is a different dominator scope as such so B3

would have already gone out of scope, B2 is a new dominator scope so this is retained as

it is and entered into the tables, but c1 as u, plus v2 is already equivalent to bl, cl is

equivalent to b1, because u2 plus v2 is already defined.

(Refer Slide Time: 41:54)

SS5SA Value-numbering Example - 1.6

Hart L
Fraccanwrg I - ol & i
bl T 5

=
aFf=niewF | otlnd
Ho | Bl " ulewl | 41007
LR]
) BIEEA
M el m e vt |l el

o S il al)
bl = dxb Y, h3i

sl
a0 ol al iy
BT e bl bl b
ol e, ol 81y

P il u]) o i
01 BT B, B2 55, B4, 0N B Lhmp

e

(Refer Slide Time: 42:03)

S5A Value-numbering Example - 1.7

Hart
Frccanwryg I o
B peadent

=
aFw=uierEF | okl o
o- | B3 Jaw§ 1 1 -
e i R B | e
: C T .
=l § B BlEbY el Bd
- - -

d4 allsulegd o |l waled - ERTS]
. 4 R T

pin el)
bl = dxb Y, bAj

-
& @ el e Bl
BT = b bl b
ol = isnd, o 833

P il w] (e i
BT 0T B, B2 55, B4, AN B Lhp

1w

Then we come to B5 here we find u2 plus v2, b3 is equivalent to bl so this is deleted.
Here in B4, a4 is equivalent to b1 this is also deleted.

(Refer Slide Time: 42:09)

SSA Value-numbering Example - 1.8

Dot L
L
B i

=
afenlewl | ol 0d
Ho | B " ulewl | 41001 =
vy
ol i L l.‘-ll.-“-l-r!
. C 1T
-l 0B BlEBl el B
& - -

dd sl el T el
. : y S ottt

shsdsbdBipi b

pr (MENLER | | T i

bl & it} haj

ST
=

A0 e, W a3
P | L L b
o w o, il 839

P s o) (g i
B1. K} DT B, B2 B2, B, A B fp

Then we come to B8, so in B8 a5 is a phi function with a4 and a2 as parameters. If you
trace back when you search the valnum table a4 is equivalent to b1, so that is what we
have replaced here and a2 is equivalent to b1 again, the second parameter is also bl. So
such phi functions which have all parameters as equal the same are meaningless phi
functions. So a5 is meaningless phi function we do not need it here, we can simply
replace the phi function by the parameter b1. So a5 is equal to b1, but bl is already there
before. This is a copy statement and we can delete this as well.

(Refer Slide Time: 43:06)

SSA Value-numbering Example - 1.9

T
F it g] (|1

C AT R
[= 25 i A i)

pun (S e, Ty
bl B Y, Kaj

T T]
o Pl B, a0
Tl s N
sl el b B | wH §ad

Frofese g egke i o4 I el noag

B, 50,07 B 0 B5, B4 DA B

But b6 is not so b6 is remains as phi of b2 comma b1l. When we come to B9, a7 is a phi
function with a5, a6, and a3 as parameters; a5 is famous bl so the first parameter is b1,
a6 is same as b1 second parameter is also bl; a3 is a3 there is no change, so it remains as
it is the phi function does not become meaningless.

The second phi function b7 has b6 b1 and b5 as 3 parameters; b6 is as it is; bl is as it is;
and b5 is equivalent to a3, it is replaced by a3 so this phi function is also not meaningless
it remains as it is. Whereas c4 equal to phi of c1 comma c¢2 comma c3 cl c2 c3 are
equivalent to b1 bl and a3; c1 is b1 here, c2 is b1 and c3 is a3.

So now observe that a7 and c4 are exactly identical. Therefore, one of these needs to be
retained and the other can be removed c4 will be removed and it is called as a redundant
phi function, which is already covered by some other phi function in the same basic
block.

(Refer Slide Time: 44:34)

SSA Value-numbering Example - 1.10

Hart L
L]]
L ¥ T T)

FES el w adesl

i

B w2 B

s

wl & b, b &l
B o el B, &)

This is the simplified SSA graph after the copy statements and redound expression etc

are all removed. So this is how we are able to simplify.

(Refer Slide Time: 44:47)

SSA Value-Numbering Algorithm

hmction SSa-Value-Numbaring (Block &) |
Mark the baginning of & new scope,
For each S=lumchon § ol the lorm x { ¥y ¥a) I Edo |
search for f in HashTabie;
This involves getimng the value numbers of the paramaters also
i Iis maanmpess Jall ¥ ang eguvalent 1o some W
replaca value numbear of x by that of w in Valnam Tabde:
dakate |
elsa it 15 regundant and is egunalent 1o 7] 4
raplace value numiser of x By thal of 2 in Vakewm fatie
dadata [
elsa insart simplified £ into Hash Table and Valawr

Let us look at the SSA value numbering algorithm in a formal manner mark the
beginning of a new scope, so the basic block B is the parameter for each phi function f of
the form x equal phi of y; to y, in the basic block B do search for the function f in the
hash table name is x and the parameters are y; to y, So this involves getting the value
numbers of the parameters, you have to dig into valnum tables get their parameters etc
etc. Then use a special hashing function for phi and there were many number of them

available and then enter into the hash table.

Suppose you find that f is meaningless this will be defined later, all y; are equivalent to
some w that is all the parameters are equal. Now replace the value number of x by that of
w because this becomes x equal to w, all these are w in the valnum table and delete f
suppose, it is not meaningless but it is redundant, so redundancy is there is some other
phi function, which is equivalent to this f of the form z equal to phi of u; to u, in the

same basic.

So replace the value number of x by that of z in the valnum table and delete f so | already

showed you this otherwise, simplified f into hash table and the valnum table.

(Refer Slide Time: 46:25)

SSA Value-Numbering Algorithm - Contd.

For gach assignment aof theformx = y + z in Bda |
saarch lar ¥ + F in HashTable,
This iwolved gedteng valug numbers of ¥ and 7 als
It prasant with valua fnumier n
replace valua number o x By Ain Valnum fabio
delate 8
s add ssmphtied ¥ 4+ 7 10 Hash fate and x 0 B Tabe:

For each child ¢ of B in the dominalor ree do
in revioese posionder of LS over The S5 graph
S5A-Value-Mumbearing{cl;
clean up Hash Talse aftor :-_r-'l.'..'ll!l_| as SC008:

L-aling program
55A-Valua-Mumbaring| Start).

L] Peryrers

Then this is for phi function, what do you do for assignments? If it is x equal to y plus z
search for y plus z that implies take the value numbers of y z etc etc, apply a hash
function and search a hash table. If it is already present with value number n then replace
the value number of x by n in the valnum table and delete a. | showed this if there is an
expression already defined we do not have to keep the copy later. Otherwise, add the

simplified y plus z to hash table and x to the valnum table, so this is as before.

For each child, now we have finished processing B, so what about the children of B? In
the dominator tree in the reverse post order of DFS as | told you about the SSA graph
call SSA value numbering for each of the children. Finally, once we want to get out of B
clean up the hash table after leaving this particular scope, so initially we supply start as

the parameter and then call the function.

(Refer Slide Time: 47:38)

Processing «-instruclions

& Some tmas, one or mose of the inputs of & -siruchion
miay not yat ba dalfined

& They may meach through the back edge of a loop

» Such aniries will ot be loind i the Valeurm Takds

o For axampda, sea a7 and ol in the c=lunchons in biock B3
nagxl Shcld i shair sgqualencs woild not hiree bean decided
by e time B3 is procossed

& SHMply A5SN & N Yalue ramber 1o the o~ instrischicn and
racand It on tha Vanm fabde ard the Hash fabde alor Ky el
I et vl numiber and the dafming variable

all the inpuls ane found in the Valnum Tabie

& Replace the inpuls by the respactye enirles in the
Walrirn Tala

MNow, check whather the «~instnsction is sithor mea
Of rdeangant

& (I nlfiner, anbar the siamplilied axpra-ssion ko th

et FO

(Refer Slide Time: 47:56)

Example: Effect of Back Edge on Value Numbering

- F o dsang o0

B B0 B T B B B B

s alE i
Bl et

il e,]
b w ey
s = Wl od

=
FrR Ty

Ho | Bl & ulewl Al
et m el

4 qll;ﬂ'ﬂ s ”-!,q--? B o 8 ulvel

£l = wlred

g o w e 2Ty
bl = BB Y, Bj
Fifect of Bl adgs .
U7 i e B &7 @ ol &l 89
BF bl LB
W2 RO 300D
equivdignl, £vpn heush ol w a0l 603
AT i of ik ko Bel |-
L LRI] o

Let us look at some details of how phi functions are processed? One or more inputs of
the phi functions may not yet be defined for example, they may reach through a back
edge of phi of a loop, and such entries will not be found in the valnum table. Let me
show you an example, this B3 have been replaced by a new block which has u6 and u7

as new definitions, the old one had only a3 equal to u3 plus v3.

Now u6 is phi of b1 comma a7 and u7is phi of b1 comma c4. Unfortunately, we found

that a7 and c4 even though are equivalent we have not processed this block, so we have

not found that a7 and c4 are equivalent. We are processing this block we have not
processed this block and there is a back edge here. So because of that we do not find ué
and u7 as equivalent, they are not redundant phi functions at all because a7 and c4 are

not yet found as equivalent.

(Refer Slide Time: 49:05)

Processing o-instruclions

& Some times, one or made of the inputs of a o-instruchon
miay not yat ba dalined
» They may meach through the back edge of a loop
» Such antries will ol be lound in the Valeam Takdhe

& For axample, sea a7 anrd ol in the o-lunchomrs in bock B3

] Sk i Ehar Vil NG WO nol Rt D SCioad
by 1he lime B is procossed
& MR A5SN A N Yaiue number fo the c=instrechcn and

racond 1t | tha Vislnum Debe and the Haah Dabie alarg wil
1P i W numibser and TR daleing viraiie
@« |If all the inputs are found n the Valnum Tabie

» Replace the inpuis by the respactve eniries in the
Walreirn Talia

Now, chock whather the INESIrBCTion is siiher |"I""||'|"':'|-I"":':
o regungand

& I n{thae, gnbar e samolilad axprassion o the Iahes &8

et PO

So because of this back edge a7 and c4 will be treated as distinct, separate. Therefore,
this u6 and u7 will be actually entered into the hash table as if they are two different phi
functions, which are not equivalent to each other. So simply assign a new value number
to the phi instruction and record it in the valnum table and the hash table along with new

value number and the defining variable that is what we do.

So we do not really go through the value numbering scheme again and again. So that is
why this is not done, we just want to do it once it takes too much time. If all the inputs
are found in the valnum table, then replace the inputs by the respective entries in the
valnum table. Check whether the phi function is either meaningless or redundant if

neither enters the simplified function into the tables.

(Refer Slide Time: 49:44)

Processing o-instruclions

Maaningless —instruction
& Al inputs pew identical For example, soe block B
@ Il can be deleted and all ococcurences of the defining variable can
b replaced by he inpl pasamisled Vidwur Tabde ks updaied
Haduindan o insrucon
@ There s anadhe naEirichon @ the same Hadas Diock wilh
EnmEy e S0mse parnmabara
@ Block BB has a medundant
@ Anothar c-insiruchon from a dominating block cannol be used
becauss the conlral condilions miany be dithenent for the fyvo
Blocks and héncd thi bwd c=irgtrections may viedkd diflersn]
values af runiuma
@ HashTalde can b sed b0 chack neduind mncy
@ A redundant c-insbuckon can be deleled and all coowmences ol
tha dediming variable in the recundant instrection can be
replaced by the anlier non-redendant one, Tables are updaied

e] Ve | e e e L

(Refer Slide Time: 50:11)

Example: Effect of Back Edge on Value Numbering

Bart .
o POy

Byt BB B ED S B4 P B

il w et]
&b ow lan]
L el

=
ErRETris s

Ho | Bl wulewl al
et »ulewl

i etmuded 03| B3euded

ju 58wl g Ty
bl = #eh Y 01}

Fiecs o bich ados o
w7 iy e B a7 dend, . 59
e ROl Seteciod B BT =kl b e
il eon heugh

ol v et il el

AT i of ik hoc Brl |
i | (7]

e

Now what about meaningless and redundant phi functions? All inputs are identical so for
example, in block B8 as | showed you if all the inputs are equal, then they can be deleted
this particular instruction can be deleted. Occurrence of defining variable can be replaced
by the input parameter; only valnum table needs to be updated. We saw this example
already for example, here this and this they become meaningless therefore, both this

parameter become equal (Refer Slide Time: 50:15).

(Refer Slide Time: 50:22)

Processing «-instruclions

Meaningless —insuction
@ All inputs pew entical. For example, soe block BS
@ Il can be cotebed and all cocumences of Thi Galrming varnae can
b replaced Dy 1he inpul parameler Vialnwm Thbde is updated
Fadundan o~ InsrucHon
@ There & amather c-inatrection m the same basic block with
ey e oo paramabers
& Block BB has a mdundant c-aatnaciion

@ Anokher - -insiruchion from a daminating block canmnol be ussd
bBecauss the conliol condibions may be dithemant tod the ko
Biocks and hancd the bwd o=instrechions iy wikd cfillarand
values ol runtume

@ HashTabde can be sed o chack neduingd mncy

@ A redundant csinsucion can be deleted and all coowmnces of
tha dedin | warinble in the redundant insirechon can be
repiaced by the antlier pon-redundant one. Tabies are wpdaied

R] Verggra | ey s g P LU e

Redundant phi instruction means, we have already discussed this instructions in the same
basic block with exactly the same parameters. So redundant phi instructions can be
deleted in all occurrences of the defining variable in the redundant instruction can be
replaced by the earlier non redundant one tables are updated.

(Refer Slide Time: 50:50)

Liveness Analysis with SS5A Forms

o For each vanable v, walk backwards from aach use of v
‘.".|l:".‘§'.l|.'lll'|!.'| winen thie walk reachaes the detinition of v
Coollgct tha BIOCk numbars on Ehe sy, and 1 vanatde v is
lve al e E'.'!'.I"' axil (ona or Doth, as the case may baj of
each of these blocks
In the example (nexl shide), consider wses of the vaniabile
im BY and B4, Traversing upwards till B2, we get: BY, BS
B&, B3, B4{IM and OUT points), and QUT[B2], as blocks
whang & 15 Inng
This procadunn works bacausa tho 554 lorms and the
transiormations we have discussad salsly (presanse) the
gorminance proper ﬂr
» (hi Galsmlion of & vanable Sominabes each usa or the
piedacassor al the use (whan the use is In & o-hincion)
o Dtherwise, the whole S5A graph may have 10 be Searched
for ther comrmsponding definition

T] Verggrar | pmma ey awi P B o,

So this is how value numbering actually happens in SSA forms. Now let us look at

something somewhat interesting we saw value numbering on SSA graphs, which actually

preserved the dominance property. Now we will see how important it is for Liveness

analysis.

What is liveness? Liveness is whether a variable is going to be used at a particular
sometime later that is, informally what liveness is of a variable? Really is for a variable
which is defined is there any use later on. So how do you find it in the SSA graph? It is
very simple for each variable v; walk backwards from each use of v, stopping when the
walk reaches the definition of v. So, collect block numbers on the way and the variable v
is live at the entry or exit, one or both as the case maybe, of each of these blocks.

(Refer Slide Time: 51:57)

Liveness Analysis with SSA Forms - Example

So let me show you a simple example, here is our original flow graph and here is our
SSA flow graph. Let us look at some usage let say i, i is used here and i2 is used here
also (Refer Slide Time: 51:60). Now we want to find out all the blocks where i, is live.
Let us take this which is very simple, we go backwards till the definition of i so we go up

to his point i is defined here from here to here.

So in block B4 it is actually live at the entry of block before it is live, but the end of
block it is not because there are no more usages here. At the output of block B2 it is live
and at the entry of block B2 it is not live, because i, is defined immediately. So B4 in
and B2 out is collected, then we start here so B7 in is collected, then B5 out is collected,

B5 in is collected, B3 out is collected, B3 in is collected, and then B3 out is already there

and finally, we have reached the definition point of i, so all these blocks are deemed as

live blocks for i,

We can do the same thing in along the other path also from here B7 in B6 out B6 in then
B3 onwards we have already collected. So B2 and B3 both in and out, B4 only in B5 B6
both in and out and finally B7 in these are the points where i, is live. What about n,? So
you can look at n, which is here, which is using here also, for n, you go on you just
defined here so B5 in B3 out B3 in and B2 out.

(Refer Slide Time: 54:20)

Liveness Analysis with SSA Forms

e For each vanable v, walk backwards from each use of v
slo PPHNG W thia wall reachaes the dalinibon ol v
a Collac! the Black numbars on the way, and 1 vanabia v is
lve al e E""l'.l'|r axil (ana or both, as the case may ba) of
each of thess blocks
a In 1ha axaimpie (nadl slela), COnSaoel sas od the vahabla i
im BY and B4, Traversing upwards till B2, we get: B, BS
B&, B3, B4{IM and OUT points), and QUT[B2], as blocks
wWhara i 15 ||I|.¢_|
@ This procadune works becauso the SSA forms and tha
transiormations we have discussaed salsly (presandse) the
oorminance propearly
5o & varabke dominaies anch Uss oF B
af the s (when the uss 15 in & o-ns
the wholé S5& graph mary have 1o by

o thiy courmsponding di lirdion

LR P

Similarly, here B6 in and then onwards we have already collected. Whereas if you look
at nz or ny we start ns is defined here, so only this much n, is defined here. This is how
the liveness is computed? We just go walk backwards from each use of v stopping when
the walk reaches the definition of v, collect the basic block numbers on the way and the
variable v is live at the entry and exit, one or both of these basic blocks. So | already

showed you this particular example.

Why this procedure works? It works because the SSA forms and the transformations we
have discussed satisfy or preserve the dominance property, so again we must recall that
the dominance property is definition of variable dominates each use or the predecessor of

the use, when the use is in a phi function.

(Refer Slide Time: 55:27)

Liveness Analysis with SSA Forms - Example

Suppose the dominance property was not satisfied then there is a problem what may
happen is that the whole SSA graph may have to be searched, we do not know
dominance property is not satisfied. Here we are 100 percent certain that if we reach the
definition that is sufficient because the definition dominates all the uses or at least the

predecessors of the uses.

(Refer Slide Time: 55:41)

Liveness Analysis with SS5A Forms

& Fof @éach vanabtde v, walk backwards trom aach use of v
":'.|l:":1'.l|.'lllll'| Wingn the walk reachaes e dalinition ol v

@ Collect the Bocs numbars on e way, and 1 vanabie v is
lve al e E'.’!'.I'p' axil (one or both, as the case may ba) of
each of these blocks

@ In tha exampla (nexi sleda), conseder uses of the vanabie |
im BY and B4, Traversing upwards till B2, wa get: BT, BS

B&, B3, B4{IN and OUT points), and OUT[B2), as blocks
wheng i 15 Ive

a This procedurns works bocause the 554 lorms and the
translarmations we have discussad sal S0y [Preassrse) tha
gorminance propearly

& i dElailian of & vanabke Saminabes aach s oF e
predecassor af the use (when the use is in & o-incton)

» (fherwise, the whols S5A graph may have 10 be searched
for the comesponding definition

AN B P

So because of that we stop at the definition, we do not have to go beyond that whereas if

the dominance property is not true, then the definition could be anywhere it is not

necessarily up to the dominator only. So the whole SSA graph may have to be searched

and to find the corresponding definition.

This is a sample of how liveness analysis is possible. It is also possible to actually do
partial redundant elimination and a few others, but they are much more complex than
what | have presented so far those are outside the scope of this particular, of course. So
this is the end of the lecture and in the next time we will look at parallelization thank

you.

