
Compiler Design 
Prof. Y. N. Srikant 

Department of Computer Science and Automation 
Indian Institute of Science, Bangalore 

 
Module No. # 13 
Lecture No. # 23 

The Static Single Assignment Form: 
Construction and Application to Program Optimizations 

Part 3 

Welcome to part 3 of the lecture on the Static Single Assignment form. To recap a bit, 

here is an example of the SSA form and the non-SSA form as well. 

(Refer Slide Time: 00:18) 

 



(Refer Slide Time: 00:31) 

 

The non-SSA form is just a flow graph; whereas, in the SSA form some of the join nodes 

will have phi functions for the incoming parameters. For example, i in the original flow 

graph flows from B1 into B2 and also from B7 into B2. So in B2, the SSA form we have 

a phi function which really takes two parameters I3 and I1; I3 corresponds to the first 

parameter coming from B7 and I1 corresponds to the second parameter coming from B1. 

Similarly, the variable n is read here, so that is like a definition and later, we have 

definitions of n in B5 and B6 as well. 

So in B7, we have a phi function for n which has two parameters n3 and n4, 

corresponding to these two predecessors. Then, in B2 we have another phi function for n, 

which takes care of n coming from B1 and this n6 which is coming from B7? So that is 

how phi functions are. So, we also saw how to insert phi functions and how to rename 

the parameters of the phi function etcetera. 



(Refer Slide Time: 01:53) 

 

So, we were looking at the optimizations with SSA forms. There are many optimizations 

which are very fruitful on such forms. For example dead-code elimination, simple 

constant propagation, copy propagation, conditional constant propagation, constant 

folding, global value numbering these are all optimizations which can be done very 

effectively on the SSA form. 

(Refer Slide Time: 02:19) 

 

Simple Constant Propagation is really simple. Take all the statements put them in a 

statement pile and then take one at a time from the statement pile. If they are trivial phi 



functions with all parameters being equal and constant, then such statements can be 

replaced by x equal to c. Otherwise, if there is a statement x equal to c then we take the 

du-chain of that particular x. Then for all uses of x, we can really substitute c and then 

the new statement is also added to the statement pile, so that we can propagate constants 

further. 

Copy propagation is very simple, if there is a single argument function x equal to phi y 

or a copy statement x equal to y, these can be deleted. We can substitute y for every use 

of x. This is possible because every use is read exactly by one definition in the SSA 

form. 

(Refer Slide Time: 03:24) 

 

The Conditional Constant Propagation is special. Let us recapitulate the transfer function 

of the Conditional Constant Propagation Frame work. So this is monotonic, but it is not 

distributive and here is the lattice of the constants. So, all the constants are in comparable 

there is an undefined value at the top and not a constant value at the bottom. 



(Refer Slide Time: 03:54) 

 

So, how does conditional constant propagation on SSA forms work? So, SSA forms 

along with extra edges corresponding to the definition use information are used here. So 

edge from every definition to each of it uses in the SSA form hence, we call these as 

SSA edges. So, they are also available in the graph. It uses both flow graph edges and the 

SSA edges and maintains two different work lists. This is a work list based approach 

exactly like simple constant propagation. So, we have a Flowpile and an SSApile. 

So, it is important that flow graph edges are used to keep track of reachable code. So, 

whatever code cannot be reached will have all the edges incoming into it marked as non-

executable and therefore, we can never reach that node. 

SSA edges are helpful in the propagation of values, whenever there is a change of value 

in a node; the SSA edge is used to activate that particular node and put it into a SSApile. 

So, the flow graph edges are added to the flowpile, whenever a branch node is 

symbolically executed or whenever an assignment node has a single successor. 



(Refer Slide Time: 05:12) 

 

Whereas SSA edges coming out of a node are added to the SSA work list, whenever 

there is a change in the value of the assigned variable at the node. So the algorithm really 

needs only one lattice cell per variable not on a per node basis and two lattice cell per 

node to store expression values, so not too much of extra space. 

The Conditional expressions at branch nodes are evaluated and depending on the value, 

either one of the outgoing edges corresponding to true or false or both edges 

corresponding to not a constant are added to the work list. So, if you are able to evaluate 

it to either true or false, only one edge is added otherwise, both edges have to be added. 

At any join node, the meet operation considers only those predecessors which are 

marked executable. So that is an extra point to be noted here. 



(Refer Slide Time: 06:05) 

 

So let us look at the algorithm, we saw an example. We will learn through that example 

again a little later. So, G is the SSA graph N Ef and Es; so Ef is the flow graph edges, Es 

are the SSA edges. Now, V is the set of variables used in the SSA graph that is the 

program itself. So, we initialize the flowpile with the first edge start to n, so all the edges 

which go out of the start node are added to the flowpile, whereas the SSA pile kept 

empty. 

For all the edges in the Ef set that is, all the flow graph edges; they are made as 

e.executable equal to false, so that nothing is marked as true to begin with. Then v.cell is 

the cell associated with the variable v, so we must initialize that also it is initialized to 

top, that is the undefined value. Then y.oldval and y.newval store the lattice values of 

expressions at a particular node y. So these need to be initialized as well. So both 

y.oldval and y.newval are initialized to top the undefined value. 



(Refer Slide Time: 07:27) 

 

Then there is a big loop which goes on until both flowpile and SSA pile become empty. 

So the first one is, if flowpile is not equal to phi that is flowpile is not empty, what we 

do? We remove an edge from the flowpile. If the edge is not marked as executable that 

means, we are now entering through an edge which is not yet seen before. Now mark 

that particular edges executable that is executable equal to true for that edge. 

Now, we check couple of things; is it a phi node so if phi present y, so this is true if it is a 

phi node then we call the function visit phi y, we are going to see some details little later. 

So if it is not a phi node, then it is an ordinary expression node. So, first time visit y is 

checked and is saying are we visiting it for the first or are we visiting it second third time 

etcetera. 

If it is first time then visit expression; the point is visit expression is called on y only on 

the first visit y through a flow edge. Subsequently it is called on y on visits through SSA 

edges only. So, if first time visit y is false then we do not visit that expression right now, 

we are going to visit it later, if any values of the parameters in the expression change.So, 

if flow-outdegree is 1; that means, we have exactly 1 successor for the node after doing 

some processing, then we just add that to the flowpile. 



(Refer Slide Time: 09:19) 

 

(Refer Slide Time: 09:24) 

 

Then, if the edge has already been marked that is this part so is it first time y etcetera is 

where we are. 



(Refer Slide Time: 09:32) 

 

Now we look at this SSApile. Alternately, we are going to look at the SSApile and the 

flowpile. So, remove an edge from the SSApile again check whether it is a phi node then 

call visit phi y; if it is already visited then visit expression again because, we are now 

coming through the SSA, so nothing wrong with that. The point is, if it is not visited 

already - the node y - is not visited already that means, it is not yet reachable through any 

flow edges. Therefore, we are not going to visit it at all. Unless a node is already visited, 

we are not going to visit it when we visit through a necessary edge because it may not be 

reachable at all. So this loop goes on until both piles are empty. Now let us look at the 

details. 



(Refer Slide Time: 10:36) 

 

So phi present y is simple; if y is a phi node then returns true otherwise return false. So 

what does visit phi y do? So y is a node, take y.newval as undefined value. Let 

y.instruction.inputs be the number of parameters of the phi instruction at the node y. 

Now, we are going to take each one of the inputs and then check whether the edge 

corresponding to that input is executable. 

Why we want to actually take the meet of only those parameters, whose corresponding 

edges are marked as executable otherwise we do not want to touch them. So, let pi be the 

ith predecessor of y, i running from 1 to y.instruction.inputs. If pi.y is executable then 

take the corresponding input y.instruction.inputs I, so the ith input is taken in the i. 

Then take y.newval and meet it with ai.cell, so you get the new y.newval - updated value. 

This is done for all the inputs and we leave out those inputs which come through edges 

not marked as executable, we do not want to touch them. So it is easy to see that if a 

node has not been visited at all not even once, then nothing gets done at the phi node, 

this loop will run many times but in an empty fashion doing nothing. 



(Refer Slide Time: 12:13) 

 

Now, if the new value is less than y.instruction.output.cell the old value that means, the 

value has changed. Remember, we go from undefined to constant to not a constant that is 

downwards in the lattice cell that is y is less than. If y.instruction.cell equal to y.newval, 

take the new value as the output value and add the outgoing SSA edges to the SSApile. 

So, y comma z, where y comma z is in es, so all the edges going out of phi are added to 

the SSA pile because the value has changed. If the value has not changed, there is 

nothing to do, you do not add anymore edges to the SSA pile. 

So already visited it is simple, it simply checks the incoming edges of y. If one of them is 

marked as executable then it is already visited otherwise it is not visited at all. Check 

incoming edges of y for all e in x y such that x y in ef, so y is in our node so x y is the 

incoming edge. If e.executable is true for at least one edge e, then return true otherwise 

return false. So, it is a fairly straight forward function. 



(Refer Slide Time: 13:34) 

 

What does first time visit y do? Exactly one of the edges must be marked as executable 

and other should not be. So, if e.executable is true for more than one edge then return 

false, otherwise return true. At least one incoming edge will have executable true, 

because the edge through which the node is entered is marked as executable before 

calling this function. The first time you come to y, it will be one of the edges - incoming 

edges - will be true, so you will get something as true. But if more than one edges is true 

then we are entering for the second time, so this will be returned as false. 

(Refer Slide Time: 13:34) 

 



What does visit expression do? It really processes the expression whether it is an 

assignment statement or a branch condition. Take the 2 inputs; input one equal to 

y.instruction.inputs 1 and input two, as y.instruction.inputs 2. If I recall the transfer 

function, if one of the inputs in x plus y either x or y is not a constant, then the output is 

also not a constant. So, if input 1.cell equal to n a c or input 2.cell equal to n a c then 

y.newval is n a c not a constant. 

We have covered the n a c part. If one of them is undefined input 1 or input 2 is 

undefined, then y.newval is undefined. If this is also not true then both are really neither 

top or bottom values in the lattice, so we can do some evaluation. Evaluate the 

expression as per the lattice evaluation rules, evaluate y, so the expression is evaluated. 

Of course, it is easy to modify this to handle instructions with one operand. So copy 

instructions are easy to handle. 

If y is an assignment node then if y.newval is less than y.instruction.output.cell. So the 

newval that we got here by evaluating the expression is less than the old value. That 

means, the value has changed. So remember, we always go down in the lattice. Take the 

new value as y.newval, store it in the instruction.output.cell of y and add all the edges 

going out of y to the SSApile so for it is as we did before. 

(Refer Slide Time: 16:31) 

 

What if it is a branch node if the value has changed, y.newval is less than oldval then 

y.oldval is equal to y.newval. Now check whether, what is the value of y.newval, if it is n 



a c not a constant that means, both a true and false branches are equally likely. We add 

both branches to the flowpile. If it is evaluated to true then we add only the true branch 

edge to the flowpile; in the case of false, we add the false branch edge to the flowpile. 

This is where, if the condition has become a constant and as evaluated to either true or a 

false. Then, we can avoid some of the nodes which can be entered through either the true 

or false edges. So, we actually remove those as read code finally. 

(Refer Slide Time: 17:31) 

 

(Refer Slide Time: 17:41) 

 



(Refer Slide Time: 17:45) 

 

(Refer Slide Time: 17:57) 

 

So here is a simple example, let us run through the more difficult example, because this 

is a2 simple example, which we ran through last time. So this example, we start with the 

first node B1 after start, a1, b1, c1 are all initialized. This particular edge actually is the 

only one coming of B1, we add this edge to the flowpile and that makes this particular 

node to be interpreted next. 



(Refer Slide Time: 18:13) 

 

(Refer Slide Time: 18:15) 

 

So what happens here, see that b4, b1; b1 is the only parameters which is defined. This 

part is not yet to marked as executable, so nothing is coming out of this. 



(Refer Slide Time: 18:26) 

 

So only b1; b1 is 1, so b2 becomes 1 phi b1 of is just b1, which is 1. Similarly, phi c1 is 

c1 is 0, so c2 becomes 0. Therefore, c2 less than 100 is obviously true, 0 less than 100 

and that makes this particular edge to be added to the flowpile and this is not yet added; 

it does not mean it will never be added it may be added little later. 

(Refer Slide Time: 18:58) 

 



(Refer Slide Time: 18:26) 

 

Now, we evaluated b2 less than 20 that is also true, so again the true part is true edge is 

taken and become to B5. Now in node B5 b3 evaluates to 1 and c3 evaluates to 1 both 

are constants as so far. This particular edge which is the only successor is taken we come 

to B7. 

(Refer Slide Time: 19:23) 

 



(Refer Slide Time: 19:30) 

 

Once we evaluate B7, again this parameter is not yet available, only B3 is available and 

similarly, only c3 is available when evaluate b4 it becomes 1 and c4 becomes 1. This 

edge is added to the flowpile that means, we come to B2 once more a second visit. 

(Refer Slide Time: 19:41) 

 

So second visit change in the value of c2 to not a constant, but there is no change in the 

value of b2. Even with this available b4 is 1, b1 is 1, so this b2 becomes 1 but, in the case 

of c2; c4 is 1 but c1 is 0, so phi function is not a constant. 



(Refer Slide Time: 20:12) 

 

(Refer Slide Time: 20:21) 

 

Now, this ((s h j)) edge actually activates the node B5 and B6 both of them. Let us take 

this particular node, b3 now evaluates to 1 and c3 becomes not a constant because c2 

plus 1 is the value; c2 is less than 100 which is not known. So at this point, we do not 

know whether c2 is 100 or not it has been evaluated to bottom. Actually, we add both 

edges to the flowpile, so this edge and this edge both are added. 



(Refer Slide Time: 20:50) 

 

(Refer Slide Time: 20:55) 

 



(Refer Slide Time: 21:09) 

 

We actually, in this particular basic there is nothing happening which has been entered 

through this particular SSA edge. So B6 there is nothing happening because this 

particular edge is not marked as executable. After this we evaluated this B5, c3 becomes 

not a constant again, b3 is a constant. We would have already come here, through the 

SSA edge we come here again. 

(Refer Slide Time: 21:24) 

 



Now evaluate B7 again, so when we evaluate B7 as a second time, b4 remains as 1 but 

c4 becomes not a constant. There is change value that means we need to propagate the 

value to this through the SSA, this goes on the SSA pile. 

(Refer Slide Time: 21:40) 

 

Now, we come to the third visit of B2. There is no change in b2 and there is no change in 

c2. The b2 remains at 1 c2 remains at not a constant value. So there are no more SSA 

edges added to the SSApile, there were no flowpile edges added either this was evaluated 

long back or nothing was done for this particular edge. 

(Refer Slide Time: 22:12) 

 



(Refer Slide Time: 22:18) 

 

(Refer Slide Time: 22:56) 

 

Finally, we can remove some of these dead edges; this is dead, this is dead so this node is 

removed (Refer Slide Time: 22:14). Then we get a simplified SSA graph. Here b2 is 1, 

c2 has not been evaluated, so it became not a constant and it remains as phi of c4, c1. If 

c2 is less than 100 remains as it is, in this case b3 was evaluated to 1; c3 was not a 

constant so it remained as c2 plus 1. 

Here b4 was evaluated to 1 and c4 was evaluated as phi of c3, which is c3 itself but no 

for the value as such. Now we can do some copy propagation and removal of course such 



as b2 equal to 1, b3 equal to 1, b4 equal to 1 and simplify the entire flowgraph to every 

small one like this. You see that the b variable is completely drawn; this was possible 

because of conditional constant propagation. 

(Refer Slide Time: 23:13) 

 

So that is the conditional constant propagation algorithm, that we saw until now. Let us 

move on to the next optimization known as value numbering. We have seen value 

numbering before; we did value numbering on basic blocks. We used a hash table, we 

entered expression into that hash table and whenever we found another expression with 

the same value number we said these expressions are identical. 

So, the variables are also entered into the table but not exactly the same table, it was 

entered into the name table. Then we saw value numbering with extended basic blocks 

that actually found a few more cost the commerce of expressions and did few more copy 

propagation etcetera. The reason was the scope of the expressions and so on and so forth 

were extended. 

Now with SSA forms we can do even better. This is a global value numbering scheme 

which is very similar to the scheme with extended basic blocks. But the scope of the 

tables is over the dominator tree. So it is not the extended basic block that rules scope of 

the tables but it is the dominator tree. Therefore, more redundancies can be caught for 

example, I am going to show you picture now, in block B8 suppose you had d1 equal to 

u1 plus v1 as extra which are equivalent to a1 in the block B1. 



(Refer Slide Time: 25:15) 

 

Suppose, let us stay look at this picture, in block B8 we had d1 equal to u1 plus v1 we 

had something here and a1 equal to u1 plus v1 is here, so B1 dominates B8. If we had d1 

equal to u1 plus v1, we could have use to a1 as the value of d1 directly that was possible. 

(Refer Slide Time: 25:43) 

 

So with dominator as the leading theme; the scope of the table is over the dominator tree. 

Therefore, we can catch a few more redundancies. We do not need any d-u or u-d 

change; definition use or use definition, changes are edges are not needed here. They 

were needed for the conditional constant propagation but they are not needed here. 



Another interesting feature is it uses the reverse post order on the DFS tree, so what we 

will do is we take the SSA graph I will show you that also in a minute. 

(Refer Slide Time: 26:35) 

 

(Refer Slide Time: 26:38) 

 

This was the SSA graph, so we do a DFS-depth first search on this. This is the DFS tree, 

now do a post order on this DFS tree, we get stop B9, B8, B4, B2, B6, B7, B3, B1, and 

start. Now take the reverse of this so that gives your start B1, B3, B7, B6, B2, B5, B4, 

B8, B9 and stop. So, start from the start node and use this order on the dominator tree. 



We can see that we do a start, then we do B1, then we do B3, then we do B7, then we do 

B6, then we do B5, then B4then B8, then finally B9 and then stop. 

The idea is by the time you actually look at these children; you would have finished the 

processing of their dominators. Therefore, the expressions which were defined in these 

dominators are all available for use in these children, so that is what really is the basis of 

this ordering. 

(Refer Slide Time: 28:03) 

 

This ensures that the definitions are processed before use that is a succession clip. The 

back edges they may be present in the SSA graph, our example does not have a back 

edge right now, but later I will show you an example with a back edge. So back edges 

make the algorithm find fewer equivalences. So some expressions which we know are 

equivalent will not be marked as an equivalent when there is a back edge. This is bad but 

there is not much we can do about it. 



(Refer Slide Time: 29:08) 

 

The hash table that we used to store expressions is scope over the dominator tree. For 

example, an assignment a10 equal to u1 plus v1 in block B9, if it is present, this is not 

present in the example but suppose it present, it can use the value of the expression u1 

plus v1 of block B1 since, B1 is the dominator of B9. 

Let me show you that if you had any d1 equal to u1 plus v1 or what was that? That was 

a10 equal to u1 plus v1 here. B1 is the dominator; it defines u1 plus v1. So, we would 

have use that directly need not have defined yet and again we could have just used a1 in 

place of a10 this is possible because B1 dominates B9. 



(Refer Slide Time: 29:35) 

 

So that is how the hash table works. If you had not used to scoping over the dominator 

tree, we would not have caught this. 

(Refer Slide Time: 29:46) 

 

Now recalls that each name is unique in an SSA form, so variable names are not reused 

in SSA forms at all. There is no need to store old entries in the scoped hash table when 

the processing of a block is completed. Remember in the recall that in the case of 

extended basic blocks, we actually had to remove all the new entries and restore the old 

entries when we went out of scope. So when we return to the parent we had to remove 



the new entries which were inserted by the children and then we had restored the old 

entries also. 

That is not necessary here because the old entries are corresponded to old definitions of 

the same variable, which were redefined in the new scope, here that cannot happen. The 

each name is going to be defined exactly once so no more redefinitions, just deleting new 

entries will be enough there is no question of restoring old entries here. 

(Refer Slide Time: 31:09) 

 

So any copies generated because of common sub expressions can be deleted 

immediately. For example, we will see that a2 equal to u2 plus v2, b1 is u2 plus v2 so this 

becomes a2 equal to b1; b1 is a-eter of b2 see. This is a copy we do not have to retain this 

copy at all wherever a2 occurs we will be able to use b1 directly, we do not have to 

worry whether there is a conflict of interest are something like that. 

So how we do that? We are actually going to replace the value number of a2 with the 

value number of b1, so whenever we want to search for a2 automatically get b1. 



(Refer Slide Time: 31:46) 

 

So that is how these copies can be deleted immediately. Copy propagation is carried out 

during value numbering itself the way I just now mention. Copy statements generated 

due to value numbering in the blocks B2 B4 B5 B6 B7 B8 can be deleted. So we are 

going to see how the deletion happens? The valnum table store the SSA name and its 

value number and is also is a global table. It is not scoped over the dominated tree I will 

show you the reasons for it very soon. 

Value numbering transformation retains the dominance property of the SSA form. What 

is the dominance property? Recall this every definition dominates all its uses or 

predecessors uses in the case of phi functions. So the condition constant propagation did 

not violate any of this, it actually preserved the dominance property the value numbering 

transformation, also preserves the dominance property. 



(Refer Slide Time: 33:01) 

 

So I wanted to show you the picture of the valnum table that is here, so hash table entry 

has expression and it is indexed by expression hash value; when we say an expression, a 

phi function is also an expression; along with the value number of the expression we 

must also have the parameters of the phi function, there are many parameters those are 

also stored these will be useful later. 

There is something called defining a variable that we need to store here. So the first time 

that the expression has occurred and of course we take that and the variable on them left 

hand side of the expression is stored here. Whenever we find expressions equivalent to 

the expression here within the scope of course, we can use the defining variable in place 

of the new variable that we have encounter. 

The valnum table is simple; it stores the variable name and it stores the value number 

also, it is actually indexed by name hash value. This constant or not, etc is stored here; if 

it is a constant, it is a constant value and then the replacing variable. As I told you copies 

need not be kept, for each copy that variable name we need to have the variable replacing 

the variable as well. 



(Refer Slide Time: 34:30) 

 

(Refer Slide Time: 34:53) 

 

This is our example that we are going to run through; it has many many redundancies so 

u1 plus v 1 is defined here, u2 plus v2 is defined here, so u2 plus v2 is here, again here, 

where u3 plus v3 another u3 plus v3, but remember B2 and B3 do not dominate each 

other nothing at all. For example, see here B2 and B3 are not dominators of each other. 



(Refer Slide Time: 34:57) 

 

So the u3 plus v3 which has defined here and B2 cannot be reused here, if it was actually 

define here like u2 plus v2 it could have been reuse, but not now. Now whatever is 

defined in B1 can be used in B2 and whatever is defined in B1 and B2 can be used in B4 

the reason being B1 and B2 dominate B4. Similarly, whatever is defined in B1 and B2 

can be used in B5. 

Finally, what about B8? B1 of course dominates B8 so whatever is here can be used 

here, B2 dominates B8 so whatever here can be used here, but neither B4 nor B5 

dominate B8, so whatever is used here defined here, cannot use as a commerce of 

expression here. But we must remember that B4 and B5 supply parameters to the phi 

function here. For example, a5 is phi of a4 comma a2, a4 comes from here and a2 comes 

along this path. So it would actually come with this way, a2 is defined here, but it comes 

this way. 



(Refer Slide Time: 36:47) 

 

(Refer Slide Time: 37:36) 

 

Similarly, B6 gets B2 from here like that and B3 directly; the same is true for B5, B6 and 

B7. When we come to B9 we get one parameter from here that is for a7, a5 is defined in 

B8 so that comes here, a6 is defined in B6 that comes here, and a3 is defined in B3 is at 

comes via B7, for B7 it is similar, c4 is also similar (Refer Slide Time: 36:30). 

Let us see why the valnum table should be unscoped and then run through the example, 

so the unscoped valnum table is really needed for processing phi instructions. For 

example, a phi instruction receives inputs from several variables along different 



predecessors of a block; these inputs are defined in the immediate predecessors or the 

dominators of the predecessors of the current block. 

(Refer Slide Time: 37:46) 

 

This is obviously true because of the dominance property, so phi gets many variables 

along its incoming edges and they could be defined in immediate predecessors. For 

example here a4 is defined in the immediate predecessor, but a2 is defined in the 

dominator that is upwards that is what it is saying or dominators of the predecessors of 

the current block. 

(Refer Slide Time: 38:09) 

 



(Refer Slide Time: 38:38) 

 

Of course, they may be defined in general in any block that has a control path to the 

current block subject to the dominates property. For example, while processing block B9 

we need a5, a6, and a3. Let us look at that a5, a6, and a3. I already showed that a5 comes 

from here, a6 also comes from here, but a3 comes from this point (Refer Slide Time: 

38:10). Whereas if you take b7, b6 comes from here, b1 actually comes from all the way 

from the top and b5 comes from here. 

So in general the variable could come from anywhere subject to the dominants property 

of course, anyone of the dominators. However each incoming arc corresponds to exactly 

one parameter of the phi instruction. Since, the parameter can come from any of the 

dominators or the predecessors, we need an unscoped value number table it is not 

possible to use a simple scoped table, we need an unscoped valnum table for this. 



(Refer Slide Time: 39:06) 

 

(Refer Slide Time: 39:10) 

 

This is the picture just now I showed you, let us run through this particular example and 

see exactly how value numbering happens. There are more points to be noted as we go 

along and we will define them at the end of the example. 



(Refer Slide Time: 39:27) 

 

The processing order is always given here, we are now processing the block B1 (Refer 

Slide Time: 39:32). It has two assignment statements a1 and b1 equal to u1 plus v1 and 

u2 plus v2. So u1 plus v1 and u2 plus v2 are entered into the hash table and then a1 and b1 

actually get entered into the valnum table no problem at all. 

(Refer Slide Time: 39:52) 

 



(Refer Slide Time: 40:03) 

 

Then the next node to be visited is B3, so a3 is defined here as a same treatment u3 plus 

v3 is entered into the hash table and into the valnum table. Then B7, so this defines u3 

plus v3 which was already defined before, because the hash table is scoped over the 

dominator B3 dominates B7. We find this b5 equal to u3 plus v3 is nothing but defined 

already, so we have b5 equal to a3 as equivalent a3 is right here then c3 is equal to u3 

plus v3 that is also equivalent to a3 (Refer Slide Time: 40:30). 

So we delete these two statements because copy propagation can be directly done, we 

can store in place of b5 and c3 as a3 itself and that value number automatically takes care 

of these two usages later. 



(Refer Slide Time: 40:56) 

 

(Refer Slide Time: 41:13) 

 

Then we process B6 in that reverse post order, here we find a6 as b1 so u2 plus v2 which 

is defined here in the dominator scope and c2 as b1 again, so that is also defined here and 

we can delete these two (Refer Slide Time: 41:10). 

Then we process B2, so here we find a2 as b1 which was defined before, b2 as u3 plus 

v3 which is not defined before, because this is a different dominator scope as such so B3 

would have already gone out of scope, B2 is a new dominator scope so this is retained as 



it is and entered into the tables, but c1 as u2 plus v2 is already equivalent to b1, c1 is 

equivalent to b1, because u2 plus v2 is already defined. 

(Refer Slide Time: 41:54) 

 

(Refer Slide Time: 42:03) 

 

Then we come to B5 here we find u2 plus v2, b3 is equivalent to b1 so this is deleted. 

Here in B4, a4 is equivalent to b1 this is also deleted. 



(Refer Slide Time: 42:09) 

 

Then we come to B8, so in B8 a5 is a phi function with a4 and a2 as parameters. If you 

trace back when you search the valnum table a4 is equivalent to b1, so that is what we 

have replaced here and a2 is equivalent to b1 again, the second parameter is also b1. So 

such phi functions which have all parameters as equal the same are meaningless phi 

functions. So a5 is meaningless phi function we do not need it here, we can simply 

replace the phi function by the parameter b1. So a5 is equal to b1, but b1 is already there 

before. This is a copy statement and we can delete this as well. 

(Refer Slide Time: 43:06) 

 



But b6 is not so b6 is remains as phi of b2 comma b1. When we come to B9, a7 is a phi 

function with a5, a6, and a3 as parameters; a5 is famous b1 so the first parameter is b1; 

a6 is same as b1 second parameter is also b1; a3 is a3 there is no change, so it remains as 

it is the phi function does not become meaningless. 

The second phi function b7 has b6 b1 and b5 as 3 parameters; b6 is as it is; b1 is as it is; 

and b5 is equivalent to a3, it is replaced by a3 so this phi function is also not meaningless 

it remains as it is. Whereas c4 equal to phi of c1 comma c2 comma c3 c1 c2 c3 are 

equivalent to b1 b1 and a3; c1 is b1 here, c2 is b1 and c3 is a3. 

So now observe that a7 and c4 are exactly identical. Therefore, one of these needs to be 

retained and the other can be removed c4 will be removed and it is called as a redundant 

phi function, which is already covered by some other phi function in the same basic 

block. 

(Refer Slide Time: 44:34) 

 

This is the simplified SSA graph after the copy statements and redound expression etc 

are all removed. So this is how we are able to simplify. 



(Refer Slide Time: 44:47) 

 

Let us look at the SSA value numbering algorithm in a formal manner mark the 

beginning of a new scope, so the basic block B is the parameter for each phi function f of 

the form x equal phi of y1 to yn in the basic block B do search for the function f in the 

hash table name is x and the parameters are y1 to yn. So this involves getting the value 

numbers of the parameters, you have to dig into valnum tables get their parameters etc 

etc. Then use a special hashing function for phi and there were many number of them 

available and then enter into the hash table. 

Suppose you find that f is meaningless this will be defined later, all yi are equivalent to 

some w that is all the parameters are equal. Now replace the value number of x by that of 

w because this becomes x equal to w, all these are w in the valnum table and delete f 

suppose, it is not meaningless but it is redundant, so redundancy is there is some other 

phi function, which is equivalent to this f of the form z equal to phi of u1 to un in the 

same basic. 

So replace the value number of x by that of z in the valnum table and delete f so I already 

showed you this otherwise, simplified f into hash table and the valnum table. 



(Refer Slide Time: 46:25) 

 

Then this is for phi function, what do you do for assignments? If it is x equal to y plus z 

search for y plus z that implies take the value numbers of y z etc etc, apply a hash 

function and search a hash table. If it is already present with value number n then replace 

the value number of x by n in the valnum table and delete a. I showed this if there is an 

expression already defined we do not have to keep the copy later. Otherwise, add the 

simplified y plus z to hash table and x to the valnum table, so this is as before. 

For each child, now we have finished processing B, so what about the children of B? In 

the dominator tree in the reverse post order of DFS as I told you about the SSA graph 

call SSA value numbering for each of the children. Finally, once we want to get out of B 

clean up the hash table after leaving this particular scope, so initially we supply start as 

the parameter and then call the function. 



(Refer Slide Time: 47:38) 

 

(Refer Slide Time: 47:56) 

 

Let us look at some details of how phi functions are processed? One or more inputs of 

the phi functions may not yet be defined for example, they may reach through a back 

edge of phi of a loop, and such entries will not be found in the valnum table. Let me 

show you an example, this B3 have been replaced by a new block which has u6 and u7 

as new definitions, the old one had only a3 equal to u3 plus v3. 

Now u6 is phi of b1 comma a7 and u7is phi of b1 comma c4. Unfortunately, we found 

that a7 and c4 even though are equivalent we have not processed this block, so we have 



not found that a7 and c4 are equivalent. We are processing this block we have not 

processed this block and there is a back edge here. So because of that we do not find u6 

and u7 as equivalent, they are not redundant phi functions at all because a7 and c4 are 

not yet found as equivalent. 

(Refer Slide Time: 49:05) 

 

So because of this back edge a7 and c4 will be treated as distinct, separate. Therefore, 

this u6 and u7 will be actually entered into the hash table as if they are two different phi 

functions, which are not equivalent to each other. So simply assign a new value number 

to the phi instruction and record it in the valnum table and the hash table along with new 

value number and the defining variable that is what we do. 

So we do not really go through the value numbering scheme again and again. So that is 

why this is not done, we just want to do it once it takes too much time. If all the inputs 

are found in the valnum table, then replace the inputs by the respective entries in the 

valnum table. Check whether the phi function is either meaningless or redundant if 

neither enters the simplified function into the tables. 



(Refer Slide Time: 49:44) 

 

(Refer Slide Time: 50:11) 

 

Now what about meaningless and redundant phi functions? All inputs are identical so for 

example, in block B8 as I showed you if all the inputs are equal, then they can be deleted 

this particular instruction can be deleted. Occurrence of defining variable can be replaced 

by the input parameter; only valnum table needs to be updated. We saw this example 

already for example, here this and this they become meaningless therefore, both this 

parameter become equal (Refer Slide Time: 50:15). 



(Refer Slide Time: 50:22) 

 

Redundant phi instruction means, we have already discussed this instructions in the same 

basic block with exactly the same parameters. So redundant phi instructions can be 

deleted in all occurrences of the defining variable in the redundant instruction can be 

replaced by the earlier non redundant one tables are updated. 

(Refer Slide Time: 50:50) 

 

So this is how value numbering actually happens in SSA forms. Now let us look at 

something somewhat interesting we saw value numbering on SSA graphs, which actually 



preserved the dominance property. Now we will see how important it is for Liveness 

analysis. 

What is liveness? Liveness is whether a variable is going to be used at a particular 

sometime later that is, informally what liveness is of a variable? Really is for a variable 

which is defined is there any use later on. So how do you find it in the SSA graph? It is 

very simple for each variable v; walk backwards from each use of v, stopping when the 

walk reaches the definition of v. So, collect block numbers on the way and the variable v 

is live at the entry or exit, one or both as the case maybe, of each of these blocks. 

(Refer Slide Time: 51:57) 

 

So let me show you a simple example, here is our original flow graph and here is our 

SSA flow graph. Let us look at some usage let say i2, i2 is used here and i2 is used here 

also (Refer Slide Time: 51:60). Now we want to find out all the blocks where i2 is live. 

Let us take this which is very simple, we go backwards till the definition of i so we go up 

to his point i2 is defined here from here to here. 

So in block B4 it is actually live at the entry of block before it is live, but the end of 

block it is not because there are no more usages here. At the output of block B2 it is live 

and at the entry of block B2 it is not live, because i2 is defined immediately. So B4 in 

and B2 out is collected, then we start here so B7 in is collected, then B5 out is collected, 

B5 in is collected, B3 out is collected, B3 in is collected, and then B3 out is already there 



and finally, we have reached the definition point of i2 so all these blocks are deemed as 

live blocks for i2. 

We can do the same thing in along the other path also from here B7 in B6 out B6 in then 

B3 onwards we have already collected. So B2 and B3 both in and out, B4 only in B5 B6 

both in and out and finally B7 in these are the points where i2 is live. What about n2? So 

you can look at n2 which is here, which is using here also, for n2 you go on you just 

defined here so B5 in B3 out B3 in and B2 out. 

(Refer Slide Time: 54:20) 

 

Similarly, here B6 in and then onwards we have already collected. Whereas if you look 

at n3 or n4 we start n3 is defined here, so only this much n4 is defined here. This is how 

the liveness is computed? We just go walk backwards from each use of v stopping when 

the walk reaches the definition of v, collect the basic block numbers on the way and the 

variable v is live at the entry and exit, one or both of these basic blocks. So I already 

showed you this particular example. 

Why this procedure works? It works because the SSA forms and the transformations we 

have discussed satisfy or preserve the dominance property, so again we must recall that 

the dominance property is definition of variable dominates each use or the predecessor of 

the use, when the use is in a phi function. 



(Refer Slide Time: 55:27) 

 

Suppose the dominance property was not satisfied then there is a problem what may 

happen is that the whole SSA graph may have to be searched, we do not know 

dominance property is not satisfied. Here we are 100 percent certain that if we reach the 

definition that is sufficient because the definition dominates all the uses or at least the 

predecessors of the uses. 

(Refer Slide Time: 55:41) 

 

So because of that we stop at the definition, we do not have to go beyond that whereas if 

the dominance property is not true, then the definition could be anywhere it is not 



necessarily up to the dominator only. So the whole SSA graph may have to be searched 

and to find the corresponding definition. 

This is a sample of how liveness analysis is possible. It is also possible to actually do 

partial redundant elimination and a few others, but they are much more complex than 

what I have presented so far those are outside the scope of this particular, of course. So 

this is the end of the lecture and in the next time we will look at parallelization thank 

you. 


