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Module No. # 13
Lecture No. # 23
The Static Single Assignment Form:
Construction and Application to Program Optimizations
Part 3

Welcome to part 3 of the lecture on the Static Single Assignment form. To recap a bit,

here is an example of the SSA form and the non-SSA form as well.
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Program 3 in non-SSA and SSA Form
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The non-SSA form is just a flow graph; whereas, in the SSA form some of the join nodes
will have phi functions for the incoming parameters. For example, i in the original flow
graph flows from B1 into B2 and also from B7 into B2. So in B2, the SSA form we have
a phi function which really takes two parameters I3 and I;; I3 corresponds to the first
parameter coming from B7 and I, corresponds to the second parameter coming from BL1.
Similarly, the variable n is read here, so that is like a definition and later, we have

definitions of n in B5 and B6 as well.

So in B7, we have a phi function for n which has two parameters n; and ng,
corresponding to these two predecessors. Then, in B2 we have another phi function for n,
which takes care of n coming from B1 and this ng which is coming from B7? So that is
how phi functions are. So, we also saw how to insert phi functions and how to rename

the parameters of the phi function etcetera.
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Optimization Algorithms with SSA Forms
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So, we were looking at the optimizations with SSA forms. There are many optimizations
which are very fruitful on such forms. For example dead-code elimination, simple
constant propagation, copy propagation, conditional constant propagation, constant
folding, global value numbering these are all optimizations which can be done very
effectively on the SSA form.
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Simple Constant Propagalion
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Simple Constant Propagation is really simple. Take all the statements put them in a

statement pile and then take one at a time from the statement pile. If they are trivial phi



functions with all parameters being equal and constant, then such statements can be
replaced by x equal to c. Otherwise, if there is a statement x equal to ¢ then we take the
du-chain of that particular x. Then for all uses of x, we can really substitute ¢ and then
the new statement is also added to the statement pile, so that we can propagate constants
further.

Copy propagation is very simple, if there is a single argument function x equal to phi y
or a copy statement x equal to y, these can be deleted. We can substitute y for every use
of x. This is possible because every use is read exactly by one definition in the SSA
form.
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The Constant Propagation Framework - An Overview

The Conditional Constant Propagation is special. Let us recapitulate the transfer function
of the Conditional Constant Propagation Frame work. So this is monotonic, but it is not
distributive and here is the lattice of the constants. So, all the constants are in comparable

there is an undefined value at the top and not a constant value at the bottom.
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Conditional Conslant Propagation - 1
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So, how does conditional constant propagation on SSA forms work? So, SSA forms
along with extra edges corresponding to the definition use information are used here. So
edge from every definition to each of it uses in the SSA form hence, we call these as
SSA edges. So, they are also available in the graph. It uses both flow graph edges and the
SSA edges and maintains two different work lists. This is a work list based approach

exactly like simple constant propagation. So, we have a Flowpile and an SSApile.

So, it is important that flow graph edges are used to keep track of reachable code. So,
whatever code cannot be reached will have all the edges incoming into it marked as non-

executable and therefore, we can never reach that node.

SSA edges are helpful in the propagation of values, whenever there is a change of value
in a node; the SSA edge is used to activate that particular node and put it into a SSApile.
So, the flow graph edges are added to the flowpile, whenever a branch node is

symbolically executed or whenever an assignment node has a single successor.
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Conditional Constant Propagation - 2
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Whereas SSA edges coming out of a node are added to the SSA work list, whenever
there is a change in the value of the assigned variable at the node. So the algorithm really
needs only one lattice cell per variable not on a per node basis and two lattice cell per

node to store expression values, so not too much of extra space.

The Conditional expressions at branch nodes are evaluated and depending on the value,
either one of the outgoing edges corresponding to true or false or both edges
corresponding to not a constant are added to the work list. So, if you are able to evaluate
it to either true or false, only one edge is added otherwise, both edges have to be added.
At any join node, the meet operation considers only those predecessors which are

marked executable. So that is an extra point to be noted here.
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CCP Algorithm - Conld.
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So let us look at the algorithm, we saw an example. We will learn through that example
again a little later. So, G is the SSA graph N E¢ and Es; so E; is the flow graph edges, Es
are the SSA edges. Now, V is the set of variables used in the SSA graph that is the
program itself. So, we initialize the flowpile with the first edge start to n, so all the edges
which go out of the start node are added to the flowpile, whereas the SSA pile kept
empty.

For all the edges in the E¢ set that is, all the flow graph edges; they are made as
e.executable equal to false, so that nothing is marked as true to begin with. Then v.cell is
the cell associated with the variable v, so we must initialize that also it is initialized to
top, that is the undefined value. Then y.oldval and y.newval store the lattice values of
expressions at a particular node y. So these need to be initialized as well. So both
y.oldval and y.newval are initialized to top the undefined value.
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Then there is a big loop which goes on until both flowpile and SSA pile become empty.
So the first one is, if flowpile is not equal to phi that is flowpile is not empty, what we
do? We remove an edge from the flowpile. If the edge is not marked as executable that
means, we are now entering through an edge which is not yet seen before. Now mark

that particular edges executable that is executable equal to true for that edge.

Now, we check couple of things; is it a phi node so if phi present y, so this is true if it is a
phi node then we call the function visit phi y, we are going to see some details little later.
So if it is not a phi node, then it is an ordinary expression node. So, first time visit y is
checked and is saying are we visiting it for the first or are we visiting it second third time

etcetera.

If it is first time then visit expression; the point is visit expression is called on y only on
the first visit y through a flow edge. Subsequently it is called on y on visits through SSA
edges only. So, if first time visit y is false then we do not visit that expression right now,
we are going to visit it later, if any values of the parameters in the expression change.So,
if flow-outdegree is 1; that means, we have exactly 1 successor for the node after doing
some processing, then we just add that to the flowpile.
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Then, if the edge has already been marked that is this part so is it first time y etcetera is

where we are.
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Now we look at this SSApile. Alternately, we are going to look at the SSApile and the
flowpile. So, remove an edge from the SSApile again check whether it is a phi node then
call visit phi y; if it is already visited then visit expression again because, we are now
coming through the SSA, so nothing wrong with that. The point is, if it is not visited
already - the node y - is not visited already that means, it is not yet reachable through any
flow edges. Therefore, we are not going to visit it at all. Unless a node is already visited,
we are not going to visit it when we visit through a necessary edge because it may not be
reachable at all. So this loop goes on until both piles are empty. Now let us look at the

details.
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So phi present y is simple; if y is a phi node then returns true otherwise return false. So
what does visit phi y do? So y is a node, take y.newval as undefined value. Let
y.instruction.inputs be the number of parameters of the phi instruction at the node .
Now, we are going to take each one of the inputs and then check whether the edge

corresponding to that input is executable.

Why we want to actually take the meet of only those parameters, whose corresponding
edges are marked as executable otherwise we do not want to touch them. So, let p; be the
ith predecessor of y, i running from 1 to y.instruction.inputs. If p;.y is executable then

take the corresponding input y.instruction.inputs I, so the ith input is taken in the i.

Then take y.newval and meet it with a;j.cell, so you get the new y.newval - updated value.
This is done for all the inputs and we leave out those inputs which come through edges
not marked as executable, we do not want to touch them. So it is easy to see that if a
node has not been visited at all not even once, then nothing gets done at the phi node,

this loop will run many times but in an empty fashion doing nothing.
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Now, if the new value is less than y.instruction.output.cell the old value that means, the
value has changed. Remember, we go from undefined to constant to not a constant that is
downwards in the lattice cell that is y is less than. If y.instruction.cell equal to y.newval,
take the new value as the output value and add the outgoing SSA edges to the SSApile.
So, y comma z, where y comma z is in es, so all the edges going out of phi are added to
the SSA pile because the value has changed. If the value has not changed, there is

nothing to do, you do not add anymore edges to the SSA pile.

So already visited it is simple, it simply checks the incoming edges of y. If one of them is
marked as executable then it is already visited otherwise it is not visited at all. Check
incoming edges of y for all e in X y such that X y in e, so y is in our node so X y is the
incoming edge. If e.executable is true for at least one edge e, then return true otherwise

return false. So, it is a fairly straight forward function.
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What does first time visit y do? Exactly one of the edges must be marked as executable
and other should not be. So, if e.executable is true for more than one edge then return
false, otherwise return true. At least one incoming edge will have executable true,
because the edge through which the node is entered is marked as executable before
calling this function. The first time you come to v, it will be one of the edges - incoming
edges - will be true, so you will get something as true. But if more than one edges is true

then we are entering for the second time, so this will be returned as false.
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What does visit expression do? It really processes the expression whether it is an
assignment statement or a branch condition. Take the 2 inputs; input one equal to
y.instruction.inputs 1 and input two, as y.instruction.inputs 2. If I recall the transfer
function, if one of the inputs in x plus y either x or y is not a constant, then the output is
also not a constant. So, if input 1.cell equal to n a ¢ or input 2.cell equal to n a c then

y.newval is n a ¢ not a constant.

We have covered the n a c part. If one of them is undefined input 1 or input 2 is
undefined, then y.newval is undefined. If this is also not true then both are really neither
top or bottom values in the lattice, so we can do some evaluation. Evaluate the
expression as per the lattice evaluation rules, evaluate y, so the expression is evaluated.
Of course, it is easy to modify this to handle instructions with one operand. So copy
instructions are easy to handle.

If y is an assignment node then if y.newval is less than y.instruction.output.cell. So the
newval that we got here by evaluating the expression is less than the old value. That
means, the value has changed. So remember, we always go down in the lattice. Take the
new value as y.newval, store it in the instruction.output.cell of y and add all the edges
going out of y to the SSApile so for it is as we did before.
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What if it is a branch node if the value has changed, y.newval is less than oldval then

y.oldval is equal to y.newval. Now check whether, what is the value of y.newval, if it is n



a ¢ not a constant that means, both a true and false branches are equally likely. We add
both branches to the flowpile. If it is evaluated to true then we add only the true branch

edge to the flowpile; in the case of false, we add the false branch edge to the flowpile.

This is where, if the condition has become a constant and as evaluated to either true or a
false. Then, we can avoid some of the nodes which can be entered through either the true

or false edges. So, we actually remove those as read code finally.
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CCP Algorithm - Example - 1
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CCP Algorithm - Example 2 - Trace 1
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So here is a simple example, let us run through the more difficult example, because this
is a2 simple example, which we ran through last time. So this example, we start with the
first node B1 after start, al, b1, cl are all initialized. This particular edge actually is the
only one coming of B1, we add this edge to the flowpile and that makes this particular

node to be interpreted next.
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CCP Algorithm - Example 2 - Trace 3
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CCP Algorithm - Example 2 - Trace 2
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So what happens here, see that b4, bl; bl is the only parameters which is defined. This

part is not yet to marked as executable, so nothing is coming out of this.
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So only b1; bl is 1, so b2 becomes 1 phi bl of is just b1, which is 1. Similarly, phi cl is
cl is 0, so c2 becomes 0. Therefore, c2 less than 100 is obviously true, O less than 100
and that makes this particular edge to be added to the flowpile and this is not yet added;
it does not mean it will never be added it may be added little later.
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Now, we evaluated b2 less than 20 that is also true, so again the true part is true edge is

taken and become to B5. Now in node B5 b3 evaluates to 1 and c3 evaluates to 1 both

are constants as so far. This particular edge which is the only successor is taken we come

to BY.
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Once we evaluate B7, again this parameter is not yet available, only B3 is available and
similarly, only c3 is available when evaluate b4 it becomes 1 and c4 becomes 1. This

edge is added to the flowpile that means, we come to B2 once more a second visit.
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So second visit change in the value of c2 to not a constant, but there is no change in the
value of b2. Even with this available b4 is 1, bl is 1, so this b2 becomes 1 but, in the case

of c2; c4is 1 but c1 is 0, so phi function is not a constant.
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Now, this ((s h j)) edge actually activates the node B5 and B6 both of them. Let us take
this particular node, b3 now evaluates to 1 and ¢3 becomes not a constant because c2
plus 1 is the value; c2 is less than 100 which is not known. So at this point, we do not
know whether c2 is 100 or not it has been evaluated to bottom. Actually, we add both

edges to the flowpile, so this edge and this edge both are added.
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We actually, in this particular basic there is nothing happening which has been entered
through this particular SSA edge. So B6 there is nothing happening because this
particular edge is not marked as executable. After this we evaluated this B5, c3 becomes
not a constant again, b3 is a constant. We would have already come here, through the

SSA edge we come here again.
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Now evaluate B7 again, so when we evaluate B7 as a second time, b4 remains as 1 but
c4 becomes not a constant. There is change value that means we need to propagate the

value to this through the SSA, this goes on the SSA pile.
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Now, we come to the third visit of B2. There is no change in b2 and there is no change in
c2. The b2 remains at 1 c2 remains at not a constant value. So there are no more SSA
edges added to the SSApile, there were no flowpile edges added either this was evaluated

long back or nothing was done for this particular edge.
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Finally, we can remove some of these dead edges; this is dead, this is dead so this node is
removed (Refer Slide Time: 22:14). Then we get a simplified SSA graph. Here b2 is 1,
c2 has not been evaluated, so it became not a constant and it remains as phi of c4, cl. If
c2 is less than 100 remains as it is, in this case b3 was evaluated to 1; c3 was not a

constant so it remained as c2 plus 1.

Here b4 was evaluated to 1 and c4 was evaluated as phi of ¢3, which is c3 itself but no

for the value as such. Now we can do some copy propagation and removal of course such



as b2 equal to 1, b3 equal to 1, b4 equal to 1 and simplify the entire flowgraph to every
small one like this. You see that the b variable is completely drawn; this was possible

because of conditional constant propagation.
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So that is the conditional constant propagation algorithm, that we saw until now. Let us
move on to the next optimization known as value numbering. We have seen value
numbering before; we did value numbering on basic blocks. We used a hash table, we
entered expression into that hash table and whenever we found another expression with

the same value number we said these expressions are identical.

So, the variables are also entered into the table but not exactly the same table, it was
entered into the name table. Then we saw value numbering with extended basic blocks
that actually found a few more cost the commerce of expressions and did few more copy
propagation etcetera. The reason was the scope of the expressions and so on and so forth

were extended.

Now with SSA forms we can do even better. This is a global value numbering scheme
which is very similar to the scheme with extended basic blocks. But the scope of the
tables is over the dominator tree. So it is not the extended basic block that rules scope of
the tables but it is the dominator tree. Therefore, more redundancies can be caught for
example, I am going to show you picture now, in block B8 suppose you had d; equal to

uz plus v, as extra which are equivalent to a; in the block B1.
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Suppose, let us stay look at this picture, in block B8 we had d; equal to u; plus v, we
had something here and a; equal to u; plus v; is here, so B1 dominates B8. If we had d;

equal to u; plus v, we could have use to a; as the value of d; directly that was possible.
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So with dominator as the leading theme; the scope of the table is over the dominator tree.
Therefore, we can catch a few more redundancies. We do not need any d-u or u-d
change; definition use or use definition, changes are edges are not needed here. They

were needed for the conditional constant propagation but they are not needed here.



Another interesting feature is it uses the reverse post order on the DFS tree, so what we

will do is we take the SSA graph I will show you that also in a minute.
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This was the SSA graph, so we do a DFS-depth first search on this. This is the DFS tree,
now do a post order on this DFS tree, we get stop B9, B8, B4, B2, B6, B7, B3, B1, and
start. Now take the reverse of this so that gives your start B1, B3, B7, B6, B2, B5, B4,

B8, B9 and stop. So, start from the start node and use this order on the dominator tree.



We can see that we do a start, then we do B1, then we do B3, then we do B7, then we do
B6, then we do B5, then B4then B8, then finally B9 and then stop.

The idea is by the time you actually look at these children; you would have finished the
processing of their dominators. Therefore, the expressions which were defined in these
dominators are all available for use in these children, so that is what really is the basis of

this ordering.
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This ensures that the definitions are processed before use that is a succession clip. The
back edges they may be present in the SSA graph, our example does not have a back
edge right now, but later I will show you an example with a back edge. So back edges
make the algorithm find fewer equivalences. So some expressions which we know are
equivalent will not be marked as an equivalent when there is a back edge. This is bad but
there is not much we can do about it.
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The hash table that we used to store expressions is scope over the dominator tree. For
example, an assignment ajp equal to u; plus v, in block B9, if it is present, this is not
present in the example but suppose it present, it can use the value of the expression u;
plus v; of block B1 since, B1 is the dominator of B9.

Let me show you that if you had any d; equal to u; plus v, or what was that? That was
aio equal to u; plus vy here. B1 is the dominator; it defines u; plus vi. So, we would
have use that directly need not have defined yet and again we could have just used a; in
place of ajg this is possible because B1 dominates B9.
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So that is how the hash table works. If you had not used to scoping over the dominator

tree, we would not have caught this.
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Now recalls that each name is unique in an SSA form, so variable names are not reused
in SSA forms at all. There is no need to store old entries in the scoped hash table when
the processing of a block is completed. Remember in the recall that in the case of
extended basic blocks, we actually had to remove all the new entries and restore the old

entries when we went out of scope. So when we return to the parent we had to remove



the new entries which were inserted by the children and then we had restored the old

entries also.

That is not necessary here because the old entries are corresponded to old definitions of
the same variable, which were redefined in the new scope, here that cannot happen. The
each name is going to be defined exactly once so no more redefinitions, just deleting new

entries will be enough there is no question of restoring old entries here.
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So any copies generated because of common sub expressions can be deleted
immediately. For example, we will see that a, equal to u, plus v,, bl is u, plus v, so this
becomes a, equal to bl; bl is a-eter of b2 see. This is a copy we do not have to retain this
copy at all wherever a, occurs we will be able to use bl directly, we do not have to

worry whether there is a conflict of interest are something like that.

So how we do that? We are actually going to replace the value number of a, with the

value number of b1, so whenever we want to search for a, automatically get b1.
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So that is how these copies can be deleted immediately. Copy propagation is carried out
during value numbering itself the way I just now mention. Copy statements generated
due to value numbering in the blocks B2 B4 B5 B6 B7 B8 can be deleted. So we are
going to see how the deletion happens? The valnum table store the SSA name and its
value number and is also is a global table. It is not scoped over the dominated tree I will

show you the reasons for it very soon.

Value numbering transformation retains the dominance property of the SSA form. What
is the dominance property? Recall this every definition dominates all its uses or
predecessors uses in the case of phi functions. So the condition constant propagation did
not violate any of this, it actually preserved the dominance property the value numbering

transformation, also preserves the dominance property.
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So | wanted to show you the picture of the valnum table that is here, so hash table entry
has expression and it is indexed by expression hash value; when we say an expression, a
phi function is also an expression; along with the value number of the expression we
must also have the parameters of the phi function, there are many parameters those are

also stored these will be useful later.

There is something called defining a variable that we need to store here. So the first time
that the expression has occurred and of course we take that and the variable on them left
hand side of the expression is stored here. Whenever we find expressions equivalent to
the expression here within the scope of course, we can use the defining variable in place

of the new variable that we have encounter.

The valnum table is simple; it stores the variable name and it stores the value number
also, it is actually indexed by name hash value. This constant or not, etc is stored here; if
it is a constant, it is a constant value and then the replacing variable. As | told you copies
need not be kept, for each copy that variable name we need to have the variable replacing

the variable as well.
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This is our example that we are going to run through; it has many many redundancies so
uy plus v ;1 is defined here, u, plus v, is defined here, so u, plus v, is here, again here,
where usz plus vs another us plus vs, but remember B2 and B3 do not dominate each
other nothing at all. For example, see here B2 and B3 are not dominators of each other.
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So the ujz plus v3 which has defined here and B2 cannot be reused here, if it was actually
define here like u, plus v, it could have been reuse, but not now. Now whatever is
defined in B1 can be used in B2 and whatever is defined in B1 and B2 can be used in B4
the reason being B1 and B2 dominate B4. Similarly, whatever is defined in B1 and B2

can be used in B5.

Finally, what about B8? B1 of course dominates B8 so whatever is here can be used
here, B2 dominates B8 so whatever here can be used here, but neither B4 nor B5
dominate B8, so whatever is used here defined here, cannot use as a commerce of
expression here. But we must remember that B4 and B5 supply parameters to the phi
function here. For example, a5 is phi of a4 comma a2, a4 comes from here and a2 comes
along this path. So it would actually come with this way, a2 is defined here, but it comes

this way.
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Similarly, B6 gets B2 from here like that and B3 directly; the same is true for B5, B6 and
B7. When we come to B9 we get one parameter from here that is for a7, a5 is defined in
B8 so that comes here, a6 is defined in B6 that comes here, and a3 is defined in B3 is at
comes via B7, for B7 it is similar, c4 is also similar (Refer Slide Time: 36:30).

Let us see why the valnum table should be unscoped and then run through the example,
so the unscoped valnum table is really needed for processing phi instructions. For

example, a phi instruction receives inputs from several variables along different



predecessors of a block; these inputs are defined in the immediate predecessors or the

dominators of the predecessors of the current block.
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This is obviously true because of the dominance property, so phi gets many variables
along its incoming edges and they could be defined in immediate predecessors. For
example here a4 is defined in the immediate predecessor, but a2 is defined in the
dominator that is upwards that is what it is saying or dominators of the predecessors of

the current block.
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Of course, they may be defined in general in any block that has a control path to the
current block subject to the dominates property. For example, while processing block B9
we need ab, a6, and a3, Let us look at that a5, a6, and a3. | already showed that a5 comes
from here, a6 also comes from here, but a3 comes from this point (Refer Slide Time:
38:10). Whereas if you take b7, b6 comes from here, b1 actually comes from all the way

from the top and b5 comes from here.

So in general the variable could come from anywhere subject to the dominants property
of course, anyone of the dominators. However each incoming arc corresponds to exactly
one parameter of the phi instruction. Since, the parameter can come from any of the
dominators or the predecessors, we need an unscoped value number table it is not

possible to use a simple scoped table, we need an unscoped valnum table for this.
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This is the picture just now | showed you, let us run through this particular example and
see exactly how value numbering happens. There are more points to be noted as we go

along and we will define them at the end of the example.
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The processing order is always given here, we are now processing the block B1 (Refer
Slide Time: 39:32). It has two assignment statements a; and bl equal to u; plus v; and
u, plus v, So u; plus vy and u; plus v, are entered into the hash table and then a; and bl
actually get entered into the valnum table no problem at all.

(Refer Slide Time: 39:52)

SSA Value-numbering Example - 1.2
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SSA Value-numbering Example - 1.3
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Then the next node to be visited is B3, so a3 is defined here as a same treatment u3 plus
v3 is entered into the hash table and into the valnum table. Then B7, so this defines u3
plus v3 which was already defined before, because the hash table is scoped over the
dominator B3 dominates B7. We find this b5 equal to u3 plus v3 is nothing but defined
already, so we have b5 equal to a3 as equivalent a3 is right here then c3 is equal to u3

plus v3 that is also equivalent to a3 (Refer Slide Time: 40:30).

So we delete these two statements because copy propagation can be directly done, we
can store in place of b5 and c3 as a3 itself and that value number automatically takes care

of these two usages later.
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SSA Value-numbering Example - 1.4

0w el ol ady
BT bl b b
ol il il 8}
Prom s Dece .
B 1K} BT B, B2 B2, B, B8 B mp

LS = ] P

(Refer Slide Time: 41:13)

SSA Value-numbering Example - 1.5
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Then we process B6 in that reverse post order, here we find a6 as b1 so u2 plus v2 which
is defined here in the dominator scope and c2 as b1 again, so that is also defined here and

we can delete these two (Refer Slide Time: 41:10).

Then we process B2, so here we find a2 as b1 which was defined before, b2 as u3 plus
v3 which is not defined before, because this is a different dominator scope as such so B3

would have already gone out of scope, B2 is a new dominator scope so this is retained as



it is and entered into the tables, but c1 as u, plus v2 is already equivalent to bl, cl is

equivalent to b1, because u2 plus v2 is already defined.

(Refer Slide Time: 41:54)

SS5SA Value-numbering Example - 1.6
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S5A Value-numbering Example - 1.7
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Then we come to B5 here we find u2 plus v2, b3 is equivalent to bl so this is deleted.
Here in B4, a4 is equivalent to b1 this is also deleted.
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SSA Value-numbering Example - 1.8
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Then we come to B8, so in B8 a5 is a phi function with a4 and a2 as parameters. If you
trace back when you search the valnum table a4 is equivalent to b1, so that is what we
have replaced here and a2 is equivalent to b1 again, the second parameter is also bl. So
such phi functions which have all parameters as equal the same are meaningless phi
functions. So a5 is meaningless phi function we do not need it here, we can simply
replace the phi function by the parameter b1. So a5 is equal to b1, but bl is already there
before. This is a copy statement and we can delete this as well.

(Refer Slide Time: 43:06)

SSA Value-numbering Example - 1.9
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But b6 is not so b6 is remains as phi of b2 comma b1l. When we come to B9, a7 is a phi
function with a5, a6, and a3 as parameters; a5 is famous bl so the first parameter is b1,
a6 is same as b1 second parameter is also bl; a3 is a3 there is no change, so it remains as
it is the phi function does not become meaningless.

The second phi function b7 has b6 b1 and b5 as 3 parameters; b6 is as it is; bl is as it is;
and b5 is equivalent to a3, it is replaced by a3 so this phi function is also not meaningless
it remains as it is. Whereas c4 equal to phi of c1 comma c¢2 comma c3 cl c2 c3 are
equivalent to b1 bl and a3; c1 is b1 here, c2 is b1 and c3 is a3.

So now observe that a7 and c4 are exactly identical. Therefore, one of these needs to be
retained and the other can be removed c4 will be removed and it is called as a redundant
phi function, which is already covered by some other phi function in the same basic
block.

(Refer Slide Time: 44:34)

SSA Value-numbering Example - 1.10
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This is the simplified SSA graph after the copy statements and redound expression etc

are all removed. So this is how we are able to simplify.
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Let us look at the SSA value numbering algorithm in a formal manner mark the
beginning of a new scope, so the basic block B is the parameter for each phi function f of
the form x equal phi of y; to y, in the basic block B do search for the function f in the
hash table name is x and the parameters are y; to y, So this involves getting the value
numbers of the parameters, you have to dig into valnum tables get their parameters etc
etc. Then use a special hashing function for phi and there were many number of them

available and then enter into the hash table.

Suppose you find that f is meaningless this will be defined later, all y; are equivalent to
some w that is all the parameters are equal. Now replace the value number of x by that of
w because this becomes x equal to w, all these are w in the valnum table and delete f
suppose, it is not meaningless but it is redundant, so redundancy is there is some other
phi function, which is equivalent to this f of the form z equal to phi of u; to u, in the

same basic.

So replace the value number of x by that of z in the valnum table and delete f so | already

showed you this otherwise, simplified f into hash table and the valnum table.
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SSA Value-Numbering Algorithm - Contd.
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Then this is for phi function, what do you do for assignments? If it is x equal to y plus z
search for y plus z that implies take the value numbers of y z etc etc, apply a hash
function and search a hash table. If it is already present with value number n then replace
the value number of x by n in the valnum table and delete a. | showed this if there is an
expression already defined we do not have to keep the copy later. Otherwise, add the

simplified y plus z to hash table and x to the valnum table, so this is as before.

For each child, now we have finished processing B, so what about the children of B? In
the dominator tree in the reverse post order of DFS as | told you about the SSA graph
call SSA value numbering for each of the children. Finally, once we want to get out of B
clean up the hash table after leaving this particular scope, so initially we supply start as

the parameter and then call the function.
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Example: Effect of Back Edge on Value Numbering
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Let us look at some details of how phi functions are processed? One or more inputs of
the phi functions may not yet be defined for example, they may reach through a back
edge of phi of a loop, and such entries will not be found in the valnum table. Let me
show you an example, this B3 have been replaced by a new block which has u6 and u7

as new definitions, the old one had only a3 equal to u3 plus v3.

Now u6 is phi of b1 comma a7 and u7is phi of b1 comma c4. Unfortunately, we found

that a7 and c4 even though are equivalent we have not processed this block, so we have



not found that a7 and c4 are equivalent. We are processing this block we have not
processed this block and there is a back edge here. So because of that we do not find ué
and u7 as equivalent, they are not redundant phi functions at all because a7 and c4 are

not yet found as equivalent.

(Refer Slide Time: 49:05)
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So because of this back edge a7 and c4 will be treated as distinct, separate. Therefore,
this u6 and u7 will be actually entered into the hash table as if they are two different phi
functions, which are not equivalent to each other. So simply assign a new value number
to the phi instruction and record it in the valnum table and the hash table along with new

value number and the defining variable that is what we do.

So we do not really go through the value numbering scheme again and again. So that is
why this is not done, we just want to do it once it takes too much time. If all the inputs
are found in the valnum table, then replace the inputs by the respective entries in the
valnum table. Check whether the phi function is either meaningless or redundant if

neither enters the simplified function into the tables.
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Example: Effect of Back Edge on Value Numbering
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Now what about meaningless and redundant phi functions? All inputs are identical so for
example, in block B8 as | showed you if all the inputs are equal, then they can be deleted
this particular instruction can be deleted. Occurrence of defining variable can be replaced
by the input parameter; only valnum table needs to be updated. We saw this example
already for example, here this and this they become meaningless therefore, both this

parameter become equal (Refer Slide Time: 50:15).
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Redundant phi instruction means, we have already discussed this instructions in the same
basic block with exactly the same parameters. So redundant phi instructions can be
deleted in all occurrences of the defining variable in the redundant instruction can be
replaced by the earlier non redundant one tables are updated.
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So this is how value numbering actually happens in SSA forms. Now let us look at

something somewhat interesting we saw value numbering on SSA graphs, which actually



preserved the dominance property. Now we will see how important it is for Liveness

analysis.

What is liveness? Liveness is whether a variable is going to be used at a particular
sometime later that is, informally what liveness is of a variable? Really is for a variable
which is defined is there any use later on. So how do you find it in the SSA graph? It is
very simple for each variable v; walk backwards from each use of v, stopping when the
walk reaches the definition of v. So, collect block numbers on the way and the variable v
is live at the entry or exit, one or both as the case maybe, of each of these blocks.

(Refer Slide Time: 51:57)

Liveness Analysis with SSA Forms - Example

So let me show you a simple example, here is our original flow graph and here is our
SSA flow graph. Let us look at some usage let say i, i is used here and i2 is used here
also (Refer Slide Time: 51:60). Now we want to find out all the blocks where i, is live.
Let us take this which is very simple, we go backwards till the definition of i so we go up

to his point i is defined here from here to here.

So in block B4 it is actually live at the entry of block before it is live, but the end of
block it is not because there are no more usages here. At the output of block B2 it is live
and at the entry of block B2 it is not live, because i, is defined immediately. So B4 in
and B2 out is collected, then we start here so B7 in is collected, then B5 out is collected,

B5 in is collected, B3 out is collected, B3 in is collected, and then B3 out is already there



and finally, we have reached the definition point of i, so all these blocks are deemed as

live blocks for i,

We can do the same thing in along the other path also from here B7 in B6 out B6 in then
B3 onwards we have already collected. So B2 and B3 both in and out, B4 only in B5 B6
both in and out and finally B7 in these are the points where i, is live. What about n,? So
you can look at n, which is here, which is using here also, for n, you go on you just
defined here so B5 in B3 out B3 in and B2 out.
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Similarly, here B6 in and then onwards we have already collected. Whereas if you look
at nz or ny we start ns is defined here, so only this much n, is defined here. This is how
the liveness is computed? We just go walk backwards from each use of v stopping when
the walk reaches the definition of v, collect the basic block numbers on the way and the
variable v is live at the entry and exit, one or both of these basic blocks. So | already

showed you this particular example.

Why this procedure works? It works because the SSA forms and the transformations we
have discussed satisfy or preserve the dominance property, so again we must recall that
the dominance property is definition of variable dominates each use or the predecessor of

the use, when the use is in a phi function.
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Liveness Analysis with SSA Forms - Example

Suppose the dominance property was not satisfied then there is a problem what may
happen is that the whole SSA graph may have to be searched, we do not know
dominance property is not satisfied. Here we are 100 percent certain that if we reach the
definition that is sufficient because the definition dominates all the uses or at least the

predecessors of the uses.
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So because of that we stop at the definition, we do not have to go beyond that whereas if

the dominance property is not true, then the definition could be anywhere it is not



necessarily up to the dominator only. So the whole SSA graph may have to be searched

and to find the corresponding definition.

This is a sample of how liveness analysis is possible. It is also possible to actually do
partial redundant elimination and a few others, but they are much more complex than
what | have presented so far those are outside the scope of this particular, of course. So
this is the end of the lecture and in the next time we will look at parallelization thank

you.



