Compiler Design
Prof. Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 13
Lecture No. # 32
The Static Single Assignment Form:
Construction and Application to Program Optimizations - Part 2

Welcome to part 2 of the lecture on the SSA form.

(Refer Slide Time: 00:22)

SSA Form: A Definition

@ A program s in S5A lorm, if each use of a vanable is
fanchad by exaclly ong deliniion

@ Flow contrdl remains the sams as in the non-55A farm

o A special merge oparalor, «, is usad lor selecton of valuas
W jOin Nodas

@ Mol every [in Node Nosds & © CReratar id awery vanabla

@ Mo nead lor a o operalos, il the same dafinibon of he
winiablo roaches tha oin nodoe dong all Incoming edgas

& DMIgn. ha SSA I s AL e Witk Li-d and d-u cheans

o tacaktate Oas an o1 1agiar algoeihms
@ [ranslahon trom SSA [0 machung oeoe imiroducas
operaloas, which may introguce some inelicen- i

Let us recapitulate a little bit. A program is said to be in SSA form, if each use of a
variable is reached exactly by one definition. The flow control remains exactly as in the
non-SSA form, but there is going to be a special operator called the phi operator, which
is introduced into the join nodes. The phi operator is useful for the selection of values in
join nodes. So, there may be a... because we have a condition that there is exactly one
definition for each use. There may be many definitions of the same variable reaching a

point and which one to choose is the question. This is resolved by the phi operator.

Not every join node will need a phi operator. If the same value is coming through all the
paths, all the edges into a join node, then we really do not need a phi operator there.

(Refer Slide Time: 01:34).

Program 3 in non-SSA and SSA Form

Here is an example of a non-SSA form and the SSA form. Here this is the non-SSA and
this is the SSA. You can see that there are two definitions of i coming here: one is
coming this way and the other is coming this way. We have phi operator for i. Similarly,
there is a definition of n coming into this and then these definitions of n are again
entering this. So, we have a phi operator for n here. Here is a phi operator for n because

of these two definitions coming in. These are the salient points of an SSA form.

The semantics is simple. When the phi operator is supposed to execute depending on the
arc through which this node is entered, appropriate parameter is chosen. For example, if
we enter through this (Refer Slide Time: 02:32), then the first parameter is chosen and if
we enter through this, the second parameter is chosen. That is assigned to the left hand

side.

(Refer Slide Time: 02:40).

Conditions on the SSA form

Afar translation, the S5A larm should satisty the lollowing
conditeons [of avary varnbée « n tha onginal program

@ If bwo non-null paths from nodas X and ¥ each having a
dedinition of v comange al a node p, than p contasns a
Ervadl o=luncdion of tha lorm [¥,V ¥}, walh Thd
nuembar of -'I'-.'_h.ll'"E'":|‘3 agual 10 he II'I-I.'!-E-;'E'E' ol p.

@ Each appeasance of v in the original program or a
-furection in the néw program has been replaced by a new
variabla v, loaving tha new program in S5A form

Q Ay wse of a vanable v .=.I|_'||||,J army contred path i i
of -:'?ll'l.'ll programeand tha :I.".'"-C-EF-}"'E'II'I:{I usa ol v
Nsrd pDrogram yiald e same vaiue for both v and

There are some conditions on valid SSA forms. The first one says - if two non-null paths
from nodes X and Y each having a definition of v converge at a node p, then p contains a

trivial phi function of the form, v equal to phi v comma v comma etcetera.

Each appearance of the variable v in the original program or a phi function in the new
program has been replaced by a new variable v i, leaving the new program in SSA form.
In other words, renaming of variables in this trivial phi functions and otherwise have
been performed already. So, the values of the new variable and the old variable must
match. That is what the third condition would say.

(Refer Slide Time: 03:28).

Conditions on SS5A Forms

a Condition 1 m the prévious slida 15 roursnvg
® b implies fhat S-assanmants infroduced By the tronslahor
procadure will alzo guald
» This in urn miy lead o niroduction al modé
a1 othor nodes

y A8 Assinments o v

a It would be wastaful 1o place ~=functions i all join nodas
@ It is possible to locate the nodas whene c-lunclions ane
asgarmhal

@ This is capiurad by the daminance frombar @

Condition 1 also says - the assignments to the phi functions will also qualify as
assignments to the same variable. Therefore, they may in turn introduce more phi
functions. The dominance frontier really tells you exactly where phi functions are to be

included including the recursive nature of this condition 1.

(Refer Slide Time: 03:58).

DF Exampile - 1

a
[wern) gl i

e
" .
a7 no= k]

B

Here is an example of the computation of dominance frontier. Intuitively, dominance
frontier is the set of nodes for a particular node. It is a set of nodes, which are just

beyond the region, where the node dominates. So, for example, this node and this node,

they dominate all other nodes. For example, start dominates all nodes. So, there is no
other node to which we can reach. So, it is D F function is phi. Whereas, let us look at
B3. Here is B3 and then it dominates B5, B6 and B7. So, B5, B6 and B7. After passing
these, the next node we come to is B2. So, B2 is on the dominance frontier of B3. This is
the meaning of the dominance frontier. Its use is, it tells you exactly where phi functions

are to be introduced if we consider those nodes, where the assignment statements exist.

(Refer Slide Time: 05:03)

DF Example - 2

Bl e
Hadal &
n (ST ERE R
LRI by

T o gl

B g LBk ERYD

&
Ll e ER BO
E

"

B10 Lol L] = Boay | ML1*

BT S ma e

Here is another example, which is very similar. If you consider B5; so, B5 is here, B4,
then B5, B6. So, B5 really dominates B6 and B7 only. So, the next node we come to is
B8. That is why B8 is the dominance frontier for B5.

(Refer Slide Time: 05:25).

DF Algorithm

for all nodas i 1he o :__'||:=.|_:I| da
DF(n)
for all nedes nin tha Mow glﬁl:-'l'l do i
“ts anough 10 COmdar Rl N s *
* Oghar nodas aulcmatically get their OF sats ©
" computed duering s procoss ™
for gach predecesson poof o in e low graph do |
= p :
wihbg (4 nohovd i) oo |
OF(t)y = DF{Huim

= il

The algorithm is straight forward. We looked at this algorithm in the previous lecture

already. We always start from the predecessor of a node and then go on climbing in the

dominator tree until

algorithm.

we meet the immediate dominator of that node. So, this is the

(Refer Slide Time: 05:47).

Minimal SSA Form Construction 1

ﬂ- Coampule [F sals lor each noda of the low !]li':;_lh
'ﬂ' For each variable v, place trivial «-funclions in e nodes ol
thia 1o gragh using tha algornithm place. oh-lanchomy)
@ Rename variables us iy thi algarnthm
Raname-varables(x, B)
Placamant Algorithm
@ The PraCainant a ':';:'.-I|_| mim Cxs thie nodes r, with
Assgnments 1o a vanane

a i FHIL'-IZ"‘E- trivaal o-lunclions in all [fa nooes W
CPE(R), lor aach o

@ |t uses awork lisd (e, quaus) kar this punpose

Now, the first step is placement of the phi. This requires computation of the dominance

frontier of each node in the flow graph. For the phi placement algorithm, we pick the

nodes n i with assignments to a variable. Then, place trivial phi functions in all the

nodes, which are in the dominance frontier of that node. To do this, we use a worklist

(Refer Slide Time: 06:16)

o-function placement Example

st
i
=0
> 89| remdm
L]
R
Uh N | e ogn,)
e
[B SR el f a
B4 |/
A7) | = 02 n= Xnel

Blap | &
B2
n = A, nj B - |
i . o i

D nand il i w= e bede BE
r

E P ma [L

This is how a program would look like after placing trivial phi functions. The arguments
are not yet renamed and the variables are not yet renamed. Everywhere it still remains as

i equal to, n equal to, etcetera.

(Refer Slide Time: 06:33).

The function place-phi-functionfv) - 1

[umction Placa Dn-TErciiory ¥ 1 W S B YArame
Thes lunchbon s execuiad once lor aach vanabla i tha llow graph
bagin
"l.'lf-,'_""l"El 15 Iruig it a o-funclion has alneady
i placad In B
rocessed| Bl is fruwe il B has alr Ba0y DEen processed once
far vanabla v
lor all modes B in the flow graph do

has-phi B) = lalse, processed B) = false;
ong bor

W o= i W is the work list

Assirvmant-nooes V) 1% he sal ol nodes contmann
stalements assigrang o v
lor all nedes B = Assignmeant-nodes{v) do

pocgssed H) = rue Aot Weel)
and lar

Let us look at the Place-phi-function program and quickly see how it runs. This is

executed once for each variable in the flow graph. has-phi is true if a phi function has

already been placed in the basic block B. processed B is true if B has already been
processed once for variable v. These two are set to false and initialized for the whole
program. Now, the worklist, W is made empty to begin with and we add all the
assignment nodes, which are nothing but the set of nodes containing assignment
statements assigning to the variable v to this particular worklist. So, we say - processed B

equal to true and add that to the worklist.

(Refer Slide Time: 07:30).

The function place-phi-functionfv) - 2

whiba Y # 0 do
Dagin
B = Ramovel W),
for all nodes y ¢ DF(B) do
i {rod fias-pi ¥ 1) thian
bagir
Felfile | ¥ V. ke ¥l
has-pin] ¥ = dreag .
1 [not processad ¥ |} than
CRQIN SrOCORs Wl o= [risp
Addl W,)
and

Now, in the loop, we remove a node from the worklist. Then, take the dominance
frontiers of that particular node. If a phi function has not been placed in that particular
node y, we place one and then make has-phi true. If the new node has not been processed
yet, then we add it to the worklist and set process as true. So, this is the one, which takes
care of the recursion in and make sure that addition of new phi nodes, which may result
in addition of some more phi nodes is taken care of.

(Refer Slide Time: 08:17)

SSA Form Construction Example - 1

Eray

Iy =
B0 e iy
&
= Syl
2N e e M
fgee 1

e~ =,

A e N] gl | B4
B
. . o
P r,-n.rﬂ' fiy = 3o+ Heap
Py =R R) | @T U-:.'
kol
JBT) |87}
SEA fem oM e wi
!

T] e

After the phi construction process is over, we need to rename the variables. For example,

this is the final form that we need to produce i 2 equal to phi of i 3 comma i 1, etcetera.

(Refer Slide Time: 08:34)

SS5SA Form Construction Example - 2

[.1:] simi
ll;l.

LR, = i; R, A

L =

L el 3, LBy
. [T

Taal B8

COT T

L;l,-i;.l;.,a Al A
B * wy gy
e
Lamy r: s, .
B,

(1]

Similarly, in this example as well. So, we are going to refer to these examples as and

when necessary.

(Refer Slide Time: 08:41)

Minimal SSA Form Construction 2

Hinameng ssgornthin
a Tha ranaming a gor thrm padorms a lop-down travarsal ol
thie domunator trea
& A separate pasr of version stack and version counter ara
usad for each vanapia

& The lop alement of ha varsion stack V' 2 abvanys the

110 b wsed for @ variable wsages encountered (in the

ol course
v i3 rsad to gEneTalE B MW VETSEON MM
& Tha alogonthm shaown katar is [or a sengle varnakbée anly; a
Alppi T :_::'.-!l'!ull 15 @pcUied lor all vanacios wath an aray

of varson stacks and countars

How does the renaming algorithm work? First of all, the renaming algorithm performs a
top down traversal of the dominator tree. It does not travel along the flow graph, but it
traverses the dominator tree. Whenever it goes to a particular node in the dominator tree,
it processes that particular node in the flow graph. It uses a pair of version stack and
version counter. So, this is one pair. For each variable, you have a pair of this kind. The
top element of the version stack V is always the version of the variable that we have to
use. In other words, there will be versions of variables V 1, V 2, V 3, V 4, etcetera. So,
as we get a new definition for the variable in the program, we are going to use a new
version for that particular variable. However, the reason why we require the stack is that
the variable, which has been renamed, must be used for all the uses of that particular
definition. So, it is not enough to just rename the definitions, but we also need to rename
the uses and that must be done for the particular definition and its uses. So, the top
element is always the version to be used for a variable usage encountered in the

appropriate range, of course,

Here the counter V is used to generate a new version number. That is it. We are going to
show the algorithm for a single variable, but a similar algorithm is executed for all the

variables. We just have to use an array of version stacks and array of counters.

(Refer Slide Time: 10:37)

The Renaming Algorithm

@ AN SeA [om Should salisly Ihe Somnmaneg oropd Ty
b e lfnition of & varinble dominabes each uss ai
& Whan the use 15 0 a c=ncban, the predecessor of the use
a Tharelora, it is apt that the renaming algarithm perorms a
top-down Iraversal of the domenalod frea
& Ronaming lar nonec-stalaments 5 camed cal whils wvisiing
i e
» Henaming paramelens ol a c-SIxlemant @ o node n i
Cuited oul wihals wisming the appropnade prédacassars ol n

o

There is something very important here. First of all, we still have not explained why we
need to do a top down traversal of the dominator tree. The important property that an
SSA form should satisfy is called the dominance property. The definition of a variable
dominates each use. So, all the uses of a variable are dominated by... Those nodes are
dominated by the appropriate definition; otherwise, if we are looking at a phi function,
then the definition of a variable dominates the predecessor of the use. So, this is the way
it is. This is called as dominance property. Because of this, it is apt to say that the
renaming algorithm performs a top down traversal of the dominator tree. How does it do
it? Once we want to actually process the uses after we meet the definition and because
the definition dominates all its uses, we must process the definitions first. We can do it
by traversing the dominator tree from the top. So, renaming for the non-phi-statements is
carried out while visiting a node, particular node n. Whereas, renaming parameters of a
phi-statement in a node n is carried out while visiting the appropriate predecessors of n.

This will become very clear now as we go along.

(Refer Slide Time: 12:15)

Renaming Vanables Example 0.1

Let me show you an example first and then go back to the algorithm itself. Let us run
through an animation of this program. The start node will be processed to begin with and
then it leads to the basic block B1. In the basic block B1, we first rename the definition i
1. Then, read n 1 is also a definition. So, that is also renamed. Then, when we are visiting
B1, we also have to look at the phi functions in the successors of this particular node, B1.
So, that is in B2. So, we are going to rename the appropriate parameter corresponding to
i 1; that is, the second one because it is the second arc that is coming into the node B2.
So, this i from the trivial phi function is renamed as i 1 and this n is renamed as n 1. That

is all, nothing else happens during the visit to B1 apart from renaming i 1 and n 1 here.

(Refer Slide Time: 13:21).

Renaming Varniables Example 0.2

Ban FilH i PR il ki
Frooiang B

Next, B1 dominates B2. The next node we visit is B2. Here we are renaming i 2 and n 2.
These are the two definitions; these are two new definitions of i and n respectively.
Nothing happens as far as the first two parameters of the phi function, they remain as i
and n. These will be renamed when we are visiting the node B7, which actually has an
incoming arc to B2. So, this is a usage of n (Refer Slide Time: 13:53). This is supposed
to be n 2. So, we make it n 2. That is all there is to it.

(Refer Slide Time: 13:59)

Renaming Vanables Example 0.3

Sran Rt ian{) il s
Freorang B

Then B2 dominates B3. So, we go to this. This is a usage. The appropriate obviously, the
definition is n 2. So, this is named as n 2. This is where the version stack comes into

picture. The top most entry will have n 2 and n 1 is below that.

(Refer Slide Time: 14:21)

Renaming Vanables Example 0.4

Sran Rt iy il ki
Precang B9

K i)
w4

After B3, we come to B5. It is the first edge kind of a traversal. So, when we rename n
3... Before that, we rename n 2 because n 2 is a usage corresponding to the old variable
n 2. Now, there is a new definition n 3. Now, n 3 is feeding into B7 and that is the first

edge. So, the parameter of the phi function in B7 is renamed here as n 3.

(Refer Slide Time: 14:51)

Renaming Vanables Example 0.5

FafE g il BlaE
riordrg B

B i)

iy Bi2] Ay = Fnge
BS

Then, B6 is traversed and that would rename n 2 and n 4 appropriately. See here that this
is n 3, but for this, it will be a new definition called n 4, but the usage here comes from
this n 2. So, this is still n 2.

Here (Refer Slide Time: 15:10), we have the incoming edge as the second one and ny is
renamed here.

(Refer Slide Time: 15:16)

Renaming Vanables Example 0.6

Renamed {red)
eI e
rizda BT

Then, we go to B7 and here we rename n 5 and i 3. Then, i 2 will be renamed based on
this particular definition i 2. The original stack being different, this i 2 would have been
in a different stack altogether and that is easy to use here, and this edge is coming into

B2. So, the first 2 parameters here are renamed as i 3 and n 3.

(Refer Slide Time: 15:46)

Renaming Variables Example 0.7

Sran Fodia afiy v blad
PTG B
el
00 | cmadny
-
= Ry o
Py By]

1..111

Bz

B3 T {ng) priy Bd
B&
i = -
fig® nl.l'.." Ay - !'rl.l,I'. vy

B
- - L Drger of wiading ha blocks
"-‘T":'“r;"q- =) stk B BT BY BS 838 g7 ~
r 2

-y Gichpi G JoimE =

S ——

Then, we process B4 and rename this as i,.

(Refer Slide Time: 15:50)

Renaming Vanables Example 0.8

Sran Rnareaniy v blas
aprgidrig
Leld
(50 | e
L]
b= ol i)
LR LN
-|_I = 1

B2

.

B | maring) prry B4

s -
fig = AR n.-]‘n;l' Ren

BE.
& - i Do of waibng e iocks
"l‘::":“l“"ll B SEat B 87 B B4 895 87 & ~
N* a

uppt - oidet on demE &

Finally, we stop. So, this is our sequence.

(Refer Slide Time: 15:59)

The function Rename-variables(x. B)

hanction Aename-variabies x, B) | x 15 a variabie and B 15 a block
bagin
Vo = T Y Vo the varsion siack ol x
for all statemanis s B do
il %1% a non-« stalemant than
replace all usas of x in the RHSs) with Top{ V),
if & dalings ¥ then
It
Il:'|'."|.'|'_!'.‘I ¥ with x, in ks dalinitesn plIE|'I ¥, onto ¥
Xy 15 1hé renamed version af X in s dalinricn

¥ W I WIS T WEran NUMBan counbes
ana
g bor

Let us go through the algorithm and see how it works. Function Rename-variables. Here
is the top of the version stack. The version stack to begin with will be empty. So, this
will act as the kind of... If the stack V is empty, then this will be the bottom of stack
marker. If this is reached, we are going to stop; otherwise, somewhere in the middle, this

will be the most current version that we want to use. For all statements s in B do.

(Refer Slide Time: 16:37)

The function Rename-varables(x. B)

for all succeasors s of B in the flow graph do
| = predecessar index of & with respect to 5
for all e-functions / in s which define x do
replace the | operand of § with Top({ V)
and ot
and for
for all childeen ¢ ol B in the dominator treée do

o warabies ¥ 2]

and far
rgp@at Mo Vs unkil | r-!:"ll:li "8
end

bagin ! calling program
lor all varabies x m tha llow gragh do
V=W v= 1, push 0onle V', end-ol-slack marke-

Horaime-vanabies x. S1ar)
and or
Brd

Let us look at the main calling program to begin with. For all variables x in the flow

graph do. So, the version stack is empty, version counter is initialized to 1, and we push

0 on to V. This is the end of stack marker. Then, we call Rename-variable x comma
Start.

(Refer Slide Time: 16:54)

The function Rename-variables(x. B)

hnction Aename-variabies . B) x 15 a variable and B 15 a block
begin
¥e = OBV W oim The vaision slack ol x
lor all statamants 3 & B do
i 5i% a nan- slalarmant than
replace all usas of x in the RHS{s) with Top{ ¥]
if £ dalines ¥ then
Iprcpin
replace x with x, in its definition; push x, onio V¥
1y 15 The renamed varsion ol X in his dalinmion

¥ W ¥ S TN Warsean numbar countbed
and
w]
and ko |

That is why we come here. The stack is empty to begin with. Now, for all the statements
s in B, we have a basic block. Right now, if it start, there will be no statements in it. So,

none of these will be executed. For the first start block, nothing is executed here.

Nothing is executed here (Refer Slide Time: 17:13) and none of these are executed.
Then, we come to this - for all children ¢ of B in the dominator tree do. Call Rename-
variables. So, we are going to call (Refer Slide Time: 17:24) on B1. Start did nothing.
So, we go to B1.

Now, we come here (Refer Slide Time: 17:31). We have B1 and the stack still contains
only the top of stack marker, but there are statements s in B. So, s is a non-phi-statement
here (Refer Slide Time: 17:44) — i 1 equal to 0 and read n 1 are both non-phi-statements.
Replace all uses of x in the RHS with top of V. There are no RHS variables to be
renamed here (Refer Slide Time: 17:56). There is nothing at all. Therefore, nothing is
done here (Refer Slide Time: 18:01). If s defines x; basic block B1 has two assignment
statements. Read is also an assignment. So, i equal to 0 and n equal to 0. So, replace x
with x v in its definition. So, v is 1. So, we are going to have i 1 equal to 0 and push x v

onto V.

Now, the new variable, which is generated, the version is pushed on to the appropriate
version stack. Remember that there is one version stack for each variable. So, i 1 is
pushed on to i's stack and n 1 is pushed on to the n’s stack. Now, increment the version
counter appropriately. So, i’s version counter and n’s version counter are incremented as

far as v 1 is concerned.

(Refer Slide Time: 18:47)

The function Rename-variables(x.B)

lor all successors s ol Bin the low E_ll-‘I:lll oo
| = predacessor indax of B with espacl o 5
bor all lunclons § m s wihich galme x 5o
replace the | operand of § with Top(V)
o i
and for
for all children ¢ of B in the dominalor trée do
Rarmme-varabies x,)
and o
Tp@al Fopd Vs until | Tepf V)
and
begin // calling program
ior all varakies x m tha llow graph do &
V=i v=1; push Bonto V; /) end-ol-stack marke- ‘TE#
Hornaime- vanabios x. Sar i
and or
Efd

Now, look at the successors of other basic blocks (Refer Slide Time 18:51). So, this is
the successor B2. It has a phi function. That is what we want to see. So, j be the
predecessor index of B with respect to s. That is, we are looking at which particular arc
this is (Refer Slide Time: 19:05) the first arc or the second arc. That is the j that we are

considering.

For all phi functions f in s, which define x do. So, we are looking at the phi functions in
this successor (Refer Slide Time: 19:18) i and n. So, replace the j th operand of f with top
of V. So, appropriately here we are going to replace this (Refer Slide Time: 19:27) with i
1 and this with n 1.

So, the replacement for phi functions is over. Now, this process continues with the other
children of the basic block V. So, in this case (Refer Slide Time: 19:43), from B1, we

call B2 and then B3, etcetera as | explained.

Once all the children have been exhausted, the version stack is popped until it reaches
the element V, which we actually write here from the top (Refer Slide Time: 20:05) of
the stack. So, we enter the function with a particular version variable and then we also
exit that function when we reach the same configuration of the stack. This is how
renaming of variables happens.

(Refer Slide Time: 20:24)

Renaming Variables Example 0.1

Sran Ranafeng v biad
HFreoiiierg H1

LU T
Frsra e |red)
i
n ol § wihbe IBEn]
B2 || he gvn et B1
A
B3| N T B4

s
e ;
BS
-
P 7 Drcer ol wisibing e blocks
] ssat, 61 82 B3 85 38 87
im =]

Sppt-tew orden gn o

To summarize, within a block, we first look at the RHS and rename variables. Then, we
look at the LHS and rename the variables. Then, we look at the successors of the basic
block and rename the phi function parameters, appropriately. So, this whole thing

happens during a traversal of the dominator tree.

(Refer Slide Time: 20:50)

Renaming Varniables Example 0.8

Pran Rt e v
=i

i=0
B0 | g ny
L]
= :... (]
Fig® iy, A,)
o |
i

B2

&

B wvaring) prnt iy
1]
L) a
rig * Aigfa] |ny = Fnget

BS

Ay = @0y, M) BT
, B

This is the final product after renaming. So, this would have been taken care of.

(Refer Slide Time: 21:00)

Translation to Machine Code -

The next issue that we need to worry about before we look at optimizations of various
kinds is that the phi functions cannot be executed on a machine. So, that is a concern. We
must translate the phi function to appropriate machine code. How do we do that? There
is a fairly straight forward scheme. If you recall, we would have had a phi function here -

max phi equal to phi of max 1 max 2 max 3 max 4. That is what we would have had.

Now, we introduce a temporary t, copy max 1, max 2, max 3, max 4 in the appropriate
predecessors to t, and then say max phi equal to t. So, this scheme will always work. We
need to apply another set of transformations on it later on. For example, copy
propagation. So, max 1 equal to a and t equal to max 1. So, this becomes (Refer Slide

Time: 22:17) t equal to a and so on and so forth. Apart from that, this scheme will work.

(Refer Slide Time: 22:26)

Translation to Machine Code - 2

Some other scheme, which one can think of sometimes does not work. Let me show you
an example. Here is a program within the SSA form x1 equal to 1, x2 equal to phi of x1
comma x3, x3 equal to x2 plus 1, and then if p then there is branch; otherwise, go out.

Instead of generating a temporary t and then saying along this path, t equal to x1 and
then along this path, t equal to x3 and so on and so forth, let us try to be cleverer and then
straight away take this variable x2 and assign it x1 here (Refer Slide Time: 23:12).
Instead of t equal to x1 and then x2 equal to t here we said x2 equal to x1 directly. So,
this statement (Refer Slide Time: 23:22) is not needed any more because we are making
an assignment to x2 equal to x1 here. We will have to make an assignment x2 equal to x3
just after this statement x3 equal to x2 plus 1. Why? That is because this arc will be taken
only after one iteration. So, let us go through one iteration, execute x3 equal to x2 plus

one, and then say - x2 equal to x3, but this is a wrong translation.

This would not do at all. This is x2 equal to x1 (Refer Slide Time: 23:55). Then, you

have x3 equal to x2 plus 1, then you have x2 equal to x3, and then you go back. So, this

gives an incorrect translation because the first time you come here (Refer Slide Time:
24:11), x2 should have taken the value x1. If we do not iterate and then return, it would
give you x2. Whereas, here we said x2 equal to x1. So, x3 equal to x2 plus 1. Therefore,
now, X2 equal to x3 makes the value as x2 plus 1. Whereas, in the previous program, it

would have been x2 equal to x1, if we did not iterate at all.

The value returned here is one more than what it would be returned here (Refer Slide
Time: 24:42), if we did not iterate through this particular program. In other words, even
if we iterate, it will always have one more than the previous versions. So, this is a wrong
translation. The correct translation is exactly the way | showed you - take a temporary,
assign x1 to it and then take a temporary, assign x3 to it. So, here (Refer Slide Time:
25:09) x2 retains x2 equal to t. So, here x3 equal to x2 plus 1 and then t equal to x3, but
if we go through without any iteration, we still return x2, which is the old value. So, the

new value is not used immediately. This actually is the correct translation.

(Refer Slide Time: 25:34)

Translation to Machine Code - 3

The parameters of all o-functions in a basic block are supposed
i be read concurrenity babora any olther evaluation baging

Cegan progea ™ ASgr coreernn bo A BN COpY PrOpEgaTE:

il wi} &
= a=x i = ma L
wa o (|
1= = @i, W
poy oY= il 'l = By, iy
gk fwE A S
0 et
= ™
= gl ns
1a i L=
14
W=
¥l T
1%l Ha il
SELL
A B et
=N frbarr Frogrem Dpereronesocn o res S5 e

Let me show you another example of what can go wrong. We have the original program
here - x equal to, y equal to, and then we are swapping. We simply swap in a loop again
and again and again; that is all; t equal to x, x equal to y, y equal to t. We convert it to
SSA. Now, t actually gets a phi function because this x here can be from here or it could
be from here. So, we have x naught comma x1. This is x naught and y naught. Then, x1

also gets a phi function here because there are two values of y coming in: one through

this and another through this. So, phi of y naught comma y1 and then y1 equal to t. This
is the new y1. So, y1 equal to t.

With this, we can do a copy propagation because t can be replaced by phi of x naught
comma x1. So, we have x1 equal to phi of y naught comma y1 and y1 equal to phi of x
naught comma x1. This is a correct SSA form; no problem. However, if we try to hasten
and then say - let me do assignment to x1 and y1 right here (Refer Slide Time: 26:55)
and then immediately after wards at this point, like in the previous case, we get a wrong
answer — x naught equal to, y naught equal to, x1 equal to x naught, y1 equal to y naught,
x1 equal to y1, y1 equal to x1. So, this obviously gets the same value into x1 and y1. So,
this is wrong. It is not swapping at all. So, we need to introduce a temporary t1 equal to x
naught, t2 equal to y naught, x1 equal to t2, y1 equal to t1, t1 equal to x1 and t2 equal to
yl. So, this is a correct translation. In this case, you cannot really do too much of copy

propagation; a little bit yes, but not too much.

y1 equal to t1 and t2 equal to y1 will become t2 equal to t1, but beyond that not too much
of copy propagation will happen here. However, this is the correct translation. In other
words, one has to be very careful and introduce temporaries in the predecessors of the
phi function so that appropriate translation takes place. Then, leave it to the optimizer to

remove the copies if it can.

(Refer Slide Time: 28:12)

Optimization Algorithms with SSA Forms

& Dead-code aliminaban

Vory simple, since (hode s evactly ong delinition reaching
anch usa

o Examine e du-chain of each variable 1o see d s ese ksl is
Bt

» Remove such vanables and thelr defmitson statements

& | o statemand such oo x Iy FTorx Wi b | s ol bed
cire miuSh b (nsomn B remoner [hie Galeled stabomend fom

o .
the d-chaos of 5 ared

@ Simple conslant p ropagation

& Copy propagalcsn
a Conditional constant propagation and constant o
& Ghobal valug nurmbenng

What are the various optimizations, which are possible with SSA forms? Let us look at
some of them. The first one is dead-code elimination. Dead-code elimination is
extremely simple. Why? You have exactly one definition reaching each use. So, if the
du-chain of a variable is empty, then there are no uses of that particular variable.
Therefore, the definition has nothing, no effect, nothing to do. So, examine the du-chain
of each variable to see if its use list is empty. If it is so, remove such variable and their

definitions statements as simple as that.

If a statement such as x equal to y plus z or x equal to phi of y 1 to y 2 is deleted, what
happens? It is not that you can just delete the statement as such, but then there are
definitions of y 1 and y 2. For example, x equal to y plus z may not have any use. In
other words, | have not used x later on at all, but what happens to the d u chain of y 1 and
y 2. So, in that, this statement will be present. So, we have to actually remove those
statements from the du-chains of y 1 and y 2 or the du-chain of x. So, we must take care
to do that as well; otherwise, there would be a statement, which is deleted, but is present

in the du-chain. Some processing would actually issue some error.

We can do simple constant propagation, we can do copy propagation, we can do
conditional constant propagation, constant folding, global value numbering, etcetera. Let

us look at each of these in sequence.

(Refer Slide Time: 30:29)

Simple Constant Propagation

1
wihule Stmitpile is not amply §

S = rernovel Stmipila)

| Simipke = {5508 a stalemant in 1he pragramjg

5 i of tha form x | C.C c] lor soimea consiant ¢
replace 5 by x
s s ol tha lorm X = ¢ lof Somd consiant ¢
dalata 5 from the Rrogram
for all sialements T in e dli-chain al X do
SLUBSLILEE ¢ o 5 T

Simipile = Strmitpsdae L) [T]

Copy propagation is simiar o constant propagaton
@ As ngle-argumean! o-funchion, x L ¥}, Q1 8 copy
siatamant, X W can ba daleted and i substiiulad o

DY LSE al X

We have already seen enough constant propagation. This is probably a much simpler
version of constant propagation. The more complicated version called the conditional
constant propagation; we will discuss very soon. In simple constant propagation, you are
only going to look at statements of the form x equal to c. So, wherever x occurs, we will

try to replace it by c. That is what we want to do.

For this, again we are going to use a queue. So, this is called as a statement pile (Refer
Slide Time: 31:11). This is initialized to S such that S is a statement in the program. So,
you put all the statements in the program into the statement pile. While the statement pile
is not empty, take a statement if S is of the form; it is of the form of a phi statement, x
equal to phi of ¢ comma ¢ comma c. In other words, all the parameters of the phi
statement are constants. These need not happen right in the first instance. It can happen
after some constant propagation is carried out. That means, the same constant value is
arriving through each of its edges; in preceding edges. So, we can replace this

comfortably by a statement x equal to ¢; no harm done.

If S is of the form x equal to ¢ for some constant c, delete the statement from the
program. For all statements in the du-chain of x, substitute ¢ for x in the statement T and
then add T to the statement phi. In other words, what we do is - we take the statements in
the du-chain, examine it. Obviously, there will be some usage of x there. We remove that
x from the statement, we put c in its place; the constant c. So, we have done constant
propagation replacing x by c. Now, we need to process that statement as well because
that may lead to further replacements and the things of that kind. So, we keep that on the

statement pile and go ahead; that is it.

This is a very simple constant propagation. The constant flows down the program. Now,
the point is - each statement in which a variable is replaced by a constant may actually in
turn induce other statements to become targets for constant propagation. That is why this
is necessary. So, first time you visit a statement, there may be nothing to do. It may be of
the form x equal to y plus z, but then it is possible that there is y equal to ¢ and z equal to
c. y plus z eventually becomes a constant. This particular simple constant propagation is
not very effective because we are not even evaluating expressions here. Even it becomes
y plus zand it is ¢ 1 plus ¢ 2, we are not evaluating here. So, the next version of constant
propagation called conditional constant propagation will do not only this, but a little
more. We will see that soon.

What is copy propagation? It is very similar to constant propagation. So, a single
argument phi function such as x equal to phi y or a copy statement x equal to y, we can
delete it and y is substituted for every use of X. So, in x equal to ¢, wherever we had x,
we substituted by c. Here wherever we had x, we substituted by y (Refer Slide Time:

35:03). So, that is copy propagation; very simple copy propagation.

(Refer Slide Time: 35:08)

The Constant Propagation Framework - An Overview

Now, we come to conditional constant propagation. Let us do a recap on the constant
propagation framework that we studied some time ago. The constant propagation
framework had a lattice for its variables. So, the variables could take 3 values: one was
UNDEF; that is, to begin with, the variables do not contain any value. So, they are
undefined. So, UNDEF. The variables also could take any of the constant values
assuming they are integers - minus 3, minus 2, etcetera, or 1, 2, 3. These constant values
are incomparable. So, this is the lattice that we have.

All constant values are grouped as constant. So, that is the middle abstraction. Then, the
third abstract value is not a constant. So, we have determined that the variable is not a
constant anymore. For example, for a particular node, the incoming predecessors give
you y equal to 2 along one path and y equal to 3 along another path. Then, y cannot be a
constant at all. It cannot be a constant, it can neither be 2 nor 3, or something else. In

such a case, y can be given the abstract value; NAC; not a constant.

If you have a statement x equal to y plus z, then here we have listed the effect of the
transfer function for x equal to y plus z. As we said, in the previous lectures, the product
of these lattices - one for each variable is the domain of data flow values for the constant
propagation framework. Here it suffices to see the transfer function effect. Suppose y
takes the value either UNDEF or constant or NAC. So, that is what m y gives you. y

would be the actual value, but my gives you the abstract value.

Depending on what m z is, UNDEF, c2, or NAC, m prime X, the new abstract value for x
would be either UNDEF or NAC. In other words, unless all of them are constants, ¢ 1,
then ¢ 2; x will not be ¢ 1 plus ¢ 2. In other words, we start from the top, we can only go
downwards and we never go upwards. Once we have determined that a variable is not a
constant, its value can never change, but if the variable had a undefined value, it could
become defined and carry a constant. If it had a different constant value along two paths,
it could become not a constant in some join node. So, you can only go downwards. That
is what is shown here (Refer Slide Time: 38:20). If it is UNDEF, then it is UNDEF,
UNDEF, or NAC. If it is constant, then UNDEF, c 1 plus ¢ 2, or NAC, but if it is NAC
then it can be nothing but NAC. So, we do not go upward in the lattice. So, this is the
constant propagation framework that we had already studied. We are going to use the

same frame work for our conditional constant propagation as well.

(Refer Slide Time: 38:46)

Conditional Constant Propagation - 1

& 554 forma ."liillll:i wiln exira eages correspond) o a-ur

Ormanon &g uSsoed hano
» Edge Iroen irvery delfnition o each of its uses in the S5A
fogen (cofled ancalorth s 554 aoges

@ Uses bath How graph and 55A edgas and mamiains wo
dithangt work:ksis, o for gach [Flowpde and SSA000
FEspE. |

& Flow graphn edges are usad o kpap ra oK of reachania
coda and S54 adgas halp in propagaton ol valuas

@ Flow graph edgeas are agdead 1o Fiowpile, whenev
bBranch node 15 symbobcally asecifded or whamness

assignment node has a single swccessor

SSA forms along with extra edges corresponding to the d-u; definition use information
are used here. Edge from every definition to each of its uses in the static single

assignment form. Hence forth, called SSA edges; is used here.

Actually, we use both SSA edges and flow graph edges. We are going to use two
different work-lists or queues, one for each flowpile is a queue corresponding to flow
graph edges and SSA pile is a queue corresponding to SSA edges. So, | must point out a
difference here in the simple constant propagation. If you recall (Refer Slide Time:
39:41), we went by basic blocks or the statements in the program, whereas in the case of
conditional constant propagation with SSA form, we are using edges. Unless we traverse
an edge, actually the node, which is the target of that particular edge, is not reachable.

So, that is the important point here.

Flow graph edges are used to keep track of reachable code. As we go on, as we say each
edge is visited, we can visit appropriate nodes as well. The SSA edges are used for
propagation of values. So, once we reach a particular node for the first time, we visit that
particular node a second time only if some value, which is feeding into that particular
node changes. So, if that happens in the definition corresponding to that particular
variable in the node, then the SSA edge would be responsible for the flow of this

particular information. This will become very clear as we go on.

Flow graph edges are added to flowpile whenever a branch node is symbolically
executed or whenever an assignment node has a single successor. This is very clear. So,
if we have a single successor after finishing a particular node, the next node would be
added. As | said, we are going to visit each node only once through the flow graph edges,
we will be visiting a second time only if a value changes in that particular node. In the
case of a branch node, we are going to evaluate the condition in that branch node and

then add either the true edge or the false edge to the work-list, appropriately.

(Refer Slide Time: 41:47)

Conditional Conslant Propagation - 2

@ 55A edges coming out of a node are added 1o the S5A
work1s1 wiamner Thand 15 a changg in 1 vadee o the
-'IJ'B-'E]IIE"U varmabée al Ihe noda

@ This ensures thal all uses of a delindion arne processad
whanever a datinibon changas 15 latice value

@ Thisa -Zi:!ﬂ"'!! naaos only ona lathce call par vanate
geobally, not on a par node bases) and two Biboe calls par
ncde [0 store exprassaon values

@ Conditional expressions a1 branch nodes are evalualad

q edges
corraspondmg fo frue or false) or Balh adgos
COrrgspondug (0 L) ang acd 20 o he workkst

& Hoveaddar, at any TN MO, RN e ORarnLion f:.‘:"':'.:-.‘.-'l"'.

ondy Ihosa predecessors winch are marked evecidatie

SSA edges coming out of a node are added to the SSA work-list whenever there is a
change in the value of the assigned variable at that particular node; not otherwise. This
ensures that all uses of a definition are processed whenever a definition changes its
lattice value. This is how SSA form becomes powerful. You are making sure that nodes,
which change values are processed, but if we do not use SSA edges to reach that
particular node, we may have to go through many other nodes in the flow graph. So,
traversal of the flow graph again and again would be necessary in order to actually
process that particular node.

If this happens, the amount of time that is needed for the algorithm actually becomes
very high. That is the advantage we have in the case of conditional constant propagation
with SSA form. The time needed to process the program, do the constant propagation is
much lesser than the time needed to conditional constant propagation with just the flow
graph.

This algorithm needs only one lattice cell per variable and not on a per node basis. So,
previous versions of this algorithm, which worked on the flow graph required actually
one lattice per node per variable. So, there was too much storage necessary and it also
requires two lattice cells per node to store expression values; the old and new values of

an expression.

Conditional expressions at branch nodes are evaluated and depending on the value, either
one of outgoing edges corresponding to true or false or both edges corresponding to
NAC are added to the worklist. So, if only true part is true, only that edge is added, if
only false part is holding, that edge is added; otherwise, both edges are added to the

worklist.

However, at any join node, the meet operation considers only those predecessors, which
are marked executable. So, this is important for a phi function because in a phi function,
there are many parameters, each one corresponds to the preceding edge. So, we do not
consider any of the edges, which are incoming and are not marked executable. We
consider only those edges, which are marked executable. So, this makes sure that we
catch more constants, some dead-code, and some unreachable code, etcetera are
eliminated and so on.

(Refer Slide Time: 44:48)

CCP Algorithm - Example - 1

Let me give you an example, which is slightly away, but it is ok, we will come back.
Here is the example. Here is the program; a very simple program. Start, a equal to 10, b
equal to 20, then there is a test is b equal to 20? Yes; a equal to 30, no; we go straight. If
it is after assigning a equal to 30 here, we say - ¢ equal to a and stop. So, this is easy to
comprehend. At this point, after a equal to 10 and b equal to 20, obviously is b equal to
20 is true. So, only this branch (Refer Slide Time: 45:25) will be executed with run time.

Now, we assign a equal to 30. So, this branch is never executed and we come here so see

d equal to a will make the value of d as 30 and then we stop. This is the original

program.

Here is the SSA form (Refer Slide Time: 45:48). There are two assignments to a. So, we
have a 1 and a 2. We have just one assignment to b. So, we are going to retain it as b;
only one assignment to d. So, this will be retained as d. So, a 1 equal to 10, b equal to 20,
then is b equal to 20? The test; then, this becomes a 2 equal to 30. Here we have a phi

function a 2 along this path and a 1 along this path. Then, d equal to a 3 and then stop.

The solid edges are all flow graph edges. Now, this a 1 (Refer Slide Time: 46:35) is used
here. So, this is an SSA edge. This a 3 is used here. So, this is an SSA edge. This a 2 is
used here. So, this is another SSA edge. Actually we should have shown more SSA
edges here, but just to avoid clutter | did not do it. So, this is b equal to 20. Is b equal to
20? There is a usage here. So, this will be another SSA edge.

(Refer Slide Time: 47:00)

CCP Algorithm - Example 1 - Trace 1

How does the CCP algorithm work? With start, nothing happens. Then, you have a 1
equal to 10. So, you do a symbolic execution. Now, the value of a 1 is from undefined,
changes to 10. So, this SSA edge actually is added to SSA pile. Then, we go to this
(Refer Slide Time: 47:32). So, the statement b equal to 20, when executed will change
the value of b from undefined to constant 20. This will change the value of b. The lattice
value changes from undefined to constant. So, this SSA edge is also pushed on to the

stack.

Now, after that, we come here (Refer Slide Time: 47:57). This edge was added to the
flowpile to begin with and then we added this edge to the flowpile. Now, we added
rather the SSA pile. So, this edge was next added to the flowpile. Now, this edge was
also added to the SSA pile, but it suffices to say that these two SSA edges have no effect
at this point. Why? When we look at this parameter a 1 (Refer Slide Time: 48:26), this
node has both its preceding edges as non-executable, they are not marked executable. So,
there is nothing we can do here. This particular SSA edge has no effect because before
reaching this node this cannot be used. This is because, this edge would have been
marked not yet executed, but once we execute it, this SSA edge (Refer Slide Time:
48:53) is of no use again because the value does not change any further. We have
processed it once and we are not going to process it again unless b equal to 20 changes to
b equal to 30, or something like that.

(Refer Slide Time: 49:07)

CCP Algorithm - Example 1 - Trace 2

This is the next step. Then, we take this edge. Why? b equal to 20 is true (Refer Slide
Time: 49:14). b has a value 20; symbolic execution. Checks 20 equal to 20. So, this is
true. So, only the true edge can be taken. We take the true edge. This will be put on the
flowpile. Then, in the next step, we check the assignment a 2 equal to 30. The value of a
2 changes from undefined to 30. Now, again the value has changed and this goes on to
the SSA pile. We come to this via this particular edge. So, this is put on the flowpile.

When we take out that edge, this node will be executed.

This particular node, when we come here (Refer Slide Time: 50:06), please observe that
this particular edge is not yet marked executable. So, we are not going to actually
consider this edge, when we consider the phi function here. We are going to consider
only this particular edge. So, this will be ignored. That is why the node is returned as a 3
equal to phi of a 2. Once we evaluate this phi, it is very easy to see that this edge was
taken. So, it is a 2 and value of a 2 is 30. a 3 equal to 30 is the statement to be executed

next.

(Refer Slide Time: 50:40)

CCP Algorithm - Example 1 - Trace 3

L |

ot fmy = 10~

2= a0
L
e

ELLE
|
".

S

Once we do that, a 2 equal to 30 is executed and then d equal to a3 (Refer Slide Time:
50:47) becomes d equal to 30 and then we stop. The SSA edges in this particular

example do not play any significant role.

(Refer Slide Time: 50:59)

CCP Algorithm - Example 2

#l=1
b= 9

bell = b3, 25)
o« s,)

However, in the second example, they are going to play a very significant role. Let me

show you the second example also and then we will go on to the algorithm itself.

This is a slightly more complicated example. We have al equal to 1, b1 equal to 1 and c1
equal to 0 here. Then, we have b2 equal to phi of b4 comma b1, c2 equal to phi of c4
comma c1, and if c2 is less than 0, etcetera. If b2 less than 20, b3 equal to al, etcetera.
False; we come to b5 equal to c2. Then, these two merge (Refer Slide Time: 51:38) and

there is a loop. So, this is our example.

(Refer Slide Time: 51:41)

CCP Algorithm - Example 2 - Trace 1

We start and then we execute this node. So, al, bl and c1 change their values to these

constants.

(Refer Slide Time: 51:49)

CCP Algorithm - Example 2 - Trace 2

i

Then, we have to execute this particular node because this edge will be added to the

flowpile.

(Refer Slide Time: 52:00)

CCP Algorithm - Example 2 - Trace 3

Bl = WB1) =1

e dei)=D

F ol @ 00 e

Remember that because this particular edge is not yet executed, we actually will consider
only this edge and the parameter corresponding to it. That is the second parameter (Refer

Slide Time: 52:11). So, phi of b1; there is only one now. So, phi of bl is trivially b1 and

that value is 1. c2 is phi of c1 and that value is 0. Now, if c2 less than 100 becomes true
because c2 is 0, 0 less than 100 is true. So, we only take the true edge and come to this.

This particular node will be executed next.

(Refer Slide Time: 52:34)

CCP Algorithm - Example 2 - Trace 4

UL
Bt b= 1
gl &g

B = &B1i= 1
e dei)=0
P el o 00 s

b2 less than 20 is also true because b2 is 1 and 1 less than 20 is true. So, we take only the
true branch. Remember that the false edges have not yet marked as executable. Once this
is marked as true, we come to this node (Refer Slide Time: 52:49). So, this becomes b3

equal to al and c3 equal to c2 plus 1.

(Refer Slide Time: 52:55)

CCP Algorithm - Example 2 - Trace 5

=1
nt bl =1
gl =g

Bd = R{B1i=1
eZ=&ci)=0
P el a W s

We get b3 equal to 1 and c3 equal to 1 taking these constant values along the way. That
again leads us to this particular node. This is not yet marked (Refer Slide Time: 53:05).
So, remember that. Therefore, we do not consider this particular edge, when we take the
phi function. We consider only this particular edge. So, there is only one parameter that
is b3 and another parameter ¢3 for the second one.

(Refer Slide Time: 53:21)

CCP Algorithm - Example 2 - Trace 6

Bl = @by =1 .
e2=ycl)=0 -
Pl = 00 e

Here phi of b3 again is just b3. So, value of b3 is 1. So, b4 gets a value 1. phi of ¢c3 is c3;
c3 has a value 1. So, c4 also gets a value 1. This edge is now marked executable and this
is a second visit for this particular node. That is why this has been shown in a different
color. Previously, it was so. Now, this edge is also marked as executable and this edge is

also marked as executable. So, what happens?

(Refer Slide Time: 53:56)

CCP Algorithm - Example 2 - Trace 7

@l=1
ni bl = 1
Bl &0

L] cond Al Changs r ya oo
b3 = Smai) = 1

Bd f s e
e 2wl) L
- P22 < 108 urknown
brsm imas
1 g [T J

i a ahuss of

1B < 3 b

phi of b4 comma bl; b4 has a value 1, bl has a value 1. So, phi of b4 comma b1 is phi of
1 comma 1. So, that is ok; that is still a value 1, but if you look at c2, it was previously a
constant value O (Refer Slide Time: 54:12). Now, phi of ¢4 comma c1; ¢4 is 1 and cl is
0. So, along one path, you have a constant value. Along another path, you have a non-
constant value. Now, c2 takes a value not a constant; NAC. Therefore, c2 less than 0

becomes unknown and we need to add this edge also.

In the previous case (Refer Slide Time: 54:35), this edge was not yet executed. Now, we
mark this also and put it on the work pile. This part is not yet marked (Refer Slide Time:
54:44). So, we are not going to traverse this edge again and again unless the value
changes. The value has changed here. So, c2’s value has changed and b2 has not
changed. So, the usage of c2 is here in this. We are going to actually process this b5

using this SSA edge now. So, no change in the value of b2.

(Refer Slide Time: 55:12)

CCP Algorithm - Example 2 - Trace 8

=1
ni bl o= 1
El=Q

B e el
c2egcdatl)ed
P2 & 100 ko

Now, c¢3 changes value from 1 to not a constant because c2 is not a constant. So, this c3
has changed a value. It has changed from (Refer Slide Time: 55:18) 1 to not a constant.
So, this SSA edge is also going to be added to the SSA pile. Now, with this, there is no
change here. For example, there is no change here. b4 and c4 do not really change. We
do not have to execute this particular node again and again because b5 is here. So, only
this particular value, which has changed will be used here. This edge (Refer Slide Time:

55:57) has not been executed at all, but c4 has changed the value.

(Refer Slide Time: 56:04)

CCP Algorithm - Example 2 - Trace 9

-
= | F7. Holring apeena in B6
' pechume F oA nct naacrsile

iy . By e=ige

Now, nothing happens in b6. Next is this particular node, which is used and this
particular change in c4. This is not a constant really (Refer Slide Time: 56:16). So, this
change in c4 will introduce some changes in this. Supposed to introduce some changes in

this, but it does not.
(Refer Slide Time: 56:26)

CCP Algorithm - Example 2 - Trace 10

ated T
Bl | b=
El=0

—
B g e)= B
== Gledpdel)ed =2~
Fod < 10 e el

frus TEH %

AN i Peograer ey mcra peed i WL 4ia

This has become not a constant. It has actually gone to this, but c2 does not change
anymore. c2 was not a constant (Refer Slide Time: 56:36). Even though this ¢4 now
changes to not a constant, this SSA edge does not change the value of c2. So, this part

does not help because this is not yet executed.

(Refer Slide Time: 56:47)

CCP Algorithm - Example 2 - Trace 11

fawir

Finally, this is the third visit to b2. No change in either b2 or c¢2 and algorithm stops. So,

this is the place where the algorithm has stopped.

(Refer Slide Time: 56:59)

CCP Algorithm - Example 2 - Trace 12

Al T o of i
™ ol R Sl

This shows that after the first round of simplification, we get this flow graph. | am going
to show this flow graph in the next lecture as well. So, finally, we have b2 equal to 1, c2

equal to phi of c4 comma c1, c2 less than 0, etcetera.

(Refer Slide Time: 57:14)

CCP Algorithm - Example 2 - Trace 13

After some more simplification, the flow graph becomes like this. We will discuss this

example along with algorithm, in the next lecture again.

Thank you.

