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 (Refer Slide Time: 00:19) 

 

Welcome to the lecture on partial redundancy elimination. In the last lecture, we looked 

at an example of what exactly is PRE. Just to recapture it little bit. Here is an expression 

- a plus b and here is the same expression a plus b again and the question is, can we use 

the computation of a plus b in this basic block 1 and avoid re-computation of a plus b in 

basic block 4? Under certain circumstances it is possible (Refer Slide Time: 00:37). 

So please observe that, the expression a plus b is not completely available at this point 

(Refer Slide Time: 01:00). It is available partially along this path but, it is not available 

along this path. That is why this is a partial redundancy; it is not a full redundancy. If it is 

full redundancy, we can simply apply global common sub expression elimination but, 

since it is partial redundancy, we have to insert a computation h equal to a plus b along 

this arc by breaking it. 



Now, the expression a plus b is fully redundant at this point, it is available along this path 

and also this path. We can replace this a plus b here by h (Refer Slide Time: 01:38); 

where h is the variable you were know, storing the value of a plus b along these two 

paths. 

(Refer Slide Time: 01:50) 

 

Now, we were looking at properties of expressions at a point. So availability is a well-

known property. We already have learnt about it, so it says computed along all paths 

reaching p from the start node with no changes to operands. 

Partial availability says, computed along at least one path. So, that is the difference not 

all paths only at least one path. Anticipability, we have studied this as well under very 

busy expressions, computed along all paths starting from p to the end node. So it is 

useful later on, with no changes to operands. Partial anticipability would be computed 

along at least one path from p to the end of the flow graph. 



(Refer Slide Time: 02:41) 

 

Here is an example of both: so in a and b, in this two figures (Refer Slide Time: 02:50), a 

plus b is partially available at entry to 4. Here it is partially available because from here 

you can use this path and it becomes partially available and for this point 4 we can use 

this path and it is partially available, it is not fully available in either of that. 

In a, a plus b is partially anticipable at exit of 1. So exit of 1 is here, so if we take this 

path - it is computed and if we take this path - it is not computed. So that is why it is 

partially anticipable and in figure b; a plus b is anticipable at exit of 1 again; so is fully 

anticipable because from here it does not matter there is only one path to take and then 

that path a plus b is computed. 



(Refer Slide Time: 03:34) 

 

There are more expression properties: one is safety - this is very important for us. It is 

defined as either available or anticipable at p and safe partial availability is you take the 

path of availability and from the last computation of the expression to p all the points 

must be safe. 

Remember, for safe partial availability you do not have to look at the path from the start 

node to p, and make sure that all these are safe; no, that is not the point. Point is, from 

the last computation of the expression to the point p and the safe partial anticipability is 

similar, all points on the path of anticipability from p to the first computation of the 

expression are safe. What is a safe partially redundant computation? It must be locally 

anticipable that is computed within the basic block and safe partially available at the 

entry to the node. 



(Refer Slide Time: 04:39) 

 

Let us look at some examples. So, a plus b is safe partially anticipable at entry to 3, so 

the dark spots are all safe points. Let us see, why they are safe. 

Safety is either availability or anticipability; so at this point, it is safe because it is 

available, it is computed here and it becomes immediately available at this point. So, we 

do not have to worry about anticipability. Of course, it is not anticipable, it is only 

partially anticipable. The same is here, a plus b is computed here and it is available right 

here (Refer Slide Time: 05:10). 

At this point (Refer Slide Time: 05:14), it is available along these two paths, so it is 

available. At this point same thing, it is available along both the paths and at this point it 

is available along both the paths and of course, it is anticipable also. At this point again, 

it is available along all the paths. 

So even though, anticipability is not true in many cases, the availability makes these 

points safe but, remember this point is not really consider we do not have to worry too 

much about this particular point (Refer Slide Time: 05:50). Even this will be safe, simply 

because even though availability is false, the anticipability is true along both this paths; it 

is being computed, so this point will also be really safe. 

Now in figure b, a plus b is parse safe partially available at entry to 4; so all these points 

are safe, now a plus b is partially available because of this point, this is the first 



computation of the expression; along this path of safety and all these points are safe from 

here this, this, this and this (Refer Slide Time: 06:26) and therefore, it is safe partially 

available at entry to 4. 

(Refer Slide Time: 06:42) 

 

Here is an example to show, what is not safe partially available. So, a plus b is not safe 

partially available at entry to 4. Take this example; the computation here from the 

previous example is missing (Refer Slide Time: 06:56). Here, this point is safe because 

of availability but, this point is not safe because neither available, nor anticipable; only 

partial availability and anticipability is show at this point. 

This point is similarly unsafe but, this is safe because anticipability is true right here, the 

expression is being computed, but we want all the points from this first computation to 

this point. All these 4 points to be safe, they are not; therefore, this expression is not safe 

partially available at entry to 4. 

In the same figure, it is not safe partially anticipable at exit of 1. So exit of 1 and then the 

computation is here; so, all these points should have been safe, they are not and 

therefore, it is not safe partially anticipable either. 

In figure b, a plus b is safe partially redundant in 4. So, this computation is safe partially 

redundant, it is locally anticipable (Refer Slide Time: 08:00); so it is computed locally 

and safe partially available along this path. So, it is safe partially redundant. 



(Refer Slide Time: 08:14) 

 

There are some special computations in a basic block that we need to take note. One of 

them is the first computation and the other one is the last computation. The first 

computation, as the name indicates is the computation before the first modification of 

operands from the top. We have not modified the operands, they take values which were 

given to them before and then you evaluate the expression. 

The last computation in the basic block i is last computation after which no modification 

of operands takes place; so you do not modify them, the same value is going to be 

available at the output of the basic block. 

So, all the local redundancies are assumed to have been eliminated already; so we will 

see this very soon. Hence there exist at most, one FIRST and one LAST computation for 

a basic block, all other computations of the same expression or in between these two 

computations and are irrelevant. 



(Refer Slide Time: 09:25) 

 

Here is a pictorial explanation of what I just now told you, x equal to a plus b is here, 

then there are no modifications to a and b, then you have y equal to a plus b. Such a 

situation cannot arise simply because now, this a plus b is a common sub expression; we 

can use x here, so we are assuming that local CSE has been carried out. This situation 

will never arise; we would have added actually y equal to x here. 

Take the other situation, you have x equal to a plus b, then you have modified a and b, 

then you have z equal to a plus b another computation of a plus b, again you have modify 

a and b, then you have y equal to a plus b, third computation of a plus b. 

What is relevant was just, x equal to a plus b and y equal to a plus b. The reason is before 

this a plus b operands are not modified and after this a plus b operands are not modified 

(Refer Slide Time: 10:26). So, this expression is anticipable here and this expression is 

available at this point and in-between if there is a computation we need to do it, we will 

have to evaluate a plus b as many times as necessary because operands have been 

modified. That is why these are not relevant to us, only the first and the last first 

computations are relevant to us. 



(Refer Slide Time: 10:51) 

 

Here is our algorithm in an informal manner, it identifies all the safe partially redundant 

computations and makes them totally redundant by suitable insertions. What are these 

suitable insertions? We saw an example before, x equal to a plus b was replaced by h 

equal to a plus b and x equal to h and along an arc, and we broke the arc and introduced a 

computation. 

First step is we need to compute several predicates, we will see these - AVi is 

availability, ANTi is anticipability, SAFEi is safety, SPAVi is safe partial availability, 

SPANTi is safe partial anticipability, at the entry and exit points of all nodes. The 

difference here, from the previous dataflow analysis is we have actually one expression 

and a bit vector of basic blocks for that expression. 

At the entry and exit point of the basic block, we are going to compute these properties. 

So, one bit for each basic block and one vector for each expression mark all points which 

have both SPAV and SPANT true. So, safe partial available and safe partially anticipable 

points are all marked and consider the paths formed by connecting such adjacent marked 

points. 

We are going to look at the path and all these points have will be safe; that is because of 

this guaranty so safe SPAV and SPANT. We connect the adjacent points form the path 

but, all this is we are not going to do it in the algorithm, we are going to compute the 

predicates directly but, this is the conceptual understanding. 



The insertion points are just before last computation in starting points of these paths and 

then insertion edges are those that enter the junction nodes on these paths. It is as simple 

as that, replacements are always for the last and first computations, in the starting and 

ending points of these paths. 

(Refer Slide Time: 13:11) 

 

Let us demonstrate what we are doing. We say that a plus b safe partial redundant in 4, in 

this case. This is the path from the first computation of a plus b to this particular 

expression a plus b (Refer Slide Time: 13:28). All these points are safe, this is the path 

that we are talking about and this is the first point on the path and this is the last point on 

the path. In this, we identify the last computation in this basic block, so that happens to 

be, this a plus b and this of course is the first computation in the last basic block. 

So, because all these points are safe, we can replace this computation by x equal to h 

after we introduce h equal to a plus b, rest remains the same. We also break this arc, this 

is the arc that enters this junction, this is at the junction, so it is entering this path (Refer 

Slide Time: 14:15); so we have to break this particular arc and introduce h equal to a plus 

b. 

Now, this a plus b will be replaced by h, because h has the value of a plus b. This is 

precisely what we are talking about, replacements for last and first computations in the 

starting and ending points of these basic blocks. 



(Refer Slide Time: 14:43) 

 

Let us look at the details of the algorithm little more. Now, we define what is 

availability, anticipability, etc in the form of dataflow equations; before that some local 

basic block properties have to be understood. For example, what is transparency of an 

expression in a basic block? This is a predicate, it is true for an expression in a node i, if 

its operands are not modified by the execution of statements in node i. 

(Refer Slide Time: 15:25) 

 



Here is a picture, no assignments to a and b. So, a plus b supposed to be the expression 

under consideration; no assignments to a and b, so the expression value cannot be 

modified in anyway. 

(Refer Slide Time: 15:39) 

 

What is locally available or locally computed expression? COMPi that is the property;. 

True if there is at least 1 computation of the expression in i and no modification of the 

operands takes place during and after the computation. 

(Refer Slide Time: 15:59) 

 



This is the situation (Refer Slide Time: 16:00), x equal to a plus b and then there are no 

assignments to a and b after this and x cannot be a or b otherwise, x is being modified by 

this assignment itself. This is computed, transparency to an expression locally computed. 

So, after this computation a plus b is available at this point, at the output of the basic 

block. 

(Refer Slide Time: 16:27) 

 

What is locally anticipable property? ANTLOCi for a basic block i. It is true, if there is at 

least one computation of the expression in i and no modification of the operands takes 

place before the first computation of the expression. 



(Refer Slide Time: 16:48) 

 

There are no assignments to a and b here, in this case that is not important. In the case of, 

COMP there could have been assignments to a and b before x equal to a plus b for 

transparency none at all but here, there are no assignments to a and b and then you have 

x equal to a plus b. That means, at this point this is anticipable, no modifications to a and 

b. So, this expression a plus b is anticipable, I can say anticipability is true; that is why it 

is a locally anticipable property. 

(Refer Slide Time: 17:24) 

 



Then we have the dataflow equations: availability - AVIN and AVOUT at the input and 

output of the basic blocks. So AVIN is false, if it is the start block, this is as before for 

the start block availability of no expression is really true, no expressions are available at 

the entry block, input of the entry block, and then the AVIN at any other input point of 

basic block, you take the AVOUTs of the predecessors and do a AND operation. This is 

similar to the intersection operation in the available expression analysis problem. 

Here, there is a slight modification, we are computing the properties of a single 

expression with respect to many basic blocks whereas, in the other case we were looking 

at the input and output points of basic blocks and computing how many expressions 

available etc. 

So, availability of the predecessors is seen here. Why is that we are looking at AND 

operation on the predecessors? Well, availability says, it must be available along all 

paths that is why the AND operation is necessary here. 

(Refer Slide Time: 19:17). 

 

What about the availability at the output point of a basic block? That is very easy, it is 

either computed in the basic block or it is available from the top and not modified. That 

is easy to see here, it is computed in the basic block and then of course, COMP is true 

implies there are no modifications here. At this point (Refer Slide Time: 19:26), the a 

plus b is available or if it is available from the top and not modified at all, then also a 

plus b will be available here. So, these are the two situations that this handles. 



(Refer Slide Time: 19:30) 

 

What about anticipability? For a basic block i, it is false if it is the end block. This is very 

similar to that, very busy expressions; so the end block. Otherwise, you look at the 

successors of the basic block and take the AND operation of the ANTIN values. Why are 

we taking AND operation of the ANTIN values? We are looking at the successors, so 

there may be many successors like that and then all these successors actually must have 

anticipability true; otherwise anticipability will not be true at the output point of i, along 

all paths there must be anticipability that is why you want the AND operation. 

(Refer Slide Time: 20:37) 

 



(Refer Slide Time: 20:43) 

 

What about ANTINi? It is locally anticipable, so that means here, a plus b is computed 

and there are no assignments to a and b, so locally anticipable at this point or anticipable 

at the output point of i and not modified in the basic block. 

(Refer Slide Time: 20:50) 

 

So, anticipable at this point and not modified makes it anticipable at this point also 

(Refer Slide Time: 20:56), that is what we mean. Then safety is, either available or 

anticipable both for input and output of the basic block. 



(Refer Slide Time: 21:07) 

 

Now, we have safe partial availability SPAVINi; this is false if i equal to s of course, 

starting point as before, in the case of AVIN or if the input point of i is not safe, because 

we also have safety as another parameter i equal to s or SAFEIN not of SAFEINi. In both 

cases, SPAVIN will be false and the other part for other nodes it is the OR operation, 

sigma of the predecessors of the block i. Take all the predecessors j of the block i, take 

the OR operation on the SPAVOUT values and that gives us SPAVIN. 

(Refer Slide Time: 22:16) 

 



In the previous case here, for AVIN we look at the predecessors but, we looked at an 

AND operation whereas, here we are looking at the OR operation. The reason is, we 

want partial availability that means any one of the paths will do that is why this is OR 

operation. 

SPAVOUT is false, if the output point of the basic block i is not safe. Otherwise, it is 

either computed or available from the top and transparent, this is as before. The safe 

partial anticipability at the output point of i is similar, it is false if i is either the end block 

or the output point is not safe. In other cases, again you take the union, the rather the OR 

operation of SPANTINj; where j are the successors. In the previous case, we took 

successors but, we took AND operation. In this case, again we take OR operation 

because we are looking at partial anticipability; any one of the paths will do, that is why 

OR operation. 

SPANTIN is simple, false if the input point is not safe. Otherwise, it is locally 

anticipable or anticipable at the output point and not modified. So, this is as in this case 

(Refer Slide Time: 23:39), so not much difference between these two. 

(Refer Slide Time: 23:43) 

 

What is safe partial redundancy? There are again two points, which we need to keep 

track of: one is the FIRST at the entry of i and the LAST. FIRST and LAST 

computations need to be considered specially. 



For the FIRST computation, in the basic block i, at the entry of i safe partially redundant 

i f, because it is the FIRST computation we are looking at it as i f, is locally anticipable 

and safe partially available at the input point. This is safe partial redundancy and LASTi 

when it is distinct from FIRSTi cannot be safe partially redundant because the 

computations of the expression between these makes ANTLOCi false. 

(Refer Slide Time: 24:53) 

 

So, we have the FIRST and LAST computation here (Refer Slide Time: 24:53). We are 

really looking at FIRST and LAST being very different. So, if they are same, there is no 

problem at all; if they are different that means, after the first computation there have 

been modifications of the operands. 



(Refer Slide Time: 25:46) 

 

Therefore, this computation needs to be present; this is not at all redundant whereas, this 

can be redundant because there could be something available from the top. So, if FIRST 

and LAST do not coincide that means, there are modifications of a and b in-between and 

therefore, this last computation actually cannot be seen as redundant computation of and 

replace with some variable which stores a plus b here, we have to do a fresh computation 

of this again. That is what this really saying, so cannot be safe partial redundant because 

computations of the expression between these make ANTLOCi false. 

Now, what is total redundancy? Total redundancy means locally anticipable and 

available from the top. That is very easy to understand and then for the last i computation 

it is computed in the basic block and available just before that particular point p; where 

the last computation is involved. 

Total redundancy allows us to do common sub expression elimination and that is 

precisely what happens, every safe partial redundant computation is converted to a 

totally redundant computation and then CSE happens to get applied there. 



(Refer Slide Time: 26:40) 

 

Isolatedness is not a very important property for us today, because it is only needed for 

proofs but, we will just look at it and understand. A computation is isolated if it is neither 

safe partially available nor safe partially anticipable at that point. This is not needed for 

us so we will skip the description of this. 

(Refer Slide Time: 27:03). 

 

Let us understand the various predicates; we have seen so far the various dataflow values 

availability, anticipability, safe partial availability, safe partial anticipability and then 

safe partially redundant computation etc. 



Now, the main task is to compute the predicates which tell you whether the computation 

has to be h equal to a plus b has to be inserted. 

(Refer Slide Time: 27:42) 

 

(Refer Slide Time: 27:48) 

 

Let me give you an example. Here is z equal to a plus b, if we replace this then, z equal 

to a plus b would be replaced by h1 equal to a plus b and then z equal to h1. We call this 

as insertion of a new computation and this has replacement. For example, x equal to a 

plus b in 1b has been replaced by x equal to h1. Again, this computation is inserted by 

breaking the edge, so this is an insertion on the edge (Refer Slide Time: 28:21), h1 equal 



to a plus b and again, this is also a computation inserted on the edge by breaking it. So, it 

is h1 equal to a plus b; whereas this m equal to a plus b is only a replacement and then a 

b are modified and n equal to a plus b recompute a plus b. 

Here observe that, there is another variable h2, because there is a new computation this 

cannot take to be the same as m equal to a plus b. The value of a plus b here and here are 

different (Refer Slide Time: 28:55), we have to do a recomputation of a plus b and that is 

done in the different variable h2. So, h2 equal to a plus b is an insertion and n equal to h2 

is a replacement. This y equal to a plus b is replaced by y equal to h2. 

(Refer Slide Time: 29:14) 

 

This is what we mean, so there is an insert i predicate which says, should I insert h equal 

to a plus b in this block? In place of just before the last computation in basic block i. 

Remember ,we are going to do an insertion for the LAST computation and we are going 

to a do only a replacement for the FIRST computation, that is very clear in this example. 



(Refer Slide Time: 29:41) 

 

Here, FIRST and LAST computations are different, so for this computation we have 

done a replacement and for this computation we are doing an insertion (Refer Slide 

Time: 29:50). In this case, FIRST and LAST computations are identical it is the same. 

We are doing both insertion and replacement. In this case also, FIRST and LAST 

computations are identical but, we do not need an insertion for because the insert 

predicate will be false but, the replacement is been done. 

(Refer Slide Time: 30:13) 

 



Here is the INSERT predicate, INSERTi equal to COMPi dot - that is AND operation - 

SPANTOUTi safe partially anticipable OUTi then AND with an OR operation, TRANSPi 

not of TRANSPi plus not of SPAVINi - safe partially available IN. 

This is not understandable straight away. Let us look at an explanation to understand 

this. COMPi says expression should be computed in the basic block i of course, a and b 

should not be modified later. Then SPANTOUTi it says, expression should be useful 

later, so there is a computation of that expression later on. Safety is always oven through 

the entire predicates, so everything is safe, safe etc. 

So, leaving out that safety, expression should be useful later, is what anticipability is all 

about. Then this AND operation, then this predicate with OR TRANS not of TRANSPi is 

operand should be modified in i and not of SPAVINi says OR expression should not be 

available from the top or above. 

Let us see, why this makes sense. So expression should be computed in i; obviously, if 

we are not computing something there is no way you can insert and replace anything 

there; so, that is why computation is necessary. If you have x equal to a plus b then, i can 

insert a computation a h equal to a plus b, if there is no computation of a plus b in that 

block, there is nothing to insert. Expression should be useful later, if this happens to be 

the last expression and there is no use after that expression later on. 

Then there is no point in inserting h equal to a plus b and replacing x equal to a plus b by 

x equal to h; that is why, anticipability later on is very important for us. Then this says, 

operands should be modified in i OR operand expression should not be available from 

the top. 

So, if the operands are not modified in i then, it is also available from the top, whatever 

is available from the top will just pass through; there is no need to actually compute that 

a plus b again. So, insertion need not be carried out but, if the operands are modified in 

the basic block then, there is a need to recompute that expression and that is why, this not 

of TRANSPi make sense. 

If the expression is not available from the top either then also, we need to compute that 

expression; you cannot simply take a value which already exist there isn’t anything. This 

INSERTi is true only for the first node on the path and those intermediate nodes where 



the operands of the expression are modified and the expression is recomputed. That is 

taken care of by this part; the first node is taken care of by these things approximately, 

not exactly. 

(Refer Slide Time: 34:04) 

 

Let us look at an example, here is the node 1a, you have z equal to a plus b. As I already 

told you, here is a plus b and then modification. This part is a second expression 

computation of a plus b, so let us just look at this part first. 

This is computation beginning and this is the usage and here is another usage in-between, 

so all these points are safe. Safety is very easily computed, so available here, this is 

anticipable here, available here and anticipable here (Refer Slide Time: 34:36), so for 

different reasons all these points are safe. 

For this first point, the FIRST and LAST computations go inside, so INSERTi is true; 

then the replace is also true. For this point, this is an intermediate computation, now we 

get this value from here (Refer Slide Time: 35:05); there is no need to compute this value 

again provided we break this edge. That is why for this particular case, assuming that, we 

break this edge, this 1b INSERTi is false and replacement happen to be true. We are only 

going to do a replacement; if we insert something here, it becomes total fully available 

and then we have this a plus b, this is the FIRST computation in this block. 



For this, INSERT3 it is true and replace is also true, but the insert part is for this LAST 

computation and not for the FIRST computation. For the first computation, it is only the 

replacement that we look at the 3F that is true; we are not going to do any insertion for 

the FIRST computations. We always do the insertions for the LAST computation; 

observe that here, for the last computation. 

(Refer Slide Time: 36:15) 

 

This will be replaced by m equal to h that can be seen here (Refer Slide Time: 36:14), h1 

equal to a plus b, z equal to h1, so insertion and then replacement. Here we break this 

(Refer Slide Time: 36:23), we break this also and then m equal to h1. Why this is 

necessary to be broken? because otherwise, availability will be pass along on this part. 



(Refer Slide Time: 36:37) 

 

(Refer Slide Time: 36:56). 

 

Let us look at the insertion on an edge; this is true, if a computation should be inserted by 

splitting the edge i j. This is the one I was talking about sometimes ago. These are the 

edges which come into this path, the safe path and those are the once we need to be 

broken. This edge is coming into the safe path, this edge is coming into the safe path; so 

both these need to be broken (Refer Slide Time: 37:07). 



(Refer Slide Time: 37:12) 

 

(Refer Slide Time: 37:37) 

 

When is INSERTij true? It is true, if a computation should be inserted by splitting the 

edge ij and INSERTij is not of SPAVOUTi dot SPAVINj dot SPANTINj. Let us 

understand what this is. If there is an edge, let us look at this example again. Let us say 

we take this edge, we are going to do this computation for all edges and find out that it is 

not necessary to break this or this and so on and so forth; only for these 2 we need to 

break them.  



So, this is i and this is j (Refer Slide Time: 37:57). It says INSERTij not of SPAVOUTi, 

in other words, here it should not be safe partially available from the top. If it is already 

available from the top, there is a need to insert something here that can be used, so safe 

partial availability is false at this point. 

SPAVINj this j point, the computation must be partially available from another path; 

along this path it is not available but, from along another path it should be available; if it 

is not available along this path also there is the point, there is nothing to be done at all, it 

is partially available, so we need to break this and make it fully available. 

Then it says SPANTINj, at this point the computation must be done later on, it should be 

useful later on, expression should be use later, it is recomputed later. Again, if there is no 

recomputation why should we insert anything here? For example, this is being computed, 

it is recomputed, this is one computation, and this is another computation. Along this 

path it is partially available; along this path a plus b is not partially available at all. We 

need to break this edge and then insert h equal to a plus b. 

The same is true along this part have this edge as well. Here, it is not safe partially 

available, along this path it is safe partially available and at this point it is safe partially 

anticipable, so we break this edge. So that is what, these three really mean. 

(Refer Slide Time: 39:35) 

 



(Refer Slide Time: 39:38) 

 

When is a replacement to be done? So, replacement of FIRST and replacement of LAST 

- if and il. It is true if the FIRST respectively, LAST computation should be replaced. 

REPLACEif is ANTLOCi SPAVINi plus TRANSPi dot SPANTOUTi. Let us see what 

this is, when do you replace the first computation? locally computed there is the first 

computation itself, that is obviously true. 

Hence, SPAVINi available from the top, that is why we want to replace it by x equal to 

h. Otherwise, it is useful later on and of course, not modified. So, either this or that, one 

of these two most obviously is true. Locally computed make sure that, we have the 

computation locally available and then partial availability from the top or usefulness later 

on, one of these must be satisfied; then we can actually replace the FIRST computation 

by x equal to h. 



(Refer Slide Time: 41:15) 

 

The LAST computation can be replaced, provided it is computed in the block and then 

very similar useful later on, or available from the top and not modified. Even though, 

predicates look a bit difficult it is very easy to look at the diagram and then see what is 

happening. 

Here both the replacement is and insertions are true (Refer Slide Time: 41:22). Here only 

replacement is true and only replacement is true, here both insertion and replacement and 

here only replacement. That is how; these predicates really give you the value. For 

example, why should we replace this? It is available from the top. What about this? It is 

going to be use later on and we would have inserted something just now. That is why 

these need to be replaced. 
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What about this (Refer Slide Time: 41:54)? again available from the top. We are going to 

break this and make it available; that is how these replacements happen. 

Now, let us take a slightly bigger example and see how this works? This has many loops 

and many paths and so on and so forth and a plus b is again the expression (Refer Slide 

Time: 42:15). Let us look at each of these properties one by one: these are local 

properties – ANTLOC, COMP, and TRANSP. So, ANTLOC locally anticipable is true 

at 2 4 7 8 9. Why is it true here? So a plus b here, at this point it is true. What about 4? 

At this point a plus b is computed here. 

What about 7? Same thing, this is 7 so a plus b is computed here. What about 8? Again a 

plus b is computed right here so it is true here (Refer Slide Time: 43:00). What about 9? 

Again a plus b is computed here. So, COMP is true at the 2 4 7 and 9. In 2 because a plus 

b is here and then not modified later on; 4 a plus b is here not modified, then 7 a plus b is 

here not modified and 9 a plus b is here and not modified. Here it is not true because a 

plus b is here but, a is modified (Refer Slide Time: 43:24). 

Similarly, TRANSP these all are empty blocks so nothing much happens, no 

modification here (Refer Slide Time: 43:34) but there is modification here. There is 

modification, no modification, no modification. So, except for 8 and 2 all others are 

transparent. 



AVIN is phi because expression a plus b is not available at the entry point of any basic 

block. Here it is not available (Refer Slide Time: 43:54), easy to see here, it is not 

available because there is nothing here, here it is not available because there is nothing 

here and again this point, this point, all these there is partial availability but, there is no 

availability at the entry point. 

AVOUT is true for 2 4 7 9. So, AVOUT is true here because available of the low 

computation, here also, here also and then 4 at this point also available. 

Anticipability is true at the input points of 2 4 5 6 7 8 9. Why is it true here? Because a 

plus b is computed right here, let us the take 7, again true because a plus b is computed 

right here and 9 also the same thing.  

Safety is true for 2 4 5 6 7 8 9 because safety says either available or anticipable. In most 

cases, local anticipability is true even though availability is not true. For the output 

points 7 for example, availability is true, even though anticipability is also true. At this 

point 9 the availability part is not true, only partially available, but anticipability 

becomes true. 

Safe partial availability is similar, this is a tricky one, and others are very easy 4 5 and 8 

SPAVIN is true. Let us take the input point of 4. Why is safe partial availability true at 

the input point of 4? It is not the path alone that matters, if you take only the path partial 

availability, we can always trace this path like this and then it is path of availability. 

When you look at safe partial availability, you must make sure that from the point of 

computation to this point, all the intermediate points are safe. That means, if we consider 

this as the computation which is available partially at this point.  

We have to make sure that this point (Refer Slide Time: 46:18) this point, output of 3, 

input of 5, output of 5 are all safe, but unfortunately 3 input and output are not safe. 

Neither available, nor anticipable, so you can go out straight away. 

Safe partial availability says, from the point of computation to the point under 

consideration. We are going to take this as the point of computation (Refer Slide Time: 

46:46) that is the output of 4, go through this part 5, come out and then go to input of 4. 

This is the path of availability that will be consider to make sure that safe SPAVIN of 4 

is true. 



So, it is computed here and then brought back; that is say partial availability again. This 

is true for this path also, I can always take this path like this and then like this (Refer 

Slide Time: 47:14) compute and then go out and then come again, so that is the path. 

Since, we are going to take from the computation point to the point under consideration 

we need to consider only this path. So, output of 4, input of 5, outputs of 5 all these are 

safe. So, SAFEIN SAFEOUT has 5 and 4 no problem. 

SPAVOUT is heavy straight forward; let us take 5, SPAVOUT of 5 is true because I get 

something here and this is transparent. Of course, safety is true for all these blocks. 

SPANTIN is simple because there are too many blocks here. 

Let us take, SPANTOUT of say 6. We are considering block 6, then output point of 

block 6. It does not matter, how we want to go out; this is the only path available to us; a 

plus b is computed here, so anticipability becomes true; this so far as safety etc. 
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Now, what about insertion and replacement? In fact, in the next slide, this cannot be 

neither replacing, nor used as redundant computation. We have to break this edge and 

insert a computation here. This computation gets a replacement (Refer Slide Time: 

48:48) this computation gets both a replacement and an insertion, here this gets a 

replacement but, there is nothing we can do for this computation either, why? See the 

point is, if you look at this edge, this is the critical edge, so at this point, we do not have 

safe partial availability and at this point, we have safe partial availability. This is the 

INSERTij is safe partial availability of this point is false, this point is true and SPANTINj 

is also true at this point. 

This is the critical edge when we need to break it but, the immediate question will be 

breaking this is fine, if I break this edge here, then I am inserting an a plus b here and 

that is also all my problems, it makes it available for everything that goes out. So I can 

replace this (Refer Slide Time: 49:53) I can replace this, I can replace this, I can replace 

this also, I cannot replace this because a is modified of course at this point. 
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So I can replace all these by inserting a computation right here. Why we are not doing it? 

Why should we not split the edge 1 3 and replace the computation h equal to a plus b? 

Why only on the edge (3, 5)? The answer is it is not safe. The path 1-3-10 had no 

computation of a plus b before transformation and by placing a computation on the edge 

1-3 we are introducing 1. 
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So, 1, 3 and 10 had no computation. Whereas, if we introduce 1 here this gets 1 

computation and this becomes unsafe. Whereas, if we introduce 1 here, this already had a 

computation for example, if you had taken this path it already had this computation, 

there was no problem. That is the reason why we insert the computation here and not at 

this point and I cannot replace this a plus b by a previous computation because a is being 

modified here. So, that is why it fails for this point as well. 

That is how, we do the computations and this is the inside for, why certain computations 

are replaced? Why are adjust broken? Etc. 
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The final solution is something we already said, so let us not waste time there. There are 

certain correctness results that we need to be aware of. So, couple of lemmas and 

theorems, we are not going to prove them but, let us state them. 

 Lemma 1 says all insertions of computations corresponding to the transformation are 

done at safe points. By definition of that insert and INSERTij etcetera, we always use 

SPANTIN, SPANTOUT etc and SPAVIN, SPAVOUT. That means the transformations 

are automatically carried out at safe points, this is the intuitive explanation. 

Lemma 2 says, all candidate computations which are safe partially redundant, become 

totally redundant after insertions corresponding to the transformation. Something may 

become partially redundant but, it may not be safe partially redundant. In such a case, we 

will not be replacing it, only when safe partially redundant computation is available, we 

replace it. 

Lemma 3 says, only we have woven this safety completely into the insert and replace 

predicates and that is how this becomes true only for safe partially redundant 

computations. Only those candidate computations which would be redundant after 

insertions corresponding to the transformation are replaced. 
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This is again true because otherwise, we would have replaced this also, that is not true. 

They should become completely redundant, here this does not become redundant, a equal 

to c make sure that we have to recomputed this all over again. This does not become 

redundant because a equal to c is modifying a. 
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After the transformation, no path contains more computations of an expression than it 

contained before, so this is something we already assured. We did not want to insert 

anything by breaking this edge. Otherwise is would have had an extra computation. 
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Of course, not only that, when we inserted something here, we took away something at 

this point. 
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We had a computation here along this path by breaking this edge (Refer Slide Time: 

53:59) we introduce a computation here but, we took away that computation. 
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This computation remind, its only question of making it h equal to a plus b from x equal 

to a plus b. 
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The theorem says the algorithm performs partial redundancy elimination correctly; it is 

based on these lemmas. 
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The fifth lemma says, a candidate computation is not replaced by the transformation, if 

and only if it is an isolated computation, this is what I was saying. So, unnecessary 

computations are not really replaced. 
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In this case for example, this computation is not replaced; this computation is not 

replaced etcetera. 
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Theorem 2 says the transformation is computationally optimal. This is an important 

result that is, there does not exist any other correct transformation with less number of 

computations of an expression on any path. We have introduced the minimum number of 

computations necessary. We have not introduced even one extra computation, everything 

is optimal. 

Finally, the theorem 3 says the transformation is lifetime optimal that is, the 

transformation keeps the live ranges of the newly introduced temporaries to the 

minimum. 
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What this really says, is we have introduced these temporaries h, h1, h2, and etcetera. At 

the points where its live range becomes the smallest, I could not have pushed this to this 

point or this point without sacrificing either safety or any other property. 
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That is why this property becomes important, the theorem becomes important. It is 

lifetime optimal, so live ranges are kept to the minimum. 



So, this is an overview of the partial redundancy elimination algorithm with examples. 

We have not really proved any theorems, but I hope it has given you an insight into how 

the algorithm really works. Thank you very much; this is the end of the lecture. 


