Compiler Design
Prof. Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 12
Lecture No. # 20
Partial Redundancy Elimination

(Refer Slide Time: 00:19)

Partial Redundancy Elimination Transformation

Welcome to the lecture on partial redundancy elimination. In the last lecture, we looked
at an example of what exactly is PRE. Just to recapture it little bit. Here is an expression
- a plus b and here is the same expression a plus b again and the question is, can we use
the computation of a plus b in this basic block 1 and avoid re-computation of a plus b in

basic block 4? Under certain circumstances it is possible (Refer Slide Time: 00:37).

So please observe that, the expression a plus b is not completely available at this point
(Refer Slide Time: 01:00). It is available partially along this path but, it is not available
along this path. That is why this is a partial redundancy; it is not a full redundancy. If it is
full redundancy, we can simply apply global common sub expression elimination but,
since it is partial redundancy, we have to insert a computation h equal to a plus b along

this arc by breaking it.

Now, the expression a plus b is fully redundant at this point, it is available along this path
and also this path. We can replace this a plus b here by h (Refer Slide Time: 01:38);
where h is the variable you were know, storing the value of a plus b along these two
paths.

(Refer Slide Time: 01:50)

Properties of Expressions at a Point p

@ Al i‘.'.qlll'_r'
& Compidiod plong aif paths reacheng o from th star nodes
with no changes o opormnds
o Fartad avadabdity
a !:_.;_l::lll.::l.'-_l ARy T SRRl Gl |__'|I|' W L
& Anticipabifity
» Compuried along af paths Stk rig Boen o 10 1he and nooe
with no chanoss o opadands
o Parfiai anticipabilify

& Lompuled plong aifeas! one palh ingm p r:‘
¥

TH S Farte’ Helorserey | e

Now, we were looking at properties of expressions at a point. So availability is a well-
known property. We already have learnt about it, so it says computed along all paths

reaching p from the start node with no changes to operands.

Partial availability says, computed along at least one path. So, that is the difference not
all paths only at least one path. Anticipability, we have studied this as well under very
busy expressions, computed along all paths starting from p to the end node. So it is
useful later on, with no changes to operands. Partial anticipability would be computed
along at least one path from p to the end of the flow graph.

(Refer Slide Time: 02:41)

Partial Availability and Anticipability

Fig.(a) and Fig.ib) - 2+ s parially avalatde al enlry 1o 4
Fig.{a) - &+ b is parially anticipable at ext of 1
Fig.ib) - a + bis anticipaila at exit of 1

fman FLTS]

TH Srdard Pl Feviorsierey | e’

Here is an example of both: so in a and b, in this two figures (Refer Slide Time: 02:50), a
plus b is partially available at entry to 4. Here it is partially available because from here
you can use this path and it becomes partially available and for this point 4 we can use
this path and it is partially available, it is not fully available in either of that.

In a, a plus b is partially anticipable at exit of 1. So exit of 1 is here, so if we take this
path - it is computed and if we take this path - it is not computed. So that is why it is
partially anticipable and in figure b; a plus b is anticipable at exit of 1 again; so is fully
anticipable because from here it does not matter there is only one path to take and then

that path a plus b is computed.

(Refer Slide Time: 03:34)

Properties of Expressions at a Point p

ts an the path of availlabslity from e e

n al B exprasseon i 0 nee sale

wilicipable and sale parntially mvainble al he aniry

There are more expression properties: one is safety - this is very important for us. It is
defined as either available or anticipable at p and safe partial availability is you take the
path of availability and from the last computation of the expression to p all the points
must be safe.

Remember, for safe partial availability you do not have to look at the path from the start
node to p, and make sure that all these are safe; no, that is not the point. Point is, from
the last computation of the expression to the point p and the safe partial anticipability is
similar, all points on the path of anticipability from p to the first computation of the
expression are safe. What is a safe partially redundant computation? It must be locally
anticipable that is computed within the basic block and safe partially available at the

entry to the node.

(Refer Slide Time: 04:39)

Safe Partially Available/Anticipable Computation

A+ bris salé partially anhicipatie ab entry 1o 3
- r15 sale partally avalabée a1 aniry o 4

Let us look at some examples. So, a plus b is safe partially anticipable at entry to 3, so

the dark spots are all safe points. Let us see, why they are safe.

Safety is either availability or anticipability; so at this point, it is safe because it is
available, it is computed here and it becomes immediately available at this point. So, we
do not have to worry about anticipability. Of course, it is not anticipable, it is only
partially anticipable. The same is here, a plus b is computed here and it is available right
here (Refer Slide Time: 05:10).

At this point (Refer Slide Time: 05:14), it is available along these two paths, so it is
available. At this point same thing, it is available along both the paths and at this point it
is available along both the paths and of course, it is anticipable also. At this point again,

it is available along all the paths.

So even though, anticipability is not true in many cases, the availability makes these
points safe but, remember this point is not really consider we do not have to worry too
much about this particular point (Refer Slide Time: 05:50). Even this will be safe, simply
because even though availability is false, the anticipability is true along both this paths; it
is being computed, so this point will also be really safe.

Now in figure b, a plus b is parse safe partially available at entry to 4; so all these points

are safe, now a plus b is partially available because of this point, this is the first

computation of the expression; along this path of safety and all these points are safe from
here this, this, this and this (Refer Slide Time: 06:26) and therefore, it is safe partially
available at entry to 4.

(Refer Slide Time: 06:42)

Safe Partially Redundant Computation

A+ bris nol saka partialy availabie al eniry 0 4
d = 15 nod sake partialy anhicipabie at

F i+ bris sale partially redundant in 4

A
ig.ia
b

Here is an example to show, what is not safe partially available. So, a plus b is not safe
partially available at entry to 4. Take this example; the computation here from the
previous example is missing (Refer Slide Time: 06:56). Here, this point is safe because
of availability but, this point is not safe because neither available, nor anticipable; only
partial availability and anticipability is show at this point.

This point is similarly unsafe but, this is safe because anticipability is true right here, the
expression is being computed, but we want all the points from this first computation to
this point. All these 4 points to be safe, they are not; therefore, this expression is not safe
partially available at entry to 4.

In the same figure, it is not safe partially anticipable at exit of 1. So exit of 1 and then the
computation is here; so, all these points should have been safe, they are not and

therefore, it is not safe partially anticipable either.

In figure b, a plus b is safe partially redundant in 4. So, this computation is safe partially
redundant, it is locally anticipable (Refer Slide Time: 08:00); so it is computed locally

and safe partially available along this path. So, it is safe partially redundant.

(Refer Slide Time: 08:14)

Special Computations in a Basic Block /

e FIRST

Bop)
o LAST
& [ag compuinsion afler which no modification of operands
Enkos placn
@ Al local redundancies are assumed 10 have baan
sliminaled avaady

» Hanca, theré axisl al mos! one FIRST, and ona LAST,

& All alher comautabons o 1 SAMmd aXpresson arn iNg
bitwien hass two and ang irmghinvant 1o tha algor !|Ilm

PR friaed “wria Peiorerey | e

There are some special computations in a basic block that we need to take note. One of
them is the first computation and the other one is the last computation. The first
computation, as the name indicates is the computation before the first modification of
operands from the top. We have not modified the operands, they take values which were

given to them before and then you evaluate the expression.

The last computation in the basic block i is last computation after which no modification
of operands takes place; so you do not modify them, the same value is going to be
available at the output of the basic block.

So, all the local redundancies are assumed to have been eliminated already; so we will
see this very soon. Hence there exist at most, one FIRST and one LAST computation for
a basic block, all other computations of the same expression or in between these two

computations and are irrelevant.

(Refer Slide Time: 09:25)

FIRST and LAST Computations

R LRl]

(m modilcslons as=,
3@ and B A b= ..
¥ @b T el
am .
b=,
Nk h el as ik,
i P 3 AT y=a+b
o =]

wTied St 1o oo i i

to & a8, B
7=k e magl
il af] Dy

rm geb ﬂl
¥ -i-r:-n‘i oy ‘-4

(FEAT and LAAT 1
CORpLAT SN :‘

Here is a pictorial explanation of what 1 just now told you, x equal to a plus b is here,
then there are no modifications to a and b, then you have y equal to a plus b. Such a
situation cannot arise simply because now, this a plus b is a common sub expression; we
can use X here, so we are assuming that local CSE has been carried out. This situation

will never arise; we would have added actually y equal to x here.

Take the other situation, you have x equal to a plus b, then you have modified a and b,
then you have z equal to a plus b another computation of a plus b, again you have modify
a and b, then you have y equal to a plus b, third computation of a plus b.

What is relevant was just, X equal to a plus b and y equal to a plus b. The reason is before
this a plus b operands are not modified and after this a plus b operands are not modified
(Refer Slide Time: 10:26). So, this expression is anticipable here and this expression is
available at this point and in-between if there is a computation we need to do it, we will
have to evaluate a plus b as many times as necessary because operands have been
modified. That is why these are not relevant to us, only the first and the last first

computations are relevant to us.

(Refer Slide Time: 10:51)

Qutline of the Algarithm

Our PRE a gCllI"I!‘! danhfes all sale FHGE and makes tham
Iotally redundant by saiable insarticns
@ Compube the prochcates, AV, ANT, SAFE, SH&V;, and
SEANT, al entry and ol points of all nodes
@ Mark al points which have both SPAV and SPANT frue
and Consioar e palns ormed oy connechng Such
adiacent markad poins
@ insartion points: jusl before LAST in starting points of
thesa paths
@ inzoion edges: oo that enter unclion nodas on thase
paths

@ Replacements are lor LAST and FIRST computal m

e slart g fAnd anc Ly painks of these paths ﬁ

Here is our algorithm in an informal manner, it identifies all the safe partially redundant
computations and makes them totally redundant by suitable insertions. What are these
suitable insertions? We saw an example before, x equal to a plus b was replaced by h
equal to a plus b and x equal to h and along an arc, and we broke the arc and introduced a

computation.

First step is we need to compute several predicates, we will see these - AV; is
availability, ANT; is anticipability, SAFE; is safety, SPAV; is safe partial availability,
SPANT; is safe partial anticipability, at the entry and exit points of all nodes. The
difference here, from the previous dataflow analysis is we have actually one expression

and a bit vector of basic blocks for that expression.

At the entry and exit point of the basic block, we are going to compute these properties.
So, one bit for each basic block and one vector for each expression mark all points which
have both SPAV and SPANT true. So, safe partial available and safe partially anticipable
points are all marked and consider the paths formed by connecting such adjacent marked

points.

We are going to look at the path and all these points have will be safe; that is because of
this guaranty so safe SPAV and SPANT. We connect the adjacent points form the path
but, all this is we are not going to do it in the algorithm, we are going to compute the

predicates directly but, this is the conceptual understanding.

The insertion points are just before last computation in starting points of these paths and
then insertion edges are those that enter the junction nodes on these paths. It is as simple
as that, replacements are always for the last and first computations, in the starting and
ending points of these paths.

(Refer Slide Time: 13:11)

Partial Redundancy Transformation

Fig.(a) - &+ b5 sale parbally redundant in 4
[""-J bj - & = bris made lotally redundant by the new biock

Amg 2
LR -]
1| x=h

L Pt Moy | e

Let us demonstrate what we are doing. We say that a plus b safe partial redundant in 4, in
this case. This is the path from the first computation of a plus b to this particular
expression a plus b (Refer Slide Time: 13:28). All these points are safe, this is the path
that we are talking about and this is the first point on the path and this is the last point on
the path. In this, we identify the last computation in this basic block, so that happens to

be, this a plus b and this of course is the first computation in the last basic block.

So, because all these points are safe, we can replace this computation by x equal to h
after we introduce h equal to a plus b, rest remains the same. We also break this arc, this
is the arc that enters this junction, this is at the junction, so it is entering this path (Refer
Slide Time: 14:15); so we have to break this particular arc and introduce h equal to a plus
b.

Now, this a plus b will be replaced by h, because h has the value of a plus b. This is
precisely what we are talking about, replacements for last and first computations in the

starting and ending points of these basic blocks.

(Refer Slide Time: 14:43)

Local Properties

o TRANSP (Iransparency)
L |I for o oXpEessacn A nooe |, il 85 el ancks are not

Fradifsd by the axecuSon of stalemants in nods
o COMF, (kocally mnalabie
& Trum i there |5 nfenst omne oo punbon of T GRpe oSS
and no modicabon ol operands EBkes pieoe o
aller e comgarbalio
o ANTLOG (lecalty anhicipabla)
w True il thens is afe
and no modihcat
Ehr first compaitation

Let us look at the details of the algorithm little more. Now, we define what is
availability, anticipability, etc in the form of dataflow equations; before that some local
basic block properties have to be understood. For example, what is transparency of an
expression in a basic block? This is a predicate, it is true for an expression in a node i, if

its operands are not modified by the execution of statements in node i.

(Refer Slide Time: 15:25)

Local Properties

Here is a picture, no assignments to a and b. So, a plus b supposed to be the expression
under consideration; no assignments to a and b, so the expression value cannot be

modified in anyway.

(Refer Slide Time: 15:39)

Local Properties

o TRANSP, (ransparency)
& True for an DXEEFRECH W @ MO |, K B .":E'-""I":I""I i Bl
rrddfead By the axecubon ol SEMemMants i ndde
o LOMF; (Rocally mndlabile
F IS DR Jiel DOMDLADDGS O The GREpET
o modfication of operands takes place
aller Bhe compartalion
& ANTLOC, (locally anhcipabia)
» True if there is nf 0
ard Ao modihcat

vy Frst compaitadion

What is locally available or locally computed expression? COMP; that is the property;.
True if there is at least 1 computation of the expression in i and no modification of the

operands takes place during and after the computation.

(Refer Slide Time: 15:59)

Local Properties

AMTLOC

by ey i
1] N

Tm@sh

This is the situation (Refer Slide Time: 16:00), x equal to a plus b and then there are no
assignments to a and b after this and x cannot be a or b otherwise, X is being modified by
this assignment itself. This is computed, transparency to an expression locally computed.
So, after this computation a plus b is available at this point, at the output of the basic
block.

(Refer Slide Time: 16:27)

Local Properties

TRANSF, [transparancy)
True for an axpeassion ina node [, # 85 operands are not
rroafeed by 1he axecuon of SIMements i rodes
|BCANY M'nel Ak
i i thenrey 15 oSt ony compuiabon of the oxpe oS0 in
and no modiication of operands. takes plyoe during and
aifled B ¢ --'|'i-.|l I
& ANTLOC, (locally anticipabla)
& Trum il is nSeast ong computabon of the axpresson in

ard no modication al the opdnd o balces

ey Fest compnitatsn m
L=

What is locally anticipable property? ANTLOC; for a basic block i. It is true, if there is at
least one computation of the expression in i and no modification of the operands takes

place before the first computation of the expression.

(Refer Slide Time: 16:48)

Local Properties

ARMTLOE

Fo pamgrETrty
gk
Ko WG K

i 3 B et e Rk

There are no assignments to a and b here, in this case that is not important. In the case of,
COMP there could have been assignments to a and b before x equal to a plus b for
transparency none at all but here, there are no assignments to a and b and then you have
x equal to a plus b. That means, at this point this is anticipable, no modifications to a and
b. So, this expression a plus b is anticipable, | can say anticipability is true; that is why it

is a locally anticipable property.

(Refer Slide Time: 17:24)

Global Properties
Availability

[FALSE
oL \ Ty AVOUT
AVOUT, = COMP, + AVIN, TRANSP

Anticipability

[FALSE Ity
| Tl suscciy ANTIN, otherwise

ANTOLUIT

ANTIMN, ANTLOC, + ANTOUT,. TRANSP
-
|
SAFEIN AVIN, « ANTIN #
SAFEOUT, AVOUT, - ANTOLUT

Then we have the dataflow equations: availability - AVIN and AVOUT at the input and
output of the basic blocks. So AVIN is false, if it is the start block, this is as before for
the start block availability of no expression is really true, no expressions are available at
the entry block, input of the entry block, and then the AVIN at any other input point of
basic block, you take the AVOUTSs of the predecessors and do a AND operation. This is

similar to the intersection operation in the available expression analysis problem.

Here, there is a slight modification, we are computing the properties of a single
expression with respect to many basic blocks whereas, in the other case we were looking
at the input and output points of basic blocks and computing how many expressions

available etc.

So, availability of the predecessors is seen here. Why is that we are looking at AND
operation on the predecessors? Well, availability says, it must be available along all

paths that is why the AND operation is necessary here.

(Refer Slide Time: 19:17).

Local Properties

AMTLEX

by e e in

i] B B

Twash

What about the availability at the output point of a basic block? That is very easy, it is
either computed in the basic block or it is available from the top and not modified. That
IS easy to see here, it is computed in the basic block and then of course, COMP is true
implies there are no modifications here. At this point (Refer Slide Time: 19:26), the a
plus b is available or if it is available from the top and not modified at all, then also a

plus b will be available here. So, these are the two situations that this handles.

(Refer Slide Time: 19:30)

Global Properties

Avallability

| S
AVIN : rfh:: AVOUT
COMP, + AVIN, TRANSP
Anticipability
[FALSE it i

ANTOUT X '
ol | Tl sucai ANTIN, cthenwise

ANTIN, ANTLOC, + ANTOUT, TRANSP

SMFEIM AVINM, + ANTIM
SAFEOUT, AVOLIT, + ANTOUT

TH friad “arte Heliorsiarey | iy y

What about anticipability? For a basic block i, it is false if it is the end block. This is very
similar to that, very busy expressions; so the end block. Otherwise, you look at the
successors of the basic block and take the AND operation of the ANTIN values. Why are
we taking AND operation of the ANTIN values? We are looking at the successors, so
there may be many successors like that and then all these successors actually must have
anticipability true; otherwise anticipability will not be true at the output point of i, along

all paths there must be anticipability that is why you want the AND operation.

(Refer Slide Time: 20:37)

Local Properties

TH Sadard “arla Heioruierey | i

(Refer Slide Time: 20:43)

Global Properties

Avallsbility

i | FALSE Hi=g
AVIN I [l prpatsy AVOUT, otharwise
AVOUT COMF, &« AVIN, TRANSP

Anticipability
[FALSE iti - @

AMNTOLIT i
| Tl succi ANTIN, othensise

ANTIN, ANTLOC, + ANTOUT, TRANSP

SMFEIM AVIN, + ANTIN

SAFEOUT, AVOUIT, + ANTOUT

%r

TH frdad “arle Heviorerey | e

What about ANTIN;? It is locally anticipable, so that means here, a plus b is computed
and there are no assignments to a and b, so locally anticipable at this point or anticipable
at the output point of i and not modified in the basic block.

(Refer Slide Time: 20:50)

Local Properties

mnt AMTLOE
g
b B T
e it reedt = sl b e

ki wig B o @ and b e

(=X RN e 5wk

- o
@b

b 3 T ExprEEEen e SoSdaerl

TH frdard Farle’ Heviorsierwy | rais

So, anticipable at this point and not modified makes it anticipable at this point also
(Refer Slide Time: 20:56), that is what we mean. Then safety is, either available or
anticipable both for input and output of the basic block.

(Refer Slide Time: 21:07)

Global Properties

Sofe Partial evailability
" | FALSE i = 5or ~SAFEIN
T |}
AN | Tk ey SPAKOUT, otherwise

SRIVOUT [FALSE _ . r-saFEQUT
| COME SPAVIN,. TRANSF, otheryisa

Sale Partial anticipability

SPANTOUT [FALSE it i = @ or ~SAFEOUT
o i ¥ . SPANTIN, otharwise

G,
-

SPANTOUT, TRANSE, othares

SFANTIN

Now, we have safe partial availability SPAVIN;; this is false if i equal to s of course,
starting point as before, in the case of AVIN or if the input point of i is not safe, because
we also have safety as another parameter i equal to s or SAFEIN not of SAFEIN;. In both
cases, SPAVIN will be false and the other part for other nodes it is the OR operation,
sigma of the predecessors of the block i. Take all the predecessors j of the block i, take
the OR operation on the SPAVOUT values and that gives us SPAVIN.

(Refer Slide Time: 22:16)

Global Properties

Safe Partial availability

< | FALSE i | = 5 or ~SAFEIN
PAR |
sl | T2 SPMEOUT, otharwise

SPAVOUT, | FALSE il =SAFEQUT

| CAOHAE, -+ SFEANIN,. THANSE, othersse

Sale Partial anticipability

SRANTOUT | FALSE it { = & or ~SAFEQUT
it | CRANTIN. otharwisa

J FALSE if -5 F.ﬁl“

AN T

SEANTIN "’
SPANTOUT, TRANSE, athare ﬁ

In the previous case here, for AVIN we look at the predecessors but, we looked at an
AND operation whereas, here we are looking at the OR operation. The reason is, we
want partial availability that means any one of the paths will do that is why this is OR
operation.

SPAVOUT is false, if the output point of the basic block i is not safe. Otherwise, it is
either computed or available from the top and transparent, this is as before. The safe
partial anticipability at the output point of i is similar, it is false if i is either the end block
or the output point is not safe. In other cases, again you take the union, the rather the OR
operation of SPANTIN;; where j are the successors. In the previous case, we took
successors but, we took AND operation. In this case, again we take OR operation
because we are looking at partial anticipability; any one of the paths will do, that is why
OR operation.

SPANTIN is simple, false if the input point is not safe. Otherwise, it is locally
anticipable or anticipable at the output point and not modified. So, this is as in this case

(Refer Slide Time: 23:39), so not much difference between these two.

(Refer Slide Time: 23:43)

Global Properties

@ Sale Panial Redundancy

For FIRST; (ak entry ol i
SPREDLND ANTLOC, SPAVIN
& [AST, when & & distinct Bom FIRST,. canmat

partally redundant. besauss the compuial
il

sion babween these makes ANTLOC, lalse

Total Redundancy

& For FIRGT

What is safe partial redundancy? There are again two points, which we need to keep
track of: one is the FIRST at the entry of i and the LAST. FIRST and LAST

computations need to be considered specially.

For the FIRST computation, in the basic block i, at the entry of i safe partially redundant
i f, because it is the FIRST computation we are looking at it as i f, is locally anticipable
and safe partially available at the input point. This is safe partial redundancy and LAST;
when it is distinct from FIRST; cannot be safe partially redundant because the

computations of the expression between these makes ANTLOC; false.

(Refer Slide Time: 24:53)

FIRST and LAST Computations

o %= wth

a=,
(= modilicstions
£ & 40 B At b=
¥ E el e psh
am
Huch i)
Auis b e s
= b
b il Slbad Wide ¥
bt il CRE Furi Bashi
ETiEd gl The modriatidne
fo o s~ &, e
7w ek e maol
il at] Oy -
= 3D mnd f
F= kD e Midyan -r
{FOREAT ancd LAST 1
SO LET SR ﬁ

So, we have the FIRST and LAST computation here (Refer Slide Time: 24:53). We are
really looking at FIRST and LAST being very different. So, if they are same, there is no
problem at all; if they are different that means, after the first computation there have

been modifications of the operands.

(Refer Slide Time: 25:46)

Global Properties

@ Sale Panial Redundancy

w# For FIRST, iaf @nkry of i

SPREDLWD, - ANTLOC, SPEVIN
& [AST, when & & distinct Bom FIRST,. canmat be sals
partally redundant. bataiids the compirialaas of e

sian babween these makes ANTLOC, talse

Total Redundancy

& For FIRGT

Therefore, this computation needs to be present; this is not at all redundant whereas, this
can be redundant because there could be something available from the top. So, if FIRST
and LAST do not coincide that means, there are modifications of a and b in-between and
therefore, this last computation actually cannot be seen as redundant computation of and
replace with some variable which stores a plus b here, we have to do a fresh computation
of this again. That is what this really saying, so cannot be safe partial redundant because

computations of the expression between these make ANTLOC; false.

Now, what is total redundancy? Total redundancy means locally anticipable and
available from the top. That is very easy to understand and then for the last i computation
it is computed in the basic block and available just before that particular point p; where

the last computation is involved.

Total redundancy allows us to do common sub expression elimination and that is
precisely what happens, every safe partial redundant computation is converted to a

totally redundant computation and then CSE happens to get applied there.

(Refer Slide Time: 26:40)

Global Properties

@ [solatedness
A computation is isolaed, il it is neithar sale partially
avadable nor sale partially anficipable at that point
ISOLATED ANTLOGC, -SSPV, TRANSP, SPANTOUT

ISOLATED, = COMP, —-SPaNTOUT TRANSF, SPAVIN |

Isolatedness is not a very important property for us today, because it is only needed for
proofs but, we will just look at it and understand. A computation is isolated if it is neither
safe partially available nor safe partially anticipable at that point. This is not needed for
us so we will skip the description of this.

(Refer Slide Time: 27:03).

Predicates for Insertion

INSERT

o Trua if the poind just bedora the LAST computaton in block i
15 an mesarion poand

o Intorpratation of INSERT,
{axpr should be computed in §) AND | expr should be usai
faiev) AND ({opevands should be modified in § OR {expr
shaownd nol He svanalve Irom above])

Thisis possdnia only tor the fest node on tha path and
[hosa migrmedala nodes whgta 1he oparands of The expr
ara modied and The expr 1S recompuiod

INSERT, COMP. SPANTOUT,.| ~TRANSP, + ~SPAIN,)

edge [f,

INSERT;
» True if a computation should be insered by spitting I'J

INSERT; SPAVOUT SPAVIN, SP4M

TR feiad Farla Heioruerey | e

Let us understand the various predicates; we have seen so far the various dataflow values
availability, anticipability, safe partial availability, safe partial anticipability and then

safe partially redundant computation etc.

Now, the main task is to compute the predicates which tell you whether the computation

has to be h equal to a plus b has to be inserted.

(Refer Slide Time: 27:42)

Example 1

il Pl WS T BN DL BBEAT, = T.T(FeTj=T
cormg & T, rafkp = T REPLACE, = T fT.T)a T
mniting = T REPLACE, = T.[TsTF =T
va [ES IMSERT,, = T.T (RsF|a p
- REFLACE r-r41.-'r;.-1
- NEPLACE., = TTsT.T)= 1
1% | n = gaiy 4 MBERT 5= T.ET =1
MEEAT, =1.T.T=T
L MSEAT, = T.T [T=F=T
megeh 3 REPLACE, = T.[TsF T =T
e REFLACE, & T (Te T)= T

b=ild
MAERT, = F F.[TeF)=F

REPLACH, = T[T«EF =T

BRIAT = COMP, . BPANTOLT iFTRAHES + iRl W
o AT, s EPARGUT, EPAvN AT ! r
ERFLALE, v ANTLDE CAPAVE = TREKDF 1”«!"‘"%

I
BEFLLIE, o SOM®, (RFRANTOUT, + TRLWSF, P

T4 e b b |

(Refer Slide Time: 27:48)

Example 1

Let me give you an example. Here is z equal to a plus b, if we replace this then, z equal
to a plus b would be replaced by h1 equal to a plus b and then z equal to h1. We call this
as insertion of a new computation and this has replacement. For example, x equal to a
plus b in 1b has been replaced by x equal to hl. Again, this computation is inserted by

breaking the edge, so this is an insertion on the edge (Refer Slide Time: 28:21), h1 equal

to a plus b and again, this is also a computation inserted on the edge by breaking it. So, it
is h1 equal to a plus b; whereas this m equal to a plus b is only a replacement and then a

b are modified and n equal to a plus b recompute a plus b.

Here observe that, there is another variable h2, because there is a new computation this
cannot take to be the same as m equal to a plus b. The value of a plus b here and here are
different (Refer Slide Time: 28:55), we have to do a recomputation of a plus b and that is
done in the different variable h2. So, h2 equal to a plus b is an insertion and n equal to h2

is a replacement. This y equal to a plus b is replaced by y equal to h2.

(Refer Slide Time: 29:14)

Predicates for Insertion

INSERT
o Trua if the point just bedora 1he LAST computaton n block i
15 an nesarhion poand
o Interpratation of INSEAT,
{mxpr should be compuied in {) AND | axpr shouid be useiful
laiev) AND ({opevands should be madified in § OR {expr
shond nof He avanabve Irom aoove))
» This is possitle only for the first node on tha path and
K nigrmenale nodes whera 1he operandgs of The expr
are modifed and 1he expr 1S recompuied
INSERT, COMP SPANTOUT,.(~TRANSP, + ~SPAVIN))
INSERT
True if a computation should be insered by Splitting the
adge (1.

INGERT, SPAVOUT, SPAVIN. SPANTIN

TH frdas Farla ey | eeraior

This is what we mean, so there is an insert i predicate which says, should I insert h equal
to a plus b in this block? In place of just before the last computation in basic block i.
Remember ,we are going to do an insertion for the LAST computation and we are going
to a do only a replacement for the FIRST computation, that is very clear in this example.

(Refer Slide Time: 29:41)

Example 1

Here, FIRST and LAST computations are different, so for this computation we have
done a replacement and for this computation we are doing an insertion (Refer Slide
Time: 29:50). In this case, FIRST and LAST computations are identical it is the same.
We are doing both insertion and replacement. In this case also, FIRST and LAST
computations are identical but, we do not need an insertion for because the insert

predicate will be false but, the replacement is been done.

(Refer Slide Time: 30:13)

Predicates for Insertion

INSERT
il just batora the LAST compitatan in block i

» Interpratation of INSERT,
{ expr should be computed in) AND | axpr should be useiu
faier) AND [{opovands should be modified in § OR {expr
shownd nol He avanalne Irom aoowve)] |

w Thisis possinie only o the fesl node on he patih and
thase intermediate nodes where the cperands of the expr
are modited and the expr 5 recomputed

INSERT, COMP SPANTOUT,. ~TRANSP, + ~-SPAVIN.
INSERT

» True if a computation shoald be insered by spitling the

INSERT, SPAVOUT SPAVIN, SPANTIN

FH T b e P e R

Here is the INSERT predicate, INSERT; equal to COMP; dot - that is AND operation -
SPANTOUT; safe partially anticipable OUT; then AND with an OR operation, TRANSP;
not of TRANSP; plus not of SPAVIN; - safe partially available IN.

This is not understandable straight away. Let us look at an explanation to understand
this. COMP; says expression should be computed in the basic block i of course, a and b
should not be modified later. Then SPANTOUT; it says, expression should be useful
later, so there is a computation of that expression later on. Safety is always oven through
the entire predicates, so everything is safe, safe etc.

So, leaving out that safety, expression should be useful later, is what anticipability is all
about. Then this AND operation, then this predicate with OR TRANS not of TRANSP; is
operand should be modified in i and not of SPAVIN; says OR expression should not be

available from the top or above.

Let us see, why this makes sense. So expression should be computed in i; obviously, if
we are not computing something there is no way you can insert and replace anything
there; so, that is why computation is necessary. If you have x equal to a plus b then, i can
insert a computation a h equal to a plus b, if there is no computation of a plus b in that
block, there is nothing to insert. Expression should be useful later, if this happens to be

the last expression and there is no use after that expression later on.

Then there is no point in inserting h equal to a plus b and replacing x equal to a plus b by
x equal to h; that is why, anticipability later on is very important for us. Then this says,
operands should be modified in i OR operand expression should not be available from

the top.

So, if the operands are not modified in i then, it is also available from the top, whatever
is available from the top will just pass through; there is no need to actually compute that
a plus b again. So, insertion need not be carried out but, if the operands are modified in
the basic block then, there is a need to recompute that expression and that is why, this not
of TRANSP; make sense.

If the expression is not available from the top either then also, we need to compute that
expression; you cannot simply take a value which already exist there isn’t anything. This

INSERT; is true only for the first node on the path and those intermediate nodes where

the operands of the expression are modified and the expression is recomputed. That is
taken care of by this part; the first node is taken care of by these things approximately,

not exactly.

(Refer Slide Time: 34:04)

Example 1

oo (Bl vn T an L MEEAT, = LT FeT)= T
g = T, Irifrsp = T AEPLACE rr[‘|_1'|‘.1'|-'.
mntlog =T REPLACE, = T[T+TF =T

\a | £ ® 8B MSERT,, = T.T(FsF]u B
- REPLACE = T{T+T.T)=T
REPLACE = TT+T.T)= 1

MBERT, = T.N.T =1
MSEAT, . = T.7.T=T

HEEAT, = T.T.[T=F}&T
REPLACE, = T.[T4FT]=T
REFLACE, s T [Te.T)= T

WAERT =« FF[TeFli=F
™ REPLACH, & T[Tl aT

REIAT & COMR BRANTOLT (FTAAHER + IERLam, |

L]
i an “ll""l , FTRPAVOUY, TRANIN, ARANTIN 'F
amg 4
BEFLLCE, ANTLOC, CHRAYS, = TRAKIF, S0 ANFD
Lal

EEFLLIE, o SO0, (EFANTOUT, « TRAKSF, §

TR frtard “arle Heviorsierey |

Let us look at an example, here is the node 1a, you have z equal to a plus b. As | already
told you, here is a plus b and then modification. This part is a second expression

computation of a plus b, so let us just look at this part first.

This is computation beginning and this is the usage and here is another usage in-between,
so all these points are safe. Safety is very easily computed, so available here, this is
anticipable here, available here and anticipable here (Refer Slide Time: 34:36), so for

different reasons all these points are safe.

For this first point, the FIRST and LAST computations go inside, so INSERT; is true;
then the replace is also true. For this point, this is an intermediate computation, now we
get this value from here (Refer Slide Time: 35:05); there is no need to compute this value
again provided we break this edge. That is why for this particular case, assuming that, we
break this edge, this 1b INSERT; is false and replacement happen to be true. We are only
going to do a replacement; if we insert something here, it becomes total fully available

and then we have this a plus b, this is the FIRST computation in this block.

For this, INSERT3 it is true and replace is also true, but the insert part is for this LAST
computation and not for the FIRST computation. For the first computation, it is only the
replacement that we look at the 3F that is true; we are not going to do any insertion for
the FIRST computations. We always do the insertions for the LAST computation;

observe that here, for the last computation.

(Refer Slide Time: 36:15)

Example 1

This will be replaced by m equal to h that can be seen here (Refer Slide Time: 36:14), hl
equal to a plus b, z equal to hl, so insertion and then replacement. Here we break this
(Refer Slide Time: 36:23), we break this also and then m equal to hl. Why this is

necessary to be broken? because otherwise, availability will be pass along on this part.

(Refer Slide Time: 36:37)

Predicates for Insertion

INSERT

o Trua if the point just bedora the LAST computation in block i
15 an mesarlion poend

& Intorprotation of ll".'E-Equ
{expr should be computed in) AND |axpr should be usefw
laderi AND [{opevands should be modified in § OR {expr
showid nof be avarable from above))

This is possicle only for the first node on tha path and
those intermediale nodes wheva tha operands of the expr
are modified and the axpr s recompuied

INSERT, COMP, SPANTOUT,.(~TRANSP, + ~SPAIN)

INSERT;

» True if a computation shoald be insered by spitling L.f
v

adge (1.
INSERT, SPAVOUT SPAVTN . SPaM

DL Farla Moy | i

(Refer Slide Time: 36:56).

Example 1

oo (B un T g 1D MBEAT, = T.T(F:Tj=T
g & T, IRifrkp & T REPLACE, = T faT Ty T
o = T REPLACE, s T[TsTF =T

\a | ® E6B MEERT, = T.T(FsF]up
REPLACE = T{T+T.T)=T
REPLACE = T{T+T.T)= ¥

INSERT, = TI.T=1
NSERAT,; . =T, T.T=7

MHEEAT, = T.T[T=F}&T
REPLACE, = T.[T4FT]=T
REFLACE, s T [TeT)= T

HAERT = FF [T«Fi=F
REPLACH, & T [Tl K aT

WRBIRT & COMR BRANTOLT (FTILLHER + iAW, |

PEEERT, S TRFAVOUTY, DRANIN, RANTIN

REFLAIE, v ANTLOE, CEPAYR, & TRARL® SRANFOUT, |

EEFLLOE, o SOMS, (EFANTOUT, « TRAKEF, 5LVl |

TR rdard Farle’ Heviorderey | eair

Let us look at the insertion on an edge; this is true, if a computation should be inserted by
splitting the edge i j. This is the one | was talking about sometimes ago. These are the
edges which come into this path, the safe path and those are the once we need to be
broken. This edge is coming into the safe path, this edge is coming into the safe path; so
both these need to be broken (Refer Slide Time: 37:07).

(Refer Slide Time: 37:12)

Predicates for Insertion

INSERT

o Trua if the point just bedora 1he LAST computaton in block i
15 an msarion poend

& ntespratation of INSERT,;

{epr should be computed in §) AND (expr should be usafud
lateri AND ({opevands should be modified in § OR {expr
shound nol e avanatye Irom aoove])

This is possicle only for the first node on the path and
[hasa migrmadala nodes wheta 1he operanss of Ihe axpr
are modifed and the expr IS recodTy

INSEART, COMP, . SPANTOUT,.| ~TRANSP, + ~SPAN,)
INSEHT

Trua if & computation should ba insaried by splifhing the

aope [iy
INSERT, SPAVOUT SPAVIN, SPANTIM

WL Farla Hedoserey | i

(Refer Slide Time: 37:37)

Example 1

O iaas: 1 e BD BBERT, = LT (FT)=T
g & T, Irifrkp & T REPLACE, = T QFaT.T)a T
mtiog = T REPLACE, = T.[TsTF) =T
f*ash IHSERT, = T.T(FsF]u §
REPLACE = T{T+T.T)=T
REPLACE. = TET+T.T)= 1§

INSERT, ., * TIT=T
MSEAT, .= T.T.T=7

MNEEAT, =TT [T=Fp=T
REPLACE, = T.[T4F.T]=T
REFLACE, s T [Te.T}=T

HAERT = F F[T«Fj=F
REPLACE, & T[T«FF]aT

WBIAT = COMR BRANTOLT (FTRALHER + IERLWm, |

PERERT S TEFAVOUY, DRANIN, RANTIN

REFLAIE, v ANTL DL, cEPAYR, & TRARLP, SPANFOUT, |

EEFLLEE, oS54, FEFANTSUT, » TRLGSS, 3PV |

TH Grdard Farla Fediosierey | e

When is INSERT;; true? It is true, if a computation should be inserted by splitting the
edge ij and INSERT;; is not of SPAVOUT; dot SPAVIN; dot SPANTIN;. Let us
understand what this is. If there is an edge, let us look at this example again. Let us say
we take this edge, we are going to do this computation for all edges and find out that it is
not necessary to break this or this and so on and so forth; only for these 2 we need to

break them.

So, this is i and this is j (Refer Slide Time: 37:57). It says INSERT;; not of SPAVOUT;,
in other words, here it should not be safe partially available from the top. If it is already
available from the top, there is a need to insert something here that can be used, so safe
partial availability is false at this point.

SPAVIN; this j point, the computation must be partially available from another path;
along this path it is not available but, from along another path it should be available; if it
is not available along this path also there is the point, there is nothing to be done at all, it
is partially available, so we need to break this and make it fully available.

Then it says SPANTIN;, at this point the computation must be done later on, it should be
useful later on, expression should be use later, it is recomputed later. Again, if there is no
recomputation why should we insert anything here? For example, this is being computed,
it is recomputed, this is one computation, and this is another computation. Along this
path it is partially available; along this path a plus b is not partially available at all. We

need to break this edge and then insert h equal to a plus b.

The same is true along this part have this edge as well. Here, it is not safe partially
available, along this path it is safe partially available and at this point it is safe partially

anticipable, so we break this edge. So that is what, these three really mean.

(Refer Slide Time: 39:35)

Predicates for Insertion

INSERT

o Trua if the poinl just belora 1he LAST computatan in bleck
i pn Inesortion poind

o Inlerpratation of INSERT,
{ expr should be computed in) AND | axpr should be useful
faier) AND [{opevands should be modified in () OR | expr
shownd nal be svanalee Irom aoowe) |

w Thisis possitia ondy or The fersl noda on e patih and
thosa intermediate nodes where the oparands of the expr
are modified and the expr is recompuied

INSERT, COMP. SPANTOUT,. ~TRANSP, SPAVIN

INSEHT, r
» True if 8 computation should ba insorad by spitling tfe "‘i'
edga (i, |
INSERT, SPAVOUTESPAVIN. SPAM

TH i ol i wy | b

(Refer Slide Time: 39:38)

Predicates for Replacement

REPLACE, (respectively REPLACE

o Trug if FIRST, (respociively LAST,) should b nopl

REPLACE ANTLOGC, | SPAVIN, + TRANSP, SPANTOUT

REPLACE COMP,. | SPANTOUT TRANSF, SPAVIN

TH friard Farle Moy | e

When is a replacement to be done? So, replacement of FIRST and replacement of LAST
- if and il. It is true if the FIRST respectively, LAST computation should be replaced.
REPLACE;s is ANTLOC; SPAVIN; plus TRANSP; dot SPANTOUT,; Let us see what
this is, when do you replace the first computation? locally computed there is the first

computation itself, that is obviously true.

Hence, SPAVIN; available from the top, that is why we want to replace it by x equal to
h. Otherwise, it is useful later on and of course, not modified. So, either this or that, one
of these two most obviously is true. Locally computed make sure that, we have the
computation locally available and then partial availability from the top or usefulness later
on, one of these must be satisfied; then we can actually replace the FIRST computation

by x equal to h.

(Refer Slide Time: 41:15)

Example 1

Foor Bipns T and B WBERT, = T.T(FeTj= T
g = T, Iflfmp = T REPLACE = TRT.T)a ¥
ntiog =T REPLACE, = T[T+TF =T

\a | E® @B IMSERT,, = T.T(FsF]u @
- REPLACE = T{T+T.T)=T
REPLACE = T{T+T.T)= 1

MBEAT, = T.N.T =1
MSEAT, . = T.T.T=T

MHEERT, ® T.T[T=Fp=T
REPLACE, = T.[T4FT]=T
AEFLACE, s T [Te.T)= T

MAERT, = F F.[T=F} = F
AEPLACE, & T[Tef KT
- WELRT » COMR FRANTGLT | FTLAHER & IR em
o amy SEEAT,, 5 APAVOLT, DAY, ARANTE ’
awg 4

%
REFLAIE, v ANTL O, CEPAYER, & TRARLF S0ANE™ ﬁ

(]
EEFLLEE, & SOMS, CEFANTOUT + TRAKGEF, 5

DL Pl Feviorsierey | is

The LAST computation can be replaced, provided it is computed in the block and then
very similar useful later on, or available from the top and not modified. Even though,
predicates look a bit difficult it is very easy to look at the diagram and then see what is

happening.

Here both the replacement is and insertions are true (Refer Slide Time: 41:22). Here only
replacement is true and only replacement is true, here both insertion and replacement and
here only replacement. That is how; these predicates really give you the value. For
example, why should we replace this? It is available from the top. What about this? It is
going to be use later on and we would have inserted something just now. That is why

these need to be replaced.

(Refer Slide Time: 42:03)

Example 2

L Bl g i]
EHTLEE & (34 0N

DO = [T [T -]

AT P
THALES = L5 L5ATL R bl BHTUT = AT H

BT & [LAAR TN
= BATCAIT w ji 34T H
REFLALE, » ANTLDC, {ERANT « MM G AL AT
TREMARF ARLTHUT) E SAFDOUT & A SE AR

ROFLADE, « DOMF, (BRANTOUT, «
TRESEF BFAVH 1

ki e R
EPAVOOT & LA T
EFAETN (LR T A
EPANTOLUT » J,58, 7.0

SIS ERT, = COMP, SFANTOUT, B r' HL.LRE, = (T}
AR, s i AN § N e HI-HHEI-KLEII
BEFLAC K, =)

PREAT, ¢ EPATOUT BPLVN EFANTR, 4= IEFLACK, = LT}

L

What about this (Refer Slide Time: 41:54)? again available from the top. We are going to

break this and make it available; that is how these replacements happen.

Now, let us take a slightly bigger example and see how this works? This has many loops
and many paths and so on and so forth and a plus b is again the expression (Refer Slide
Time: 42:15). Let us look at each of these properties one by one: these are local
properties — ANTLOC, COMP, and TRANSP. So, ANTLOC locally anticipable is true
at 247 8 9. Why is it true here? So a plus b here, at this point it is true. What about 4?
At this point a plus b is computed here.

What about 7? Same thing, this is 7 so a plus b is computed here. What about 8? Again a
plus b is computed right here so it is true here (Refer Slide Time: 43:00). What about 9?
Again a plus b is computed here. So, COMP is true at the 2 4 7 and 9. In 2 because a plus
b is here and then not modified later on; 4 a plus b is here not modified, then 7 a plus b is
here not modified and 9 a plus b is here and not modified. Here it is not true because a
plus b is here but, a is modified (Refer Slide Time: 43:24).

Similarly, TRANSP these all are empty blocks so nothing much happens, no
modification here (Refer Slide Time: 43:34) but there is modification here. There is
modification, no modification, no modification. So, except for 8 and 2 all others are

transparent.

AVIN is phi because expression a plus b is not available at the entry point of any basic
block. Here it is not available (Refer Slide Time: 43:54), easy to see here, it is not
available because there is nothing here, here it is not available because there is nothing
here and again this point, this point, all these there is partial availability but, there is no

availability at the entry point.

AVOUT s true for 2 4 7 9. So, AVOUT is true here because available of the low

computation, here also, here also and then 4 at this point also available.

Anticipability is true at the input points of 245 6 7 8 9. Why is it true here? Because a
plus b is computed right here, let us the take 7, again true because a plus b is computed

right here and 9 also the same thing.

Safety is true for 2 4 5 6 7 8 9 because safety says either available or anticipable. In most
cases, local anticipability is true even though availability is not true. For the output
points 7 for example, availability is true, even though anticipability is also true. At this
point 9 the availability part is not true, only partially available, but anticipability

becomes true.

Safe partial availability is similar, this is a tricky one, and others are very easy 4 5 and 8
SPAVIN is true. Let us take the input point of 4. Why is safe partial availability true at
the input point of 4? It is not the path alone that matters, if you take only the path partial
availability, we can always trace this path like this and then it is path of availability.
When you look at safe partial availability, you must make sure that from the point of
computation to this point, all the intermediate points are safe. That means, if we consider

this as the computation which is available partially at this point.

We have to make sure that this point (Refer Slide Time: 46:18) this point, output of 3,
input of 5, output of 5 are all safe, but unfortunately 3 input and output are not safe.

Neither available, nor anticipable, so you can go out straight away.

Safe partial availability says, from the point of computation to the point under
consideration. We are going to take this as the point of computation (Refer Slide Time:
46:46) that is the output of 4, go through this part 5, come out and then go to input of 4.
This is the path of availability that will be consider to make sure that safe SPAVIN of 4

is true.

So, it is computed here and then brought back; that is say partial availability again. This
is true for this path also, I can always take this path like this and then like this (Refer
Slide Time: 47:14) compute and then go out and then come again, so that is the path.
Since, we are going to take from the computation point to the point under consideration
we need to consider only this path. So, output of 4, input of 5, outputs of 5 all these are
safe. So, SAFEIN SAFEOUT has 5 and 4 no problem.

SPAVOUT is heavy straight forward; let us take 5, SPAVOUT of 5 is true because | get
something here and this is transparent. Of course, safety is true for all these blocks.

SPANTIN is simple because there are too many blocks here.

Let us take, SPANTOUT of say 6. We are considering block 6, then output point of
block 6. It does not matter, how we want to go out; this is the only path available to us; a

plus b is computed here, so anticipability becomes true; this so far as safety etc.

(Refer Slide Time: 43:32)

Example 2

(Refer Slide Time: 49:06)

Example 2

R PTonY
AWFLBE & (8 1R
COMP s [T4TH [T ET]
TRAES = (L3 ASAT LIS - = AORT = LA
BT & [LUAA TN
= RATORT w ST
REFLALE,; » ANTLDC, {EFANT « AN AT
THLEEE ARLETOHUT) BAPDOUT & (R4 SR T AN

REFLADE, o DOMP, (3RANTOUT, «
TREAEP - BFAVE 1

"
s mab

Tk e LR

EFAAET » A TR

A P W R T B L™
EFARTOUT ® §5.87.0 L1

MEEAT, = COMF, SPANTOUT, = r' HA.LRF, = (T}
pEEAsk P = rEFAYEH § ki Jﬂt-hiii\!h!ﬂl
BEFLALE; = (.1 W)

PEENT, , # ERATOUT BPAVR B FANTR, FEFLACE, ® LTH

TH St Farla ey | e

Now, what about insertion and replacement? In fact, in the next slide, this cannot be
neither replacing, nor used as redundant computation. We have to break this edge and
insert a computation here. This computation gets a replacement (Refer Slide Time:
48:48) this computation gets both a replacement and an insertion, here this gets a
replacement but, there is nothing we can do for this computation either, why? See the
point is, if you look at this edge, this is the critical edge, so at this point, we do not have
safe partial availability and at this point, we have safe partial availability. This is the
INSERT;; is safe partial availability of this point is false, this point is true and SPANTIN;

is also true at this point.

This is the critical edge when we need to break it but, the immediate question will be
breaking this is fine, if | break this edge here, then | am inserting an a plus b here and
that is also all my problems, it makes it available for everything that goes out. So | can
replace this (Refer Slide Time: 49:53) | can replace this, | can replace this, I can replace

this also, | cannot replace this because a is modified of course at this point.

(Refer Slide Time: 50:08)

Example 2

Solubon
& NSpinien [usl Desonn Iy Mas! COrmperata in nody J
& Insarion on egge (4, 2
o Hoplacement of the frsd comaurabon
» FHoplacemant of the [asl compulahions in nodes 4 and J
Lxmastion
o Why should we nof sg
COmpLtandn f
Answar
& 05 nol sade. The path 1-3-10 had no computabon of
bilore transiormation and by placing & oompuUtalon on the
l":'f.":':'I 1,3}, W arg ""\."!l\.|l':'.'li:':l aljL

& Hiowewid, This Solulion works lor all vald™ inpuls

So | can replace all these by inserting a computation right here. Why we are not doing it?
Why should we not split the edge 1 3 and replace the computation h equal to a plus b?
Why only on the edge (3, 5)? The answer is it is not safe. The path 1-3-10 had no
computation of a plus b before transformation and by placing a computation on the edge

1-3 we are introducing 1.

(Refer Slide Time: 50:28)

Example 2

(Refer Slide Time: 50:43)

Example 2

Ol RO
AHTLOE & (34 1N

[k]
ANOUT = EA T
BT & CLAAR T W

5 " aeE
T -
i AMTOUT w jL 3 AT E

REFLALE, » ANTLDC, {EFANT « BAME G LA TR

TREMAF ABRLTSUT) - SAFDOUT = FASETEN

DO & (24,75
TRAKES = (1.5, 0507L 18

REPLACE, « COMP, (3P ANTOUT, +
TRESEF BFAVE |

n
s mab

Pk e LR

EPADAET » AR TR

ek P AT I E R
EPANTOUT » 457 L1

BEEAT, = COMP, BPANTOUT, = r' WELRE, = (T}
P EEAR R, = plRAY § A EER| W

SEENT, & EPATCYT BPLMR EFANTEL

TH frad Frla Heviorsiarey | e

So, 1, 3 and 10 had no computation. Whereas, if we introduce 1 here this gets 1
computation and this becomes unsafe. Whereas, if we introduce 1 here, this already had a
computation for example, if you had taken this path it already had this computation,
there was no problem. That is the reason why we insert the computation here and not at
this point and | cannot replace this a plus b by a previous computation because a is being

modified here. So, that is why it fails for this point as well.

That is how, we do the computations and this is the inside for, why certain computations
are replaced? Why are adjust broken? Etc.

(Refer Slide Time: 51:23)

Cormrectness Results

I All insertions of computations cormesponding (o

the trapsormation are done at safe points.
8 2 Al canddabe computabons wheeh ang sale partally

redundan becoms fotally nedundan! atter
ISR OnS comesponding 10 I Iranslarmatan

¥ i Y EEDSG CAndKIalg COMmMERIRRIGNS WINCT WoLHD
be redundant alter insedtions coir espanding 1o the
[ransiormaion are replaced

¢ Aftar the transformation no path conlains more
compulakons of an axpression ha n i ooni s
baicaa

I The algodshm pariorms parhial red -!l=|='-"f=:'%

elrmination comectly

The final solution is something we already said, so let us not waste time there. There are
certain correctness results that we need to be aware of. So, couple of lemmas and

theorems, we are not going to prove them but, let us state them.

Lemma 1 says all insertions of computations corresponding to the transformation are
done at safe points. By definition of that insert and INSERT;; etcetera, we always use
SPANTIN, SPANTOUT etc and SPAVIN, SPAVOUT. That means the transformations
are automatically carried out at safe points, this is the intuitive explanation.

Lemma 2 says, all candidate computations which are safe partially redundant, become
totally redundant after insertions corresponding to the transformation. Something may
become partially redundant but, it may not be safe partially redundant. In such a case, we
will not be replacing it, only when safe partially redundant computation is available, we
replace it.

Lemma 3 says, only we have woven this safety completely into the insert and replace
predicates and that is how this becomes true only for safe partially redundant
computations. Only those candidate computations which would be redundant after

insertions corresponding to the transformation are replaced.

(Refer Slide Time: 53:07)

Example 2

This is again true because otherwise, we would have replaced this also, that is not true.
They should become completely redundant, here this does not become redundant, a equal
to ¢ make sure that we have to recomputed this all over again. This does not become
redundant because a equal to ¢ is modifying a.

(Refer Slide Time: 53:27)

Cormectness Results
I Allinsertions of computations cormesponding (o

2 at sake poinls

Do red
ranshormabon are replaced

¢ Alter the transformation no path contains mar
compulakans o an axpression tha n il conlaena
baicea
Tha algodaRm paricrms partiad redunda
slminalion comectly

After the transformation, no path contains more computations of an expression than it
contained before, so this is something we already assured. We did not want to insert

anything by breaking this edge. Otherwise is would have had an extra computation.

(Refer Slide Time: 53:49)

Example 2

UL Pl Heliorsimrey | e

Of course, not only that, when we inserted something here, we took away something at
this point.

(Refer Slide Time: 53:55)

Example 2

Wl B
AHTLOES o (34 1R -
COF = X5 T8 ety [T PR
TRANEF & [LELTLT LW L e MFOUT = ERA T
BT = CLAAA S AT
BIFLALE, = ANTLOL, {ERAVH E ontin bl
’ bl ” BAF Ty asarm
TRAMAR §RLATEUT, | - et = g
REPLACE, « COMP, (@R ANTOUT, &
TRESEF - BFAVH 1

L
T

Bk i =
AT w LA -
AT [F L 1=y

EPRNTOHT » 50T LT E-
BEENT, = COMP, SPRRTOUT, Pt SA.LRE, = (T} -r

%
NERARCE P, & PEFAVIH [il WEERT, L w gk
ll.hACt
PR, ¢ BRAWET EPLR B FAHTT, - 18 LY Lt o

TN o dai T e

We had a computation here along this path by breaking this edge (Refer Slide Time:

53:59) we introduce a computation here but, we took away that computation.

(Refer Slide Time: 54:00)

Example 2

This computation remind, its only question of making it h equal to a plus b from x equal

to a plus b.

(Refer Slide Time: 54:13)

Cormrectness Results

I Al insertions of computations correspornding o
ane at sale poinls
candedalo computatons whech ang sale |:|.'!-:-.'|i:_.-
ressundan bacoms nlally redundant after
INSEr NS COMmaspanding T

the
Iransharmandn are replaced

4 After the ransformation no path conlains mo
computatons of an axpression tha r
baicra

I The algordhm pariorms parind redundancy
liminalion compely

The theorem says the algorithm performs partial redundancy elimination correctly; it is
based on these lemmas.

(Refer Slide Time: 54:20)

Optimality Resulis

5 A candicate computaton = not replaced by the
ransiormation # and ondy if it is an isolabed
compulaton
Thid Branaiorrmnkion & oHmpULal
pre doses Not easd ATy SN COMCY
translormatan with l@ss ramtar of compi
al an ENpeessaon on amy palt

I The ransiormation s lelme oplimal, La., 1he
ranshormabon keaps Ihe Ive ranges ol Ihe newly

inreguded Temporangs 10 the miremism -F

The fifth lemma says, a candidate computation is not replaced by the transformation, if
and only if it is an isolated computation, this is what | was saying. So, unnecessary

computations are not really replaced.

(Refer Slide Time: 54:40)

Example 2

In this case for example, this computation is not replaced; this computation is not
replaced etcetera.

(Refer Slide Time: 54:47)

Optimality Resulls

1 5 A candidate computaton = not replaced by the
ransiormation # and ondy if it is an isolabed
compulabon

2 Tha ransbarmabon s computaticnally optimal, Lo
dhe dosos Not easd ATy oI compct
translormaon wih lass mambar of computatsans
al an eNpresgaon on amy path

@i 3 The ransionmabon i iebme oplimal, Le., 1he

ranslormabon keaps the Ive ranges ol 1he newly
-

ivreguded lempirangs 10 the miremum ;r

.a-.

Theorem 2 says the transformation is computationally optimal. This is an important
result that is, there does not exist any other correct transformation with less number of
computations of an expression on any path. We have introduced the minimum number of
computations necessary. We have not introduced even one extra computation, everything

is optimal.

Finally, the theorem 3 says the transformation is lifetime optimal that is, the
transformation keeps the live ranges of the newly introduced temporaries to the

minimum.

(Refer Slide Time: 55:23)

Example 2

What this really says, is we have introduced these temporaries h, hl, h2, and etcetera. At
the points where its live range becomes the smallest, | could not have pushed this to this

point or this point without sacrificing either safety or any other property.

(Refer Slide Time: 55:46)

Optimality Resulis

1 5 A candidate computation = not replaced by tha
ransiormation # and ondy if it is an isolabed
compulaton
Thip EranSsonmation 1S oMmputali
hore dosps nol el ATy DR COMECT
transhormaton with less mamo

ol an ENpeessaon on amy pall

I Tha ransiormation & elme oplimal, e, 1he

ranshormabon keaps Ihe lve ranges ol 1he newty

ireducaed lemporangs 10 Ehd miremuem

g

That is why this property becomes important, the theorem becomes important. It is

lifetime optimal, so live ranges are kept to the minimum.

So, this is an overview of the partial redundancy elimination algorithm with examples.
We have not really proved any theorems, but | hope it has given you an insight into how

the algorithm really works. Thank you very much; this is the end of the lecture.

