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This is part 2 of a compiler overview; we completed part 1 last time. First of all we will 

have a quick overview of what we did last time and then continue with the second part. 
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So last time, we looked at the block diagram of a compiler; so this is what we saw, there 

is a lexical analyzer phase which changes the character stream into a token stream there 

is a syntax analyzer phase, which changes the set of tokens according to a programming 

language grammar to a syntax tree and the semantic analyzer changes syntax tree into an 

annotated syntax tree in which it checks all the semantics of the programming language. 
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Today, we are going to look at an overview of the intermediate code generator, the 

machine dependent code optimizer, the code generator, machine independent code 

optimizer etcetera. 
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So, this is the slide I showed you last time regarding lexical analysis the input is a an 

assignment statement Fahrenheit equal to centigrade into 1.8 plus 32 and a sequence of 

tokens id comma 1 assign id comma 2 multop fconst comma 1.8 addop iconst comma 32 

comes out of it. 
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This goes into the syntax analyzer and it change the syntax analyzer parses this particular 

sequence of tokens and produces the assignment expression tree, as shown here. So the 

next phase is the semantic analysis phase in which the syntax tree is validated for 

example, the constant 32 is changed into a floating point constant using the function into 

float which is inserted into the tree. Similarly, there are checks made whether id and id1 

and id2 etcetera are all compatible with the assignment operation and so on. Finally, it 

goes into the intermediate code generation. 
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This is the intermediate code generation overview. So, the semantically validated 

expression tree or the program tree is the input to the intermediate code generator. The 

output of the intermediate code generator looks as shown here for example, the bigger 

expression is broken into smaller expressions, t1 equal to id2 into 1.8 is a small 

expression; then t2 equal to into float 32 is another assignments statement t3 equal to t1 

plus t2 and finally, id1equal to t3. 
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So now, let us see, why all these needs to be done in the compiler. While generating 

machine code directly from the source code is definitely possible, it is not an impossible 

problem but, when we do so, we lose out many things. There are two problems that are 

well known for example, if there are m languages and n target machines and we generate 

compilers directly rather, we write compilers directly which generate machine code from 

the source language. Then, we need to write m into n compilers, hardly any part of the 

compiler can be reused and there is a lot of effort in writing a fresh compiler. The first 

part of a compiler can always be reused that is the lexical analysis, the syntax analysis 

and the semantic analysis can always be reused, whether we are generating intermediate 

code or we are generating machine code. 

But, if you are generating machine code directly then the code optimizer, which is one of 

the largest and the most difficult components of any compiler cannot be reused. So what 

happens is the code optimizer will have to be now targeted towards the machine code 



which is being generated and therefore, every machine code has its characteristics which 

are very different from each other and we will not be able to reuse this particular code 

optimizer. 

Whereas, if we convert source code to an intermediate code, a machine independent code 

optimizer may be written, so what is this intermediate code? The intermediate code is 

some sort of a universal assembly language. Of course, it should be easy to produce, it 

cannot be as difficult as machine code to produce and it must be easy to translate it from 

intermediate code - any intermediate code to machine code as well. 

Another important characteristic is that it should not contain any machine specific 

parameter such as registers, addresses etcetera. The reason is, if it contains machine 

specific parameters, the machine independent nature of the code is lost. So we will again 

be back to square one and we need to write the machine code generator and this even the 

optimizer etcetera, all over again. So this machine independent code is usually produced 

during a traversal of the semantically validated tree. 
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There are different types of intermediate code; it is not that the same intermediate code 

can be deployed in every application. So, it depends on what type of application we have 

in mind when we design the intermediate code. For example, quadruples, triples, indirect 

triples, abstract syntax trees these are some of the classical forms of intermediate code, 

which are machine independent and then these can be used for machine independent 



optimization and also for machine code generation; that is fairly easy, this are very well 

known and they are used in almost every complier. 

There are two other special forms of intermediate code that I am going to mention here. 

One of them is the Static Single Assignment form called SSA; this is a very recent 

intermediate form and this is much better than the other type of intermediate code that is 

used in compilers, because we can do many more optimizations more effectively on this 

particular static single assignment form. We are going to look at the details of SSA in 

one of the later lectures. For example, conditional constant propagation and what is 

known as global value numbering are two optimizations which are far more effective on 

the SSA form than on any other form. 

The other special intermediate code that I mention here is the Program Dependence 

Graph - PDG as it is called. This is very useful in automatic parallelization instruction 

scheduling and also software pipelining. 
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Here is an example of translation to produce quadruples from arithmetic expressions. So 

let us go through it step by step. The grammar is a very simple grammar. S going to id 

equal to E, is the production for assignment. SE going to E1 plus E2, is the sum 

expression. E going to E1 star E2, is the multiplication expression. E going to minus E1is 

the negation; then E going to bracket E1; bracket is the parenthesize expression. E going 

to id is the terminating production, which gives you a single variable. So, if this is the 



grammar, first of all let us look at the kind of expressions that we produce and then come 

back to this grammar all over again. 

(Refer Slide Time: 08:58) 

 

Here is a nice example, let say we have a simple tree in which a equal to b star c plus d is 

the expression, so b star c plus d is the expression and it is being assigned to a, so this is 

our complete assignment statement. Now, let us go back one step and see how this is 

translated. Before that, please observe the syntax tree that is produced. So at the first 

level, we have id then equal to an E. 
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At the second level, we have E plus E and at the third level, we have E star E and at the 

fourth level, we have the identifiers. So the code generation the machine the intermediate 

code generation actually goes in a bottom-up fashion. So for example, the code is 

generated for E going to E star E first and then, the code intermediate code is generated 

for E going to E plus E and finally, the intermediate code for S going to id equal to E, so 

let us see how this happens. So if it is an assignment id equal to E, we search the action 

indicates that we search the symbol table get the pointer for that particular name from the 

symbol table and if the name is already present in the symbol table then the pointer is not 

null; then, we generate just the simple assignment statement in the intermediate code 

idptr equal to E dot result. 

So, E dot result is the place where the result of the arithmetic expression is going to be 

placed. This E dot result is also a pointer into the symbol table; it is not that it is a 

machine location. The machine location will come later and it will be assign during the 

machine code generation phase. So, if the name is not present in the symbol table, 

obviously it is an error. 

Let us take the next production, E going to E1plus E2. So in this case, we have the result 

of E1 in E1 dot result; the result of E2 in E2 dot result and to add them up, we actually 

need a temporary. So, the gentemp routine creates a temporary and E dot result equal to 

gentemp will transfer the pointer into to the temporary variable into the variable E dot 

result. So gentemp actually generates a temporary name and puts it in the symbol table 

and also returns a pointer to it that is the way, we have assumed it. 

So now, once the temporary is generated; the next is to generate intermediate code E dot 

result equal to E1 dot result plus E2 dot result. So there we have the intermediate code for 

the arithmetic expression consisting of plus. E one star - E going to E1 star E2 is very 

similar instead of plus there is a star, otherwise there is no difference. Similar is the case 

of E going to minus E1 and E going to parenthesis E1; parenthesis does not require any 

intermediate code generation it is just that the location, where the result of E1 is stored is 

transfer to the location E dot result. 

Finally, E going to id again makes us search in the symbol table, gets the pointer to the 

name id dot name and if it is not null then, the place E dot result is going to be a the 

pointer to the symbol table, otherwise it is an error. So in other words there is no code 



generated for the productions 5 and 6; it is only for the other productions that we have 

really generated the intermediate code. 

Intermediate code is very similar to the higher level programming language code but, the 

most important characteristic is that it can have only a single unary operator or a single 

binary operator; bigger arithmetic expressions have to be broken into smaller ones and 

finally, temporaries must be used to calculate the result. 
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This is very clear from this particular diagram. So, if you look at this expression E going 

to E star E - E dot result is b for this particular E, E dot result is c for this particular E 

and here, we generate a new temporary t1 and E dot result will be t1(Refer Slide Time: 

14:00). Here, E dot result is d here we generate a new temporary t2 and that will keep the 

result of t1 plus d and finally, the assignment is a equal to t2. So finally, the intermediate 

code that we generate would be t1 equal to b star c; then t2 equal to t1 plus d and finally, 

a equal to t2. These are the three intermediate code statements that would be generated in 

a bottom-up fashion. 
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Now, let us look at the next phase of compilation called the code optimization. This is 

the input that we got from - rather the output that we generated from the intermediate 

code generator. Here, we have these statements but, as you can see where is some 

inefficiency in these. Look at the output here, the output that we generate after the code 

is optimized; it directly says t1 equal to id2 into 1.8, instead of accumulating id2 into 1.8 

in t1 and then rather sorry t2 equal to into float 32 and then t3 equal to t1 plus t2 is 

directly and then id1 equal to t3 is directly translated into id1 equal to t1 plus 32.0. 

So, the three statements t2 equal to, t3 equal to and id1 equal to have been combine into a 

single statement id1 equal to t1 plus 32.0. So, such elimination of unnecessary statements 

is possible using the code optimizer. Code optimizer improves the quality of the 

intermediate code that is generated and fits it into the code generator. 
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So here is the detail; intermediate code generation process introduces many 

inefficiencies; this is the reason why we require the code optimizer phase - machine 

independent code optimizer phase. So extra copies of variables that is, the temporaries, 

we already saw the t1 t2 etcetera, all temporaries being generated. Then using variables 

instead of constants, so we would have simply initialize the variable to a constant and 

use that variable in place of the constant and then there are expressions which are going 

to be repeatedly evaluated; so these are all the sources of inefficiency, you can eliminate 

these. If there are extra copies of variables, we can retain one of them and eliminate the 

rest; instead of variables, we can simply do constant propagation and replace the variable 

name by the constant value and in the case of repeated evaluation of expressions we 

evaluate the expression only once and use the same value again and again. 

So, code optimization removes such inefficiencies and improves code that is what I just 

now mentioned. Improvement may be time, space or power consumption for example; 

we may want to make the code fastest; so in that case, we want to reduce or minimize the 

amount of time that the code takes. We want to make the code space efficient; for 

embedded applications the amount of memory that the code takes may be very important 

and in such case, the number of instructions will have to be reduced in order to save 

space. 

Finally, in the same embedded application such as sensor networks, power consumption 



is a very important factor. So, we may want to actually optimize the code to save power 

instead of time or space. So, it is possible to do optimization in many ways. The code 

optimizer also changes the structure of the programs; sometimes it is beyond recognition. 

So for example, the functions are all inline there are no functions any more. The body 

replaces that function call; unrolls loops. So, if the loop runs from one to ten in one to 

one million may be I am going to unroll the loop one thousand times and run the loop 

only from one to one thousand, the rest of it is unrolled and it is going to be a huge body 

inside the loop and it also eliminates some of the programmer defined variables etcetera. 

For example, if the same variable the different variables have the same value as I told 

you, we can use one of them and eliminate the rest. 

Code optimization consists of a bunch of heuristics and percentage of improvement 

depends on the programs. This is a heuristic, so it is not guaranteed to give you any 

definite result. If the improvement happens then it is very good; if the improvement does 

not happen even then it is not going to change the functionality of the code that is the 

best guarantee that I can give you but, on the average most of the programs benefit by 

code optimization. 
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Then, here are some of the examples of machine independent optimizations, some of 

them I already mentioned for example, common sub expression elimination the same 

expression need not be evaluated again and again. Copy propagation so I do not have 



several variables carry the same value so I do not have to keep all of them I can just use 

one of them. 

Loop invariant code motion: there is a lot of code inside a loop which is not altered 

inside then in that case, the code can be moved outside the loop. Partial redundancy 

elimination is a bit complex to explain but, it is one of the most useful optimizations and 

we will be looking at it in detail in one of the late lectures. 

Induction variable elimination and strength reduction are similar; they actually are 

carried out in a loop. So multiplications can be change to addition and induction 

variables which are nothing but, incrementing variables sometimes can be eliminated, 

code optimization needs information about the program, where this is very obvious and 

the compiler actually obtains this information using a process called data flow analysis, 

so for example which expressions are recomputed in a function, which definitions reach 

a point. These are some of the optimizations possible; the information that are necessary 

for an optimization. 
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Next, the code generation process is, it follows the code optimization process. For 

example, the intermediate code, which is improved in a code optimizer, is input to the 

machine code generator and here is a sample of the machine code. The assignment 

statement t1 equal to id2 star 1.8 is translated into load floating point R2 comma id2 and 

then multiply floating point R2 comma R2 comma 1.8. Now R2 will contain the value of 



the expression id2 star 1.8 and now, instead of id1 equal to t1 plus 32.0. Since the value 

of t1 is already in the register R2, we can simply say, add floating point R2 comma R2 

comma 32.0 and finally, store floating point id1 comma R2 will assign the value of this 

entire expression to id1. This is the sample machine code which is generated in compiler. 
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So here is some detail, a machine code generator converts intermediate code to machine 

code. Each intermediate code instruction may result in many machine instructions or vice 

versa, it is possible sometimes to compress many intermediate instructions into one 

machine instruction as well. It must also handle all aspects of machine architecture for 

example, we must use the registers very efficiently, try to use as many registers as 

possible because a registers are very fast; it must take care of the pipelining nature of the 

processor, then it must handle the cache sometimes; then if there are multiple function 

units, it must put them to efficient use. It should not be that only one of the function units 

is used and rest are all idle etcetera. 

Generating efficient code is an NP-complete problem, so it is one of those problems 

which is extra difficult. There are many techniques, which are used to simplify this 

particular operation for example, tree pattern matching based strategies are the best 

strategies we look at these in detail later; this needs, what is known as tree intermediate 

code instead of a quadruples and which we have seen so far. 
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Storage allocation decisions are also made here. Register allocation and assignment are 

the most important problems here, so which resistors use which are the variables that can 

be placed in these registers are there the best allocations that we can do etcetera are the 

questions we answered during this particular phase of compilation. Then we also have 

machine dependent optimizations; we saw machine independent optimizations a few 

minutes ago and now, we see some of the machine independent optimizations. For 

example, what are known as peephole optimizations? These peephole optimizations they 

analyze a sequence of instructions in a small window which is called as a peephole and 

using preset patterns, replace them with more efficient sequence. So it may be that a 

particular sequence of instructions is inefficient and there is a way of writing them in a 

efficient fashion, which is known to all programmers, such patterns can be put into a 

peephole optimizer. 

Redundant instruction elimination here is an example, if you have a sequence load A 

comma R1 followed by store R1 comma A; then actually this is not necessary- it is not 

necessary to have this store instruction after all because, A already has the value that we 

require and therefore, these two instructions may be replaced by load A comma R1 itself. 

The eliminate ‘jump to jump’ instructions: So, there is a jump instruction which does not 

execute any other code but, just jumps to another jump instruction; such multiple jumps 

can be eliminated, we will see a little bit of this later on. It is also possible to use 



machine instructions- idioms for example, use increment instead of load followed by add 

etcetera. So instruction scheduling is a very important machine dependent optimization; 

it is used to eliminate pipeline interlocks and increase the parallelism in programs; it is 

nothing but reordering instructions in order to reduce the pipeline stalls. 

Trace scheduling is used to increase the size of basic blocks and then increase the 

parallelism. Finally, software pipelining is used to increase parallelism in loops. So these 

are some of the examples of machine independent optimizations that we have and this 

brings us to the end of the overview of a compiler. 
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So, now we begin the next lecture on runtime environments. Here is an outline of the 

lecture; let us see what runtime support is; then we are going to see a few of the 

parameter passing methods. So we will discuss storage allocation; what are known as 

activation records will be used throughout this lecture, so we have to understand what 

they are. We discuss static scope and dynamic scope; what are these? Why are they 

necessary? How to handle them, and so on. How to pass functions as parameters to other 

functions? Then heap management - heap memory management and garbage collection, 

one of the techniques which is possible to discuss in the limited time. 
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So what is runtime support? See, it is not enough if we generate machine code from 

intermediate code and then hope for the best; it does not run at all. Interfaces between the 

program and the computer system resources are also necessary, otherwise just dumping 

the code which is produced into memory and then trying to execute, it will never work. 

There is a need to manage memory, when a program is running. So for example, this 

memory management must connect to the data objects of the program. So, it must 

understand, how to fetch values of the variables and then if there are parameters, how to 

pass them to functions and then where to store the return address, if there is a subroutine 

jump and how to access the function result after the function returns etcetera. 

So, programs normally request for memory blocks and then they go on releasing memory 

blocks whenever they are of not much use. So, all such memory functions must be taken 

care of by the memory manager. Other resources such as printers, file systems etcetera 

are also to be accessed and the runtime support provides facilities to access these as well 

but, these are kind of outside the preview of our lecture; so we are not going to discuss, 

how to access printers and file systems but, we will stick to the other task that we 

mention memory management and so on and so forth. 
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So these are some of the main task of a runtime support system. So let us review the 

parameter passing methods. One of the most well known parameter passing method is 

the call-by-value method; at runtime prior to the call, the parameter is evaluated and its 



actual value is placed in a location private to the called procedure. So this is exactly what 

happens during call-by-value. Therefore, it is just not possible for us to change the actual 

parameters, we always operate on the copy. This type of parameter passing mechanism is 

found in C and C plus plus of course, it is also found in Pascal but, Pascal is not used 

anymore, so that is the reason I mentioned C and C plus plus. 

C has only call-by-value method of passing parameters; it does not have other methods 

such as call-by-reference, we will see those methods later. So for example, even though 

we pass parameters frequently has a two functions, passing pointers as parameters does 

not constitute call-by-reference. So there is a general misunderstanding that if we pass 

pointers then it constitutes call-by-reference it is not. 

I will show you an example, why this is not possible in C. Pointers are also going to be 

copied; if we pass a parameter pointer as a parameter to a C function, the pointer is also 

going to be copied to another location and then that copy is used. Therefore in C, there is 

no way to write a function which inserts a node at the front of a linked list just after the 

header without using pointers to pointers - that is double pointers. We will see this in the 

picture here. 
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So, here is the original linked list, we have written a function - let say we assumed that 

we have a function, which is passed this header as a parameter; this is a pointer to this 

linked list. So when we make that function insert a node in the front of the header, what 



we want is something like this. So this is the original header, then we have the new node 

which is inserted and then the rest of the linked list but, because call-by-value copies this 

pointer to a private location, so this is actually a copy of the original pointer - the original 

header. So the insert function actually inserts the node right here and then makes it point 

to this. So, we have not achieved this; but, this is a completely different linked list, the 

original linked list is unchanged, this is not what we want. So, that is the reason I said 

you in C you cannot do something like this, without using double pointers. 
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So that is about call-by-value nothing more to it than this. Let us look at call-by-

reference, at runtime prior to the call, the parameter is evaluated put in a temporary 

location, if it is not a variable, so the address of the variable is also passed to called 

procedure, so this is the difference. So we have the address of the variable which 

corresponds to the parameter and value is also available through this particular address, 

so if the parameter itself is a function, there is not much that we can do - what I have said 

here happens - if it is the parameter is evaluated and put in a temporary location; if it is 

not a variable, it is an expression, so the address of this variable is passed, this temporary 

variable is passed but, it is not of much use. 

But, if we had only one variable as a parameter then the address of that variable itself is 

passed to the called procedure. Thus the actual parameter may get changed due to 

changes to the parameter in the called procedure, such a mechanism is found in C plus 



plus and Java, it is not found in C. 
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The third method of passing parameters, we look at an example after we finish call-by-

value result; the third method is called call-by-value result. This is a combination or 

hybrid of call-by-value and call-by-reference. So what happens here is that the actual 

parameter is calculated by the calling procedure; it is copied to a local location of the 

called procedure, the actual parameters value is not affected during execution of the 

procedure, so far it is very similar to call-by-value. At return time, the value of the 

formal parameter is copied to the actual parameter; if the actual parameter is a variable. 

So, if it is an expression- if the actual parameter is an expression, then you know there is 

not much that happens, because it would have been evaluated into a temporary and this 

final value is also copied to the temporary. So, the original parameter does not change 

but, at this point it is different; if it is a single variable, it becomes very similar to call-

by-reference; the original parameter which was passed now, changes and gets the final 

value of the parameter that was assigned right now. 

But, it is also different from the call-by-reference method when? When global variables 

are passed as parameters to the called procedure and the same global variables are also 

updated in another procedure invoked by the called procedure. I will give you an 

example of this and this mechanism is found in Ada. 
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So, here is an example to show how call-by-value result is different. A very simple 

program in Pascal style and since we are assuming different types of parameter passing 

mechanisms; it is better to use a different programming language construct to write down 

this rather than C or C plus plus. So there is a main program statement and a variable 

declaration a as integer; inside this is a procedure, which simply increments a and there 

is another procedure R which carries a parameter x, which is an integer; in which we 

have x equal to x plus 10 and then there is a call to the procedure Q and it ends. So in the 

main program, we initialize a to 1, call R with a and finally, print the value of a. 

So, let us see the result for various types of parameter passing mechanism as for as, a 

procedure R is concerned. Let us take call-by-value first, so we have a equal to 1 here, 

we called R with a. So the value of a copied to a local variable that is left side, this is x 

itself, so x is incremented by 10, so it becomes 11; then Q is called, so Q increments a 

which is actually the global variable a and has nothing to do with x; x is a copy of a, as 

for as R is concerned; so a becomes 2, this is a global variable. So when we print a, the 

value of 2 gets printed (Refer Slide Time: 37:20). 

Let us see what happens in call-by-reference. So again a is 1, the address a is passed to 

R, so this x and this a are the same. So, when we increment x by 10, x actually has - a 

itself has becomes 11. Even though it says x equal to x plus 1, in effect is a equal a plus 

10, so it has become 11, a has become 11. You call Q, a is further incremented by 



another 1 and therefore, a now becomes 12 and finally, when we print a, the value of 12 

is printed out. 

So this is call-by-reference; so the original itself has changed. Let us look at call-by-

value result. Again we have a equal to 1, call R with the parameter a, so a is copied to the 

local variable x, so x becomes x plus 10, so that is 11 but, so far we are within the 

procedure R. Therefore, this x and this a are different, only the initial value has been 

copied to this x. Now we call Q. So Q actually increments the variable a, so a becomes a 

plus 1, which is 2; a had 1 here and a became 2 here, this x was corresponding to the 

local variable itself but, then once R terminates, the value of x which corresponds to this 

parameter is now copied into the actual parameter which is nothing but a. So, a now gets 

the value 11, which was the value of x, so when we say print a, it actually prints 11. So 

all these three methods of passing parameters actually yielded different results, because 

there was a global variable involved and of course, the method of passing parameters 

itself is very different. 
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Let us look at a very old parameter passing method, which is not very often used any 

more in languages such as C and C plus plus but, it is definitely used in function 

programming languages, call-by-name mechanism. In some sense a very weird 

parameter passing method and let see why. 

Use of a call-by-name parameter implies a textual substitution of the formal parameter 



name by the actual parameter. So for example, you have a procedure R here; so R has 

two parameters X and I, which are integers. Let us assume that these are call-by-name 

parameters. 

Now, inside the procedure R, we assign I equal to 2, X equal to 5, I equal to 3, X equal to 

1 end and this procedure R is called by R, with a parameter of B of J star 2 and J. The 

result of this would be effectively changing the body to - this is I equal to 2. So I 

corresponds to J here, so textual substitution means J equal to 2, I has been replaced by J 

and then X equal to 5, the textual substitution corresponds to B of J star 2 equal to 5 

because X is nothing but, B of J star 2. 

Now, J had the value 2, so this became B of 4 equal to 5. Now, J equal to 5, so we had I 

equal to 3 here, so this J sorry this is J equal to 3, so I equal to 3 here and therefore, we 

also have J equal to 3 here this is not 5 and then we have X equal to 1, so X is nothing 

but, B of J star 2. This is the textual substitution, so because J has picked up the value 3 

from here, J star 2 now has the value 6. So B of 6 gets the value 1, so even though it is 

the same parameter B of J star 2, with call-by-name here we assign B of 4 equal to 5 and 

then here we have assign B of 6 equal to 1. With call-by-reference parameter passing 

method this would not have happened. We would have evaluated J star 2 once and then 

taken the address of B J of J star 2 and pass that to this particular procedure. So this x 

would have been the same location in the array B irrespective of what the value of J is. In 

call-by-name mechanism, it is not so it is very different. 
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The actual parameter corresponding to X changes whenever J changes. Hence, we cannot 

evaluate the address of the actual parameter just once and use it; that is what we would 

have done in call-by-value and call-by-reference. It must be recomputed every time. We 

reference the formal parameter within the procedure, so that is what I mean here, so what 

really happens is, we will have to evaluate that particular parameter again and again. So, 

a separate routine called thunk is used to evaluate the parameters, whenever they are 

really use. So for example, let us go one step before, here is X and this is I, so B of J star 

2 is evaluated again and again and the old value is not used anymore. So, it must be 



recomputed every time we reference the formal parameter within the procedure. 
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So, this evaluation of the parameter again and again whenever we require, it is done by a 

separate routine called thunk. So thunk is actually a separate procedure; so this procedure 

is to be generated by the compiler and it is called whenever the parameter is supposed to 

be accessed. So the thunk evaluates the parameter and then the assignment to that 

parameter or use of that parameter happens. So this was found in the old language Algol 

and it is still found in some of the functional programming languages, so that is the 

reason we studied it here. 
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Now, let us look at all the 4 parameter passing methods and see how they compare, so 

here is a simple program called swap which says temp equal to x, x equal to y, y equal to 

temp. So this is well known to everybody. So here we have I equal to 1 and then we have 

a i equal to 10, so that means a of 1 equal to 10 that is what happened and a is an array of 

just 5 integers. So then we have print of I comma a i, the routine swap is called with I 

comma a i and again, we print I of a comma 1; it is not a of i, it is a of 1 that is what is 

being printed. 

So, let us see what happens during call-by-value. So I is 1, so 1 is printed, a of 1 is also 

10, so it is printed. Swap cannot be done in call-by-value because only copies will get 

exchanged here, the originals will not get exchanged. So, 1 comma 10 is printed again in 

the second print statement as well because a 1 is still 10. 

Let us look at call-by-reference. So print of I comma a i prints 1 comma 10, no problem 

so far. Then swap, actually swaps these two values. So I becomes 10 and a of i which is a 

1 becomes 1. So, what is printed here is 10 comma 1. When you look at value result it is 

the same, it is just that the variables are copied back to locations. So otherwise there is no 

difference between call-by-reference and call-by-value result in this particular program, 

it prints 1 10 and 10 comma 1. 

Call-by-name is different, first time it prints 1 comma 10 but, then the second call after 

swap, the swap routine itself issues an error why? Let us look at the inside of the swap 



routine by textual substitution. So temp equal to x becomes temp equal to y because x is i 

and x equal to y becomes i equal to a i. So now, i equal to 10, since a i equal to 10 and 

now when we access a i, i is 10, so we are accessing a of 10 which is an error, the array 

is supposed to be only 5 locations long, so index out of bounds error is issued and the 

program terminates. So this brings out hopefully the difference between different types 

of parameter passing mechanisms. 
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Now, let us move on to code and data area in memory. Most programming languages 

distinguish between code and data; in other words, the runtime system will understand, 

what is code and what is data. The compiler also understands, what is code and what is 

data. Code is placed in some part of the memory and within that code, we never place 

any data, at least the complier will not do it. So code consists of only machine 

instructions and normally does not have any embedded data. 

So, the code area does not grow or shrink in size as execution progresses. Thus there is 

very little to change the code, there is no data, it cannot expand, it cannot shrink nothing 

changes in between but, there are exceptions. For example, if you consider java; java has 

this mechanism of loading classes dynamically whenever required; classes contain 

basically the code for it contains a lot of code and also has lots of data. 

This is an example, where I just said code or the area does not normally shrink or grow 

in size is not valid. In java, because of dynamic loading of classes, the code area can 



grow and it can also shrink. The class say that classes just abundant once the there is no 

use for it. There is something even deeper. Java has this reflection interface and using 

that we can actually produce code through our programs and even execute that code 

through this reflection interface. 

So, in other words not only we have the feature of dynamic loading classes; we have the 

feature of producing classes, which were never available anywhere, not to be seen at all 

and then, we can also execute this particular code; we can instant produce objects of that 

particular class and then, we can execute the methods of that class and so on and so forth. 

But, we are not going to consider java further in this particular lecture. We will assume 

that memory area can be allocated to code in a static manner it does not change but, data 

area of a program may grow or shrink in size during execution. 
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There are two types of allocations possible for memory: one is the static allocation the 

other is dynamic allocation. During static allocation, the complier makes the decision 

regarding a storage allocation by looking only at the program text; there is no execution 

of the code; there is no decision to be made at the time of program execution. Whereas, 

in dynamic allocation, storage allocation decisions are made only when the program is 

running. For example, there could be some stack allocation names local to a procedure 

are allocated space on a stack, so this happens in many languages. We will see this 

shortly. 



There may be heap allocation for example, used for data that may live even after a 

procedure call returns. Dynamic data structure such as symbol tables and these require a 

memory manager and sometimes, they also require what is known as garbage collection, 

because if that dynamic data structure, say the symbol table is not used anymore and the 

programmer does not do anything about it the runtime system will have to run a program 

called garbage collection and reclaim the storage otherwise, we are going to run out of 

storage very soon. 
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Static storage allocation an example is here, Fortran IV and Fortran 77 have this type of 

static data storage allocation. The compiler allocates space for all variables, see Fortran 

has local variables, it has global variables. So for all such variables of all procedures the 

storage is allocated at compile time by the compiler itself. So here is an example, there 

are main program variables, procedure P1 variables, procedure P2, variables procedure 

P4 variables etcetera. 

The code area of course, is always static and it is in some other part of the memory, so 

that I already mentioned. Here, there is no stack or heap allocation; there are no 

overheads which are actually related to stack and heap allocation. Variable access is very 

fast, because addresses are known at compile time. There is no need to determine the 

address of a variable by adding various pointers and so on and so forth. The pity is such a 

scheme cannot support recursion. The reason is recursion requires different locations for 



the same variable during its instantiation whereas, in static allocation this does not 

happen. 
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What is dynamic storage allocation? Compiler allocates space only for global variables 

at compile time. These are in a static area but, space for variables of all procedures will 

be allocated at runtime. This is exactly what happens in C, C plus plus, Java, Fortran 8 or 

Fortran 9. These are all languages were stack or heap allocation necessary for the 

variables. Variable access is slow compared to static allocation, since addresses are 

accessed through the stack heap pointer. We have to add something to that stack heap 

pointer the offset of that variable and then take the contents of that particular location 

and get the value of that variable. But, the advantage with this scheme is that recursion 

can be implemented. So, since we are going to have different spaces for different 

instances of the same procedure, it is possible to implement recursion here. 
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The unit of space allocation in dynamic storage allocation and in programming 

languages such as C, C plus plus, java etcetera is the activation record. So we are going 

to use this information later on. Let us understand the activation record structure. First of 

all, let us look at the information that is stored for each procedure, it stores the return 

address that is, where should it go once this procedure is completed. It stores, what are 

known as static and dynamic links. These are also called access and control links. 

Dynamic link is used to control the stack structure and the static link is used for the 

access of global variables. 

Function result or the address of the function result is also stored on this activation 

record. Actual parameters which are passed to this particular procedure call are stored 

here. The caller will evaluate the parameters and then depending on the type of 

parameter passing, either the value or the address is placed in the actual parameter list. 

Local variables of the procedure find a place here, then we require temporaries to 

evaluate large expression and so on and so forth. Those are all allocated space here. 

The machine status for example, the caller would be using some registers and before 

calling this particular procedure, it would have saved its registers but, this procedure 

possibly calls some other procedure and then it has to store its register contents in some 

place. So saved machine status is the place, where it stores the registers before calling the 

next procedure. 



Then there is space for local arrays, even though these local variables among themselves 

can host these arrays; it do not do that normally, we actually locate these array space at 

the end, just for the sake of uniformity and otherwise, there is nothing very special. 

Please note that the order in which these have been placed here is not sacrosanct; it is 

possible that implementations choose different orders than what is indicated here. For 

example, function result could be at the top and then below, it could be the return result 

or the static dynamic link etcetera. 

With this, we will close this lecture and in the next lecture, we will take up variable 

storage offset computation which is one of the very important jobs that a compiler has to 

do. It has to find offsets for various variables; where exactly are they going to be placed 

inside the stack, etcetera. Thank you. 


