Compiler Design
Prof. Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 11
Lecture No. # 28

Data-flow Analysis: Theoretical Foundation-Part 2 and
Partial Redundancy Elimination

(Refer Slide Time: 00:20)

Data-flow Analysis: Theoretical Foundations
Parl 2

YN Srikant

MPTEL Coursa on Compiler Desagn

Welcome to part two of the theoretical foundations of data flow analysis. This lecture
looks at various theoretical aspects of data flow analysis; for example, what are the
conditions under which the DFA algorithm delivers correct results and does it terminate?
What exactly is the meaning of a solution and how far are we from the ideal solution
etcetera.

(Refer Slide Time: 00:23)

Properties of the Iterative DFA Algorithm

@ I e ilerabvie algorahm cormadnges. ha resall 8 a soluhon
ta tha OF equations

Prool: If the equalons are not salisfied by the me the
laop ands, atlleast one of the OUT sals changas and wa
ierabe agan

@ I the framework is moncione, than tha solution found is the
magimien fixpaint (MFP) of the DF eguations
An MFP salutan s such thal o any olhar solubon, valees
of IN|B| and OUT|B| are < tha comesponding values of
thia MEFP (i.8., loss pracise

Prool: We can show by@induction that the values o]
s CHL T H_'i: oy dacreass (mn tha sansa ol < redal A%
the algorithm iterabes o .

¥R

Last time, we discussed the data flow framework which consists of direction - a domain
of values, which is actually a semi lattice - a meet operator for the lattice and set of
transfer functions. We started discussion on the properties of data flow algorithms,
especially the iterative variety. The first property is if the iterative algorithm converges
then the result is a solution to the data flow equations. This is true because, if the
equations are not satisfied by the time, the loop ends an iteration, at least one of the OUT
sets of the various basic blocks changes and therefore, we need to iterate once again.
When all the outsets are stabilized and if it does not change again, then that would be a

solution to the equation.

If the framework is monotone, then the solution found is the maximum fix point of the
data flow equations. What is the maximum fix point? A maximum fix point solution is
such that in any other solution the values of IN B and OUT B are actually less than or
equal to the lattice theoretic sense corresponding values of the maximum fix point value;
that is, that will be more conservative and less precise. In other words, if there is a
reaching definitions problem, you may get a slightly bigger set in a solution which is not
the MFP solution. That does not mean the MFP solution is the ideal solution.

We will actually discuss today, what exactly ideal solution is and so on. This property
that we stated now can be proved by induction, the number of iterations of the algorithm

and that is what we are going to induct upon.

(Refer Slide Time: 03:08)

Properties of the Iterative DFA Algorithm (2)

@« I the sami-lattice of the ramawork s monatong and is of
Firnite '_','|I 1hE e a -'_;|;,:-'|Il m 15 guarn laad Mo SOmig I

Prool: Datallow valuas decraasa wilh each faration
Max mo. ol iberabons = aght o th latice = no. of mooes
in the flow graph

If the semi lattice of the frame work is monotone, if it is of finite height, then the
algorithm is guaranteed to converge and it terminates definitely with a solution to the
data flow equations. You see there are many nodes in the control flow graph that we are
looking at; we have to actually scan every one of those nodes of the flow graph. Each
flow graph possibly would change its values in each of its iteration. As we saw just now,
the values only decreases, so from the top values it goes towards the bottom which is the

most conservative part.

That is why the maximum number of iterations in the worst case would be the height of
the lattice; that is, the maximum number of changes possible to the value multiplied by
the number of nodes in the flow graph. This may not happen in practice, why? Well in
practice, the number of iterations is actually 2 plus the depth of the flow graph, we have

seen this in one of the previous lectures.

(Refer Slide Time: 04:25)

Meaning of the Ideal Data-llow Solution

@ Find all possible execution paths from the start node 1o ha
berginning ol B

@ {ASSUmeng oraeand flow) Comeuts ths dala-thow valua al
the end ol each path (usng composihon of fransier
funclions] and apply e A operator 1o these valuas fo find
EFYgHr {‘i.'."-

& Mo execution of tha program can produce a smalier valua
far that program point
IDEAL|B]

& Answals graataer (i the sansa of <) than IDEAL are
NGOt (Mg OF Mond axdcumion paths have bean gnoned)

@ Any value smaller than or equal to IDEAL is consarvalive
g, 5ala (one or mone infeasible paths have baen includad)

o Closar the value to IDEAL, more precise it is

P e Py ¥ |

What exactly do we mean by the ideal dataflow solution? We will try to find an ideal
solution by the following method and we find all possible execution paths from the
starting node to the beginning of the basic block. Let us say, we are looking for IN values
of basic block, then assuming forward flow we compute the dataflow value at the end of
each path; that is, at the IN point of the basic block. For every one of these paths, we
apply composition of the various transfer functions for the basic blocks involved. We get
so many values, so we apply the meet operator to these values to find the greatest lower
bound or the glb of these.

Since, we have considered every possible execution no other execution of the program
can produce a smaller value than what we have just now computed. This ideal solution
would be meeting of fp with an initial value V in it; it is the overall possible execution
paths from the starting node to the beginning of B. Answers are greater than the sense of
partial order, less than or equal to IDEAL are incorrect, so we would have left out some

of the execution paths.

Any value smaller towards the bottom most point of the lattice; smaller than or equal to
the ideal value is conservative - safe. We would have possibly included some infeasible
paths also; that is, a condition possibly cannot be executed, but we have taken that

branch and considered the path along that part as well, but the solution is safe. In other

words, you know the application will not deliver in correct results if we use this

approximation.

(Refer Slide Time: 06:45)

Meaning of the Meet-Over-Paths Data-flow Solution

@ Since finding all execution paths is an undecidable
prodgan, W approdemale 1hes ol 1o anclede all paths in thae
flowe graph

MO B ! fel

AT S PGB

o MOPE| < [DEAL|B], since we consuder 8 suparsel of the
sal of execution paths

Closer the value to its ideal, more precise it is. So, this is the exact solution, but this is
not achievable in practice. Simply because, you just cannot find all the execution paths
of a program, this is un decidable problem, we try to approximate this by including all
paths in the flow graph itself. This is a graph theoretic path that we are talking about and
not an execution path, this is called as meet over all paths solution MOP.

Here, we again take fp of V in it, but P is a path from start node to B, so we are
considering all the graph theoretic paths from the start node to the beginning of the basic
block B and not the execution paths. Because, we include the graph theoretic paths
where some of them may not be executable and some of these paths may never be
executed in any execution of the program; therefore, MOP solution tends to be a little
more conservative than the ideal solution. That is why MOPB is less than or equal to

IDEAL B since we consider a superset of the set of execution paths.

(Refer Slide Time: 07:46)

Meaning of the Maximum Fixpoint Data-flow Solution

L] Fulld:"; all paths in a How .ch.'{L:r' may still b impossile. o i
S CYCHES
@ The itaralive algarithm does nad Iry this
& [Ewvishs ol Basic ocks, not necissanty N axscubon oedds
& |t appes the » operator at each join poird in the ow graph
& The sclution ohtained is the Mackrum Fiopoint soluticn
LAFP
& Il he framework i disinbutve. than tha BOP and MFP
solubons will Ba danhcal

@ (Hhargnsa, with ust monodomeiby, MEFP < WOR < JDEAL

and tha solution proveged N I DR e |;::-||r!:u%|h-

-

But even this is bit hard, finding all the paths in a flow graph may still be impossible.
What happens if it has a cycle? Then there are infinite numbers of paths within the graph
theoretic sense as well. So, you really cannot enumerate all the paths and do what we
want. The iterative algorithm does not even try this, it visits all basic blocks not
necessarily in execution order and it applies the meet operator at each join point in the
flow graph. It does not try enumerating a path and then apply the meet operator for paths.
Either the graph theoretic paths or the actual execution paths, it just applies it at every
join point in the flow graph.

The solution obtained is the maximum fix point solution, so this is all the MFP solution
that we discussed a little while ago. The iterative algorithm delivers this, so if the frame
work is distributive then the MOP and MFP solutions will be identical. We will see that
the constant propagation framework is not distributive and therefore, these two solutions
do not become the same for that particular framework. Distributive property is very
important for reaching definitions problem, the frame work is indeed distributive so the
meet over all paths and the maximum fix point solutions will be identical. We can do
very little about the ideal solution anyway; the best we can do is MOP. Here, we know
that if it is distributive then MOP and MFP are identical and therefore, we should be
happy with this result.

So otherwise, if we have just monotonicity like the constant propagation frame work
then distributivity is false, MFP is smaller than the MOP solution and MOP is of course
smaller than the ideal solution. But, whatever we get from the iterative algorithm is still

safe; it may be conservative, but it is definitely safe.

(Refer Slide Time: 10:04)

Example to show MFP < MOP

(Refer Slide Time: 10:20)

Example to show MFP < MOP (2)

I hara arg o paths Iraim Stast o B4
Start — B1 — B3 — B4 and Siant — B2 — B3 - Bd
o MOP[B4] - ([fgn -l [faew + R D Wi)
@ In Thi haralee a oriim, | we Chase [0 V8 1hé niodias in
the crder [Start. B1, B2, B3, B4}, thes
IN{BM] = fgal g (Viwe) 2 Tl Wi))

@ Mote that the » oparalor is baing applied differently hera
than in the MOF aquation)

@ The wo values above will ba equal anly d 1he lramawoark is
disbnibutiee

@ With just monotanicaty, we would hae Ii]B4] .’.Qﬂ-:

C o

So let us show that the MFP solution is indeed smaller than the MOP, rather is more
conservative than the MOP solution. This is the flow graph that we will consider, so in

several examples from now on start B; By, B3 and By, there is a join point at B; from B;

and B,. There are two paths from start to B, so that is easy to see right start By, B3, By
and start By, Bs, By.

(Refer Slide Time: 10:44)

Example to show MFP < MOP (2)

Thare ara two palhs from Stam o B4
Stari — Bl = B3 — B4 and Start —+ B2 — B3 - Bd
& MOP[B4] = ([(fg - 15

i
[B Iigmy

[r_l.'."-_l Wi |

@ In the aralree a GO, B We ChGSe [0 W15 Thr nodias in
the crder [Start. B1, B2, B3. B4}, thes
INTBA] = Farl fan { Virwr} Tzl Wi)]

@ Mabe that the » oparalor is baing applied diterently hara
than in tha AICH aquainn

@ Tha wo valuas above will ba equal anly # 1ha lramawark is
distnibutive

@ With just monotaniceny. we woukd have .'|"-.||i_'i-|-: .'.Eﬂ.:

., =

Now, how do you compute the MOP over these flow graphs? It very easy, consider the
transfer functions along this path; consider the transfer functions along this path as well,
compose these transfer functions separately and then apply the join meet operator. So
MOP of B, is f B; dot f By, so this is the first path; f Bs dot f , this is the second path.
Then we take the meet over these two and of course, the initial value of entire data flow

problem is V init, S0 this is our MOP solution. In the iterative algorithm, we get the MFP
solution, so to do that we must choose some order to visit the nodes of the flow graph.
Let us say, we assume start By, B,, B3 and By, so that is start B;, B,, B; and B4, so we do
this, then this, then the join point and then B..

So IN of B4 would be; so you do f B; of V in it, you do f B, of V in it, now we have a
join point here, so we apply the meet operator on these two and then do the f Bs. This is
the IN value for basic block B4. Observe that this value MOP which is f B3 dot f B; meet
f B; dot f B, apply to Vinit. This solution is f B; of f By V init meet f B, V inir; these two are
different. You know they are not identical and these two will have equal value only if the
framework is distributive. If the transfer functions over the lattice are distributive; they
will satisfy the distributive property then this and this will be identical, they will deliver

the same value.

So with just monotonicity IN of By, this value will always be less than or equal to MOP
of By4. This property is well known, this shows that the maximum fix point value will

always be less than or equal to the meet over all paths value.

(Refer Slide Time: 13:28)

Constant Propagation Framework - Data-flow Values

& Tha laltica for a '5-""!15'-'." varabée in the CP framework is
shown in the naxt slide
a An axampie of product of tano laltices is in the next shde
& DF valuas i i BLY Iramassork can also be oonssiensd as
& valuss in o produst of lnftices ol dehniticns
& one laibce kv each cefmubon. with - a8
':'ll:.' Ll i L i =l i
@& Tha laifice o thé DF valuas in 1he CP hamawork
Proguct of the sami-latices of the vasiablos {one laftice for

aach wAriake

Let us move on to the constant propagation framework; what is the constant propagation
problem? The constant propagation problem is to propagate the constant values of
variables down in the flow graph. Whenever there is constant value assigned to a

variable and it does not change, whenever the variable is used we will use the constant

value, some something like copy propagation applied to constants. Whenever there is an
expression involving constants, evaluate that expression and the compiler can do this.
There is no need to wait for the run time system to do this. We can now go on using the
evaluated value of the expression - constant expression and do constant propagation
further.

(Refer Slide Time: 14:44)

Product of Two Lattices and Lattice of Constants

[T}
*
(L 1)

0=
T [UHDEF)

an

g o

a1133.

5, X5, =5, 5
[ab)<fcdiifTa<c

What is the lattice for the constant propagation framework? Let us first consider a single
variable. Here is the constant propagation framework of a single variable, you have a
top; you have a bottom and then the constant values. The top says the variable is
undefined, the bottom says it is definitely not a constant. In between the variable can take
any of these values; they are in comparable, so in fact the combination or evaluation of
expressions is defined over and above this lattice as a transfer function and not as a part
of the lattice as such.

This is the abstraction that we are going to look at. This entire middle will be termed as ¢
- a constant. This top is another abstract value; bottom is one more abstract value, so we
have three abstract values for the constant propagation framework. One is the top or
UNDEF, then the constant infinite number of values and then the bottom which is not a
constant. Here, | should point out that this lattice is indeed infinite; you know the number
of values possible for the constants is definitely infinite, not necessarily in the practical

way, but in theoretical way. The height of the lattice is finite; you know this is just 2.

(Refer Slide Time: 16:10)

Constant Propagation Framework - Data-flow Values

& Tha laltica for a '5--"9'§1|E‘I varabée in the CP framework is
shown in the naxt slide
@ An axampde of product of tao lallices is in the next shde
@ DF wvaluas in g BLY Inemaseork can alss be oonssSansd as
® yalues it a product of laftices of definitions
& one laihce r each calsubon, with - as T and (d] s e
::'Il:f Ll i L i =l i
a Tha lafice of tha DF valwas in (he CP hamawork
& Product of the somi-lattices of the variablos (one lafice for
aach wariable)

(Refer Slide Time: 16:25)

Product of Two Lattices and Lattice of Constants
Bt et

|r.'I:| {ELT) |J-.I|

- -
{0.1] (L1

(0L}

T [UHDEF)

|:J.. a

a133.
5, X5, = |5, x |5,
b fabi<icd)iffacc® 4
-~

J'lH.iL"_| -

-

Thecrgey w8 e menamens il]
L]

We also need to understand what exactly the product of two lattices, because the constant
propagation framework requires the product of lattices. Let us take very simple lattices
of two of them; top 0 bottom and top 1 bottom, we want to do cross product of these two
lattices. We are going to consider all possible pairs of values, of course from one to the
other in a cross product, top top, top 1, top bottom. You know 0 top, 0 1 and 0 bottom;

bottom top, bottom 1, bottom bottom, so all these values are here.

Now, when can we say that this value is smaller than this value or this value is smaller
than this value? In general, we can say that a coma b, so this is a pair in the product
lattice, c coma d is another pair in the product lattice. So a coma b is less than or equal to
¢ coma d, if and only if the first two components are less than or equal to; a less than or
equal to c. Second two components are again related by less than or equal to; b less than

or equal to d.

First component belongs to the first lattice and second component belongs to the second
lattice. The number of elements in the lattice will be number of elements in S; multiplied

by the number of elements in the other one, so 3 into 3; 9 elements here.

Let us verify the inequality in this; it is built upon the inequality from this single lattice.
You know O less than or equal to top, bottom less than or equal to 0. Let us take the 0
bottom and 0 1, so O less than equal to 0 is not a problem and bottom less than or equal
to 1 is also not a problem. This is the way; for example, you know we cannot have any
connection between top coma bottom and 0 coma top, simply because top is not less than
or equal to 0. Even though bottom is not equal to top, top is not less than or equal to 0,
you can see that. This does not show any transitive relations as usual in the case of a
lattice diagram, it shows only the immediate relationships; transitivity is to be inferred

from the relationships and inferred from the diagrams.

(Refer Slide Time: 19:04)

Constant Propagation Framework - Data-flow Values

& Tha lattice for a '5--"-\:15'-'." varabia in the CP framework is
shown in the naxt shide

@ An axample of peoduct of tand laltices is in the next shde

@ DF values in the KLY Iramawork can also b oonssdened as
vaduss in a prodect of lattices of delinitions
& ona lothce by apch coafmibon, with - a8 7 and (d] o e

':'|::.' otfer o

& [ha lafice o tha DF values in thea CP framsasork

& Product of the somi-lattices of the variablos (one lafice for

aach wariakHds

(Refer Slide Time: 20:13)

Product of Two Lattices and Lattice of Constants

L

(4,11

{ =

T [UHDEF)

Data flow values in the reaching definitions frame work can also be considered as values
in a product of lattices of definitions. So, we had considered the reaching definitions
lattice, in which the subsets of the definitions are the elements of the lattice. Another way
of looking at the problem is you have one lattice for each definition, with phi as top and
d as the only other element, no other bottom; two element lattice. Now take a product of
the lattices of each definition, if there are ten definitions, then you have a ten fold
product. So finally, you will have a product lattice for all the reaching definitions rather
all the definitions in the program. You can use exactly the same type of argument that we
gave here to construct that lattice. Finally, argue about the maximum fix point solution

and so on.

(Refer Slide Time: 20:21)

Constant Propagation Framework - Data-flow Values

& Tha laltica for a '5-"“'51“-'." varabée in the CP framework is
shown in the naxt slide
@ An example of product of taa lattices is in the next shde
& DF valugs in e BL Inemassork can also Be oonssiengd as
vl i o produc] of lnttices of dehnitions
aach dalamibon, wth - a8 mid (| as B

afiky e @ T

@& Tha laifice o thé DF valuas in 1he CP hamawork

Proguct of the sami-latices of the vasiablos {one laftice for
aach CAriasn

Observe that the number of elements is going to be the same, so whether we use the
product lattice or the subsets of all sets of n elements, it will have exactly the same
number of elements. If there are n definitions, each one has two elements, so 2 into 2 into
n times is 2 to the power n anyway, so we still have the same number of elements in the

reaching definition lattice considered as a product as well.

It is possible to consider many others also as product of lattices. The lattice of the
dataflow as used in the constant propagation framework is the product of semi lattice of
the variables. One for each variable exactly is like in the RD scheme that 1 mentioned

now.

(Refer Slide Time: 21:20)

CP Framework - The » (meet) Operator

@ In a proouct ki, (8;. 0y) ay, B N @y < g 8 and
by <p by assuming & . 4; Aand by b, = B
@ Each vanable is associated with a magp m
& mv) & tha absiract walue (&8 in (e lathoe) of e varnabla
v i & imag m
@ Each elament of the proaduct latice s a similar, bul “larges
mapg m
& ‘Which 5 dalned jor all variatdes, and
wharé /i v) 15 The absbiact value of Bhe vaniable v

@ Thus, m < m' {in the product lattica), iff for all variables

il v vl OR. m A ™. i i = v v
fgr afl vanablas v

- =

We already saw this in a product lattice a;, b; is less than or equal to a,, b, if and only if
a; is less than a, and b; is less than b, in the appropriate lattices. Now, we associate a
map with each variable, so the map actually uses the abstract value as in the lattice. |
showed you the abstract value in this case; the bottom and this constant value or rather

the top and this constant value, or the bottom.

So m v is the abstract value as in the lattice of the variable v in a map, so if variable v is
undefined then the m v gives us UNDEF or top. If the variable value is a constant, then it
gives you the actual constant value; if the variable value is not at all a constant - certainly
not a constant, then it gives us the bottom or NAC value. So, this is what the m v map for

each variable gives us.

Each element in the product lattice is a similar but have larger map; now this map for the
product lattice is defined for all variables, so again the product lattice would also have a
top bottom and the middle. m v is the abstract value of the variable, therefore in the
product lattice if you are going to have m less than or equal to m prime, then for all
variables v we should have m v less than or equal to m prime v; that is what we need to
have. So, you have to have this map, which this tells you take m v if it is top or bottom, it
is trivially satisfied, but if it is somewhere in the middle, then m v must be less than or
equal to m prime v. Otherwise, we do not have any connection between these values or

in the meet sense; m meet m prime is m double prime, if m double prime v is m v meet

m prime v, for all variables v. So here, it was just for that variable and here, we have for
m for single variable, but here, m v must be less than or equal to m prime v for all the
variables. The bigger map here is defined for all variables and that is why we are

justified in saying that m v less than or equal to m prime v.

(Refer Slide Time: 24:28)

Transfer Functions for the CP Framework

@ Assuma ong slalement por basic block

& Transler functicns for basic blocks Containing marry
sialaments may Do oblaindd by composstion

a miv) is the absiract value of 1he varable v in a map m

& Tha 581 F ol tha frameéwodk Solains iranshas lunclions
which acceplt maps and produce maps as outputs

@ F comlains an ety map

& Map lor the Srarr block 15 migi v LINDEF . Tos all
variables v

o This i reasonable since a8 variables are undelin Aorg
a program begins

[

Let us look at the transfer functions, so far we looked at the meet operator in the constant
propagation framework. This is the meet operator definition; m meet m prime. Again
remember, we have a product lattice of the individual variables. Now let us look at the

transfer functions for the constant propagation framework.

Assume that you have one statement per basic block. Transfer functions for basic blocks
containing many statements obtained by composition; this is a very simple thing which
we have already seen. So m v is abstract value of the variable in a map m, so this is the

other assumption.

The set F of the framework contains transfer functions, which accepts maps and produce
maps as outputs. The transfer functions here, they take a map and give you another map.
That is the way they are, because the elements of the product lattice are maps, so the

transfer functions also must work on maps.

So F contains an identity map, this is a requirement of the frame work itself. Map for the
start block is mg v equal to UNDEF for all variables. This is reasonable because nothing

is really defined before the program begins.

(Refer Slide Time: 25:47)

Transfer Functions for the CP Framework

& L& ; be the tranglar funchon of the staleman! £
& Il o7 = Nim), than I, is dafined as lollows
'u IF & k& ol an asssgnment, £, B e danhty Tunchor

ﬂ Il % & o assagnment b a wariabbe x, then m v vl ol
LI v, prossded, one of the following conditicns holds

Let us say fs is the transfer function of this statement, let us see how to define fs. So m
prime is fs applied on m, it takes a map and gives you another map. How is fs defined? If
s is not an assignment, then fs is an identity function so very simple; it is not an

assignment at all, then fs is just a simple identity function.

If s is an assignment to a variable x, then m prime v is equal to m v for all v not equal to
X, provided one of the following conditions also holds. What are the various possibilities
now? We are looking at assignments, RHS of s is a constant, so we have x equal to c.
Therefore, we must modify the map and then say m prime x now becomes c, it is a
constant. For this variable the map will return constant value c, whatever is the constant

value.

If the RHS is an expression; y plus z, so what is the possibility? Then you have three
cases possible, it is either m y plus m z, if both m y and m z are constants. Apply my,
you may get y is a variable, z is a variable. m y will give you some value, m z will give
you some other value, if these two are constants then you just add the two constant
values and that is what happens to be the m prime x. The map m prime for x will return

that particular constant value from now on, so this is constant folding.

Either m y or m z is not a constant value, which is already proved then m prime x will
also become NAC. If one of them is not a constant, you cannot have y plus z as a
constant anyway, in all other cases it is UNDEF. This is the map for the variable x in the
new m prime, for all other variables the map remains the same as before, whatever the
value is retained, but for x the map has now changed. If the RHS is any other expression
then m prime x is NAC, this just covers all other possibilities which we have not been

intelligent enough to think off.

(Refer Slide Time: 28:38)

Monolonicity of the CP Framework

It must bé noted that the transfar fenction (i Il M) akways
produsas a “lowedr of Same sl valug m tha GP lafhce
wihenevar lhede 15 B chang in inputs.

This is regarding the transfer function for the framework; now let us start looking at the
properties of the transfer function. This you know, these transfer functions actually
satisfy the monotonicity property. Here is the single lattice, rather lattice for a single
variable. Now, let us consider m y, m z an m prime x ,the way we have just now defined
it. m y let us say is UNDEF, then if m z is UNDEF, m prime x is also UNDEF. If m z is

c a constant, m prime X is still UNDEF, because m y is UNDEF.

Observe that if one of them is NAC, m z is NAC which is not a constant, then m prime x
becomes not a constant. Similarly, when m y is a constant if m z is UNDEF, we remain
at UNDEF if m z is a constant, then we have the value c¢; plus ¢; and if m z is NAC, then
we have NAC. So far for NAC it does not matter, what we remain at NAC. This is the
definition we have just now provided. What should we observe here, it must be noted

that the transfer function always produce a lower or same level value in the CP lattice

whenever there is a change in inputs. Let us say one of the values is UNDEF and the

other value changes from UNDEF to ¢, to NAC, let us see how m prime changes.

It was UNDEF at this point, then for c, it was still at UNDEF and for NAC it moved
down all the way to NAC. It went from the top to the bottom as the input z change from
UNDEF to NAC. When it was m y ¢, it starts with UNDEF, then it goes to ¢; plus c;
which is again NAC constant value and then it goes to NAC, with NAC it always
remains at NAC, m prime x always remains at NAC. In other words, whenever we have
changed the input, the change in m prime x has always been from the top to the bottom,
it has never changed from bottom to the top. It was not as if it was a constant and then it
became UNDEF or it was not a constant then it became constant, this has never
happened. It has not gone up and then come down etcetera; it always travel from the top
towards the bottom.

This is precisely what we require for monotonicity, whenever there is a change in input
in one direction, the change in the output should also be in the same direction. That is

something that we want, if this is satisfied and therefore, the CP framework is monotone.

(Refer Slide Time: 32:02)

Non-distributivity of the CP Framework

BY | EWE &y
The isealvee method T s always & constaml
mEtEr=InaE ¥ 1o be a Bt this canncd ba
non-corsiang ceiermingd by the
Ieraitve melhod

We are going to prove that the CP framework is not distributive. This is a very important
thing to show, because probably this is one of the most famous examples which show

that distributivity is important. Our problem such as reaching definitions and so on, the

frameworks are indeed distributive, so there is no problem about that we have seen this

in the last lecture.

The implication is, since the CP framework fails to be distributive and it is only
monotone, our MFP solution will not be as good as the MOP solution, it will be slightly

inferior. What exactly do we mean by this is; this example will show that.

We have x equal to 2, y equal to 3; and x equal to 3, y equal to 2. Here, we have z equal
to x plus y, so if you add up the values of x plus y at this point, we know that both sides
gives you exactly 5. So 2 plus 3 is 5, 3 plus 2 is also 5. So the value of z irrespective of
the path taken, either through B, or through B, during execution is actually going to be 5.
The problem is our data flow analysis cannot determine this, because the value of x here
and the value of x here are different, x equal to 2 and x equal to 3. The value of x at this
point is not a constant, it is either 2 or 3, but it is not the same, it is not a single value.
The same is true for y, y is 3 or 2, it is not a constant at this point and therefore we deem

that z is also not a constant, so how do we show this formula.

(Refer Slide Time: 34:05)

Non-distributivity of the CF Framework - Example

a It 5, &, & are transtor funclions of B1, B2, B3 (resp.), ten
Bl Pyl T) & Bl 1T) S Pyl T 1 '__I'L.rl' i)
s showm in tha tabhe. and thereione the GF framework is

nan-gisinbul e

(Refer Slide Time: 34:47)

Non-distributivity of the CP Framework

Bl | EWE &y
The Ibtatieg methad T 8 alwarys & constasi
mETErEIREE P 1o D A Eeurt 1his cannecd ba
non-coesiani defermined by Eha
ieerattve melhod

Let us look at fy, fp, f3 as transfer functions of the three basic blocks B3, B,, Bs. Here is
m, it is either m x, m y, m z and then mo. So this is the initial map, it is UNDEF for all
variables. You apply f; mg so what we want to show is f3. you apply the meet operation
at the join point and not after taking the path that is what we mean. So, f; mg meet f, mg
and then f3, so this is the MFP there, whereas f3 of f; my meet f3 of f, my, so this is the
MOP there.

Let us evaluate for this example; for these transfer functions and see what happens.
Apply f; of mg, m of x is 2, m of y is 3 and m z is still UNDEF, because we just want to
apply for x and y. Remember, here we have only x and y we do not have z. Similarly for

f, my we do not have z here. So we get x as 3 and y as 2 and this remains as UNDEF.

Now take that meet, so f z remains UNDEF, but 2 and 3 give you not a constant, 3 and 2
also give you not a constant, because they are not equal, it always gives you the glp as
not a constant. We go downwards then apply fs, well the damage is already done and you
already have an NAC. So applying any transfer function to NAC will not produce
anything but NAC, so z, now get NAC from our definition.

So now on fy this is the MFP, you know it is part of it. Now let us do the MOP part, take
f1 mp and then apply f; on it. So we get 5. See this, so this is z. x and y do not change,
only this. We are taking one path; by calculating z we get 5, take the other path and

calculate z, so along this path z is a constant, so we get 5. Then take the meet of these

two 5, you get 5 itself for these 2 NAC. The MOP solution gave us the value 5, constant

value for z, whereas the MFP solution gave us NAC not a constant as the solution.

This shows that the two values are different and therefore, the constant propagation
framework is indeed non distributive. This is the end of this particular lecture on
theoretical foundations, now we will continue this in the next lecture on partial

redundancy elimination.

(Refer Slide Time: 37:58)

Parhial Redundancy Elimination

(Refer Slide Time: 38:07)

Partial Hedundancy Elimination Transformation

Welcome to the lecture on Partial Redundancy Elimination, so this is a very important
optimization and therefore, a complete lecture is being devoted to this particular
optimization. We saw an example of what exactly is PRE in the lecture on introduction
to optimizations, so | am producing the same example here to recapitulate what the

transformation is.

We have a very small flow graph in which this basic block has x equal to a plus b and
then the basic block number 4 also has y equal to a plus b, but the basic block number 2
and basic block number 3 do not have any definitions rather than the evaluations of a
plus b. what has happened is in this particular expression, if we follow this path it will
compute twice, whereas if we follow this particular path it is being computed once. So
can we eliminate computing this particular expression twice; we can do so, but how? We
introduce the computation of a plus b on this particular path, now the this a plus b is
available along this path and also along this path, so we have simply applied global
common sub expression elimination; h equal to a plus b, x equal to h, h equal to a plus b

and y equal to h.

So the basic idea is if an expression is available along one or more path but not along all
paths, then it is said to be partially available. Such partially available expressions are
turned into fully available expressions by introducing some extra computations. Then,
we apply GCSC and eliminate the common sub expression. Now you can observe that a
plus b is computed exactly once along this path and also along this path. The
disadvantage is that you have introduced extra code so there is a bit of code blob, but the
advantage of applying partial redundancy elimination overwhelms the bad effects and

therefore, we always go ahead with PRE in a very standard compiler.

(Refer Slide Time: 40:53)

Some Definitions

@ Partially redundamt computatbon|gic)
& A compulabon wheoh s performed twice In o cartain path
Q@ Partial redundancy elimination
& imolees insartions and dalstions of computations o ensum
thal no pre' s st
@ Salety
b

& 0 mAroonecion of computabons of neny vakees on any path

Let us begin with some definitions; what is a partially redundant computation? A
computation is performed twice or may be more number of times in a certain path, so
this is a partially redundant computation. So what is partial redundancy elimination? It
involves insertions and deletions of computations to ensure that no partially redundant

computations exist, so i just showed you the example of this now.

(Refer Slide Time: 41:45)

Partial Hedundancy Elimination Transformation

An important aspect of PRE algorithm that we have is safety, so we should not introduce

any computations of new values on any path in the program. For example, in this path,

suppose there was no computation of a plus b along some other path. Let us say this we
are not supposed to introduce a new computation along this path, so if it has one, fine; if
it does not have one then we should not introduce it; so that is the basic idea. The number
of time it is evaluated is immaterial, here it is 2 and it is 1 that is ok, but 0 and more than

0 really matter.

(Refer Slide Time: 42:14)

Some Delinitions

-ﬂ Partial Y regundan computakon|pre)
& A compulabon whech is paffarmad byica in & cartain path
Q@ Partial redundancy elimination
iyohas ingarbions and salgtons of computations o onsung
that no pro’ 5 exisd
@ Salety
Mo nbroduckon of computabions af neesy vakus

n s pecEmm

So safety is a very important feature of our algorithm, we do not want to introduce
computations of new values on any path in the program, why? If we do this may be the
semantics of the program can be retained by the compiler, there is no problem about that
but, when we run the program it may lead to some run time errors because of the
limitations of CPUs on the overflow of values and underflow of values, things of that
kind. So, we do not want any such exceptional situations to occur by introducing extra
computations.

(Refer Slide Time: 42:56)

Previous Work

@ Moval and Bermanse's algorithm
» Badmechona! datafow analysts, comphcaled
» Doas not eliminake all pre's
Hedundan code motion (withoud gain
@ Dhamahere and obhers improved this algonthm
@ Knoop and Stelen's algoithm
» Uncinectional datnfiow anadyses, compuiabonally optsmal
Mo redundant code makan

L
» Moweds some blocks'sdges bo be split in the beginning
o

|t & s whal unnbuiiree arnd comeles

There has been plenty of previous work, the seminal research papers of Morel and
Renvoise. This was a bidirectional data flow analysis, in other words we have seen
forward and backward analysis, both these is involved in the algorithm, then it becomes
a bidirectional data flow analysis and therefore, the problem is complicated. It does not
eliminate all the partial redundant computations, some of them still remain. Redundant

code motion without gain happens, so the code gets moved but there is no gain at all.

Dhamdhere and others improved this algorithm, but then the optimal version was
delivered by Knoop and Steffen. They transformed the problem to unidirectional data
flow analysis problem, so there was no bidirectional analysis required, no redundant
code motion happened. Computationally it was optimal, nothing better could be done,
but it needs some blocks and edges to be split right in the beginning, this is a

disadvantage, it is somewhat unintuitive and very complex to understand.

(Refer Slide Time: 44:20)

Highlights of Our algorithm

& Smpla and inburie, wih four unidiegctional liows

2 compuiatonaly and lhatime oplimal

a Moo ::I:_|-' S e G 4§ .'\\._:|||||||r'rj_ 115 ndadaa on LRI
and [0 mear! Computanons

@ Yiuelds points of insemon and replacemant dirgctly

@ Inbreduces I ASlions o Sk pardal avaabally and zafe
parhal antcpabeliny

The highlights of our algorithm are, it is simple, intuitive and it has the same four
unidirectional flows as in the case of Steffens algorithm. Computationally and lifetime
optimal: again, as in the case of Knoop and Steffens algorithm. Here is the basic
advantage - no edge splitting in the beginning; it is needed only at the time of insertion of

the computation that is at the end of the algorithm itself.

The second advantage is, it yields points of insertion and replacement directly, so there is
no need to compute this separately, this is a part of the algorithm. It introduces the
notions of safe partial availability and safe partial anticipability, which need not exist in

the previous works.

(Refer Slide Time: 45:12)

Highlights of Our algorithm

o Every safe partially redundant computation offers scope for
resundancy aliminatbon

& Any sale partially redundant compadation at & point can be
mada wially redundant by insarian of néw computanons &l
POODRT pinls

@ Computaben of any exprassson that is fotally redundant
can be replaced by a copy ruka

@ Aftar tha transformation, no axpression is recomputed a1 &
paind il its value is availabie (not partial ¥l from previcus
computations

What we basically do is; every safe partially redundant computation, we have not yet
defined this term. It offers scope for redundancy elimination, so we turn every safe
partially redundant computation at a point to a totally redundant computation, by
introducing a new computation at appropriate points and by breaking certain edges.

The computation of any expression is totally redundant can now be replaced by a copy
rule. So, this is as in the case of global common sub expression elimination. After the
transformation no expression is recomputed at a point if its value is available from the

previous computations, all these are highlights of our algorithm.

(Refer Slide Time: 46:05)

Properties of Expressions at a Point p

@ Aaiatiy
Compuied along all paths reaching o from the sl
wrih md ch 1S 10 el Pl s
a FPartal svailatuily
& Lompulsd along aness! cna path 1o o
@ Anfiairy
- mouled along all paths starting from oo the and modae
aeith e changes 1o opsraads
@ Farfal anhcioataily

C !"I':.'l'!l"'.'." RAONG ANGESS S |":1!|' Troim o

What are the properties that we require at a point? These are the basic things that we
require. We already know available expression of dataflow analysis, the availability of
expressions. In all our discussion on PRE we always referred to properties of
expressions, all the properties are defined with respect to individual expressions, for each
expression there is going to be a set of properties; for example, availability, partial
availability, anticipability, partial anticipability and safety, etcetera. How do you define
the availability of an expression? The expression is computed along all paths reaching p
from the start node with no changes to operands, so this is availability. It is as usual,

available at a point implies this anyway.

The basic difference here is we are going to have a bit vector, which shows availability
of various expressions in various basic blocks. Rather for a single expression, in various
basic blocks we are going to have availability shown as a bit vector. So, rather than one
bit for each expression there is going to be one bit for each basic block and a bit vector
for each expressions. Partial availability means, computed along at least one path to the

point p, so we have seen an example of this already, we will see more very soon

(Refer Slide Time: 47:47)

Partial Availability and Anticipability

Feg.ia) and Fig.ibl - & + b is partally evailabie al entry 1o 4
Exg.da) - &+ H1% parteadly anbopatio al oxit of 1
Fig.(b} - & + b is anticipable at exit of |

Here is an example; take this figure, the figure a and b; figure a plus b is partially
available at entry to 4. Take 4 here, so entry to 4; suppose we traverse of this path a plus
b is computed here and therefore it is available ,but if we follow this path a plus b is not
computed along this path and it is not available, so we say a plus b is partially available

at this point.

(Refer Slide Time: 48:23)

Properties of Expressions at a Point p

@ Avaiateily
& Compuied along all paths reaching o from the siart node
wtih meo ch L LR e el 8
@ Partal svailabanly
& Lompuled along aieas! cne path 1o o
@ Anteainy
L mpubed along all paths starting from g o the end node.

with ro changes lo operands

@ Parfial anicioabaiily

Compuied along afesss one path from p

The same is true here, if we follow this path a plus b is available, but if we follow this

path it is not, so it is partially available. Anticipability computed along all paths starting

form p to the end node with no changes to operands. There is a computation of the
expression coming from p to the end node that is anticipability, partial anticipability is
computed along at least one path from. So partial availability was computed along at
least one path to p and partial anticipability is computed along at least one path form p to

the end node.

(Refer Slide Time: 49:01)

Partial Availability and Anticipability

Fig.(a} and Fig.ib} - & = b is partally evailabde al eniry fo 4
Fup.a) - &+ 15 partsadly anbopatde al oxit of 1
Fig.ib} - @ + b is anlicipable al exit of |

Fan

In figure a, a plus b is partially anticipable at the exit of 1. At the exit of 1, why is it
partially anticipable? If we follow this path a plus b is indeed computed, so it is
anticipable. If we follow this path, a plus b is not computed and therefore, it is not

anticipable. So in total, from here to this at this point we say partially anticipable.

Figure b, a plus b is anticipable at the exit of 1, so this point we have only one path to
take to the end node, so y is equal to a plus b computes a plus b and therefore, a plus b is
anticipable at this point, it is also anticipable at this point, this point and so on. Similarly,
at this point again, a plus b at the exit of 2, a plus b is indeed partially anticipable. If you
take the entry to one, a plus b is anticipable, because a plus b is directly computed at this

point, it does not matter which path we take.

(Refer Slide Time: 50:04)

Properties of Expressions at a Point p

@ Salaly
Either avalalie or anlicpable o
o Safe partial avad&bility
o All ponts an the path of availadility from the hasr
computaton of e sxprasson o o ar sake
@ Sale parfial anbeipability
» All poinits on the path of enbcpabaity Maom o o ihe s
sormputabon of the ecpression ang sols
& Safe par !'-.'l-':'_r' redundant Covmmatanon
» Locally anficipabds and sale partially avadabds af [he snkry
o the node

What is safety? It is actually defined as either available or anticipable. In other words,
the expression value should arrive from the top or the expression should be computed
later; one of these must happen. What it indicates is there is going to be a computation of
the expression on a path passing through a point, if that point is safe. That is why safe
points are very important for us; it ensures us that no new computations will be
introduced.

(Refer Slide Time: 51:10)

Safe Partially Available/Anticipable Computation

F .48l - a 15 sale partially anhcipaive at enfry 1o 3
Fig.ibl - @+ bis sale partially available at entry io 4

= wan

1 ‘]
LR E™ msls

L o

ufi"s Dl

Safe partial availability; all points on the path of availability from the last computation of
the expression to p are safe; in other words, we are looking at the last computation of the
expression and then the point p, from that last computation to p the points must be safe.
For example, in figure b, a plus b is safe partially available at entry to 4, so here is the
entry to 4, here is the last computation of a plus B. We are looking at this path, the dark
circle implies that all these points are safe, what does safety mean? It is either available
or anticipable. Here at this point, it is available, because a plus b is computed right here,
at this point availability is not true, because a plus b is not available from this path, but it
is anticipable, so anticipability is true. Therefore, the point is safe, this is also safe,
because anticipability is true even though availability is not true and this point is also
safe because anticipability is true. All these points are safe from the last computation of a
plus b to this point; therefore this particular expression is safe, partially available entry to
4.

(Refer Slide Time: 52:14)

Properties of Expressions at a Point p

Sately
Either ovadabde or aniopabde p
Safe partial avalability
o All poants on 1he paih of achilability I (e Lasr
cormputaton of the expression to p arm sale
Sale mar Tl .1.'2."|Z-;Z'.?D"'|'_i-'
All points on the path of sniscapabdity lom oo e e
mputalion of the sxpression am sals
Sale parfiany redunaan! computaton
o Locally amicipable and sale partally avadable af the sntry
ol the node

(Refer Slide Time: 52:24)

Safe Partially Available/Anticipable Computalion

F g.(al - a-+ bis sale partially anticipable at antry 10 3
Fig.ibl - @+ &is safo partially availablo at entry 10 4

Han

What is safe partial anticipability? All points on the path of anticipability from p to the
first computation of the expression are safe, so a plus b is safe partially anticipable at
entry to 3. Look at entry to three, so these are the various points which are all safe. Why
is this point safe? Because of availability, again in this path the expression a plus b is
available at this path; at this point expression a plus b is available and so on and so forth.
At entry to 3, we have availability true, even though anticipability is not true, this is a
safe point and anticipability is partial. From here to here it is anticipable, but along this
path it is not anticipable, so partially anticipable but safe; so safe partially anticipable.

(Refer Slide Time: 53:06)

Properties of Expressions at a Point p

@ Salaly
Either avalalie or anlicpable o
o Safe partial avad&bility
o All ponts an the path of availadility from the hasr

computaton of e sxprasson o o ar sake

@« Safe parfial anbcipability
» All poinits on the path of enbcpabaity Maom o o ihe s
mputation ol he ecpaession g sols
& Safe par !'-.iT_r' redundant Covmmatanon
» Locally anficipabds and sale partially avadabds af [he snkry
o the node

Safe partially redundant computation, is locally anticipable and safe partially available at
the entry of the node. Let us understand this, so here it is not safe partially available at
entry to 4, so this is an example to show that. We will discuss this particular example in
detail in the next lecture with more explanation, thank you.

