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Welcome to the lecture part 3 of Machine Independent Optimizations.
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In the last lecture, we discussed induction variable elimination, strength reduction,
etcetera. We also saw some parts of region based data-flow analysis. Today, we will

continue with region based data-flow analysis and then move on to the theory of data-
flow analysis.
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Again, a very quick revision; we discussed regions, which are groups of nodes. All edges
between the nodes in N are in the region, except for some of the back edges, which enter
the header, and the region may have multiple exits. So, the basic idea in region based
analysis is to compute gen and Kill for basic blocks in a certain region, gen R comma B
and kill R comma B. In this, we consider the definitions generated and killed along the

paths within the region R, from the header of the region to the basic block B.
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Central to region based analysis is the computation of a transfer function called trans R,
BS. This tells us how a set S of definitions or anything else are modified when we pass
through various regions. trans R, BS is defined as gen R comma B union S minus kill R
comma B. If the input to this trans function is phi, then we get gen U comma B, which is
nothing, but OUT B. So, we basically want to compute gen U comma B, where U is the

region containing the entire flow graph.
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Now, how do we get regions? We applied T 1 T 2 analysis, the transformations and as
we go on, every time we apply some transformation, we get a bigger region. So, there is
a hierarchy of regions, which is built once we start applying the transformations to the

time when we end applying the transformations.
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Here is a very simple example. This is a flow graph. We apply T 1 transformation on C
and D, again T 2 transformation on C and D, T 2 transformation on A and B, and T 1
transformation on the region R containing C and D. This self-loop is removed and then
we apply T 2 transformation between these two regions — T and S. Finally, we apply the

T 1 transformation to remove this self-loop and we get the region V.
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When you look at the reaching definitions and see how region building happens by T 2

transformation and how gen R comma B gets computed, we have two situations: one is



for T 2 and the other is for T 1. So, in the T 2 transformation, there is a region R1,
another region R2, and we make a bigger region R. So, we are given the information

about R1 and R2 and we want to compute the information about R.

For basic blocks B within the region R1, there is no modification because it is not
affected by anything in R2 and there are no arcs going back from R2 to R1 within the
region R. So, gen of R comma B and kill of R comma B remain the same as gen of R1
comma B and kill of R1 comma B. However, for R2, there are inputs coming from R1
and where in R1 do they come from? They are actually the... If we take this particular
arc (Refer Slide Time: 04:33), it is the number of arcs connecting to various basic blocks
in R1 and those are the basic blocks from which input can arrive into R2. So, for this
region, we define G as union of gen of R1 comma P, where all the predecessors P of the
header of R2 in R1 are considered. Similarly, K is intersection of kill of R1 comma P

with the same definition.

Now, gen of R comma B for basic blocks in R2 are gen of R2 comma B union G minus
kill of R2 comma B. So, taking it into account all those information, which are coming
from R1.
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Then, we presented the T1 transformation. This is very similar. Here, the kill does not
get modified at all when we go from region R1 to R simply because we would have

considered all the acyclic paths in R1 to the header of B in computing kill. So, the kill



information remains the same. kill of R comma B is kill of R1 comma B, but the gen

information is computed in a way similar to that of T2 transformation.

We consider the G, which is the union of the gen of R1 comma P. So, P is the set of all
predecessors of R1 in R. So, you take the header of R1 and then all the predecessors that

gives you the set of predecessors.
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This is what we did for reaching definitions. Then, we saw how exactly it can be

computed for this example.
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For each step, when we built a region R, we said how to compute the gen and R sets.
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Then, we applied T1 transformation to build S. Again, we said how to compute gen and

kill.
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Then, the same for T.
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Then, for U.
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Then, for building a region U.
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Finally, for the region V.
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We still have not seen what happens to this analysis when we compare it to the iterative
data-flow analysis. These are our well known equations of iterative data-flow analysis
for reaching definitions — OUT B equal to gen B union IN B minus kill B, IN B equal to
union of OUT P, where P is a predecessor of B, and IN B equal to phi as the matter of

initialization.



If we go through the OUT and IN computation in about four iterations, the set converges
and does not change thereafter. Here are the OUT values, which we get finally. This is
what we get (Refer Slide Time: 07:28) by region analysis and you can see that they are
identical. So, whether we follow the region based analysis, or we follow the iterative

data-flow analysis, the sets will be very similar; not much difference between these two.
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Now, what happens if we want to tackle the available expressions problem? If we recall
the available expressions problem and the iterative solution that we gave, we had this as
a forward data-flow analysis problem and we used the confluence operator as
intersection. Here, something similar happens. The picture seems to be exactly the same
as the previous case; yes, it is indeed so. It is just that for basic blocks within R1, there is

absolutely no change as before, but for R2, there are some changes.

Here, the gen and kill equations are identical: gen of R2 comma B union G minus kill of
R2 comma B and kill of R comma B is kill of R2 comma B union K minus gen of R2
comma B. In other words, whatever is generated within R2, that is taken, then whatever
is coming from R1 is taken, and then whatever is killed by R2 is removed from that. So,
that is exactly what we used to do before. So, that is what we do here as well. However,
the computation of G is slightly different. Similarly, K is also different. So, available

expressions, we wanted the expression to reach on all paths. Justifiably, this G (Refer



Slide Time: 09:20) is intersection gen of R1 comma P. For the reaching definitions, any

one path was ok, but here we need the expression along all paths. So, it is an intersection.

K is a union instead of the intersection because if the expression is killed along any path,
then it is completely killed. So, the G computation involves an intersection and K

computation involves union.
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Similarly, in the case of T1 transformation, the gen part remains as gen of R1 comma B
there is no change, whereas the kill changes. The reason is — for gen, we would have
already considered all paths in the region R1. An expression gets generated going from
the header to B if and only if it is generated along all acyclic paths, and hence back edges
incorporated into R will not cause any more expressions to be generated. So, we need not

consider this back edge when we compute the gen sets.

gen of R comma B is same as gen of R1 comma B, but in the previous reaching
definitions example, this was not so. Whereas, kill of R comma B was the same as kill of
R1 comma B and here, it is different — kill of R1 comma B union K minus gen of R1
comma B. So, looks like the gen and kill equations are kind of interchanged from the
reaching definitions problem to the available expressions problem.
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Like in the previous case, when we look at the available expressions problem in the

iterative domain, we have the same kind of equations as before. The confluence operator

!

gt

H&

here is intersection and in these, U, the universe of all expressions.

Again, it converges in about four iterations. The final values are here. In the final values,
we obtained by region based analysis are here. We can see that they are identical. So,
whether we follow region based analysis or iterative analysis, the answer probably will
always be the same, except of course, when there is a little bit of node splitting and so
on, which we will see very soon. Then, why do we want to apply region based analysis?

In general, region based analysis is slightly faster than iterative analysis, but otherwise

there is no huge advantage.
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How do we handle irreducible flow-graphs? At some point of reduction in T 1 T 2
analysis, no further reduction is possible if the graph is irreducible. We will get stuck. At
this point, we split nodes; we have seen examples of this already, regions are all nodes in
this case and duplicate them as explained earlier. We saw how node splitting is done and
then edges, which come into a particular node are all distributed to the various siblings
that we get. We then continue our analysis as if nothing happened. Eventually, this
splitting and continuation will take us to a limit flow-graph, which is a single node.
Suppose we want to retain the original graph with no splitting; that is, we want to relate
the gen sets and OUT sets to the original graph and not with the changed graph, we can

simply compute IN of B in the original graph. B is in the original graph.

As IN of B 1 meet IN of B 2 meet IN of B k, where B 1 to B k are all siblings of the split
node B, this gives us a conservative estimate. In the reaching definitions problem, this
will be a union in the available expression problem and this meet operator (Refer Slide

Time: 13:34) will be an intersection.

Splitting regions sometimes may be beneficial to optimizations since data-flow
information may become a little more precise after splitting. For example, fewer
definitions may reach each of the duplicated blocks than that reach the original node. The
reason is we do not have as many incoming edges to each node, which has been split.

Exactly one incoming edge to each of these split nodes exist. Therefore, we can probably



have a little more precise data-flow information when we split nodes, but then the
penalty we pay is many nodes, explosion in the size of the control flow graph. Finally,
the code generator will also be much more than in the previous case. That is the end of
the lecture on region based analysis and optimizations. Now, we move on to the next

lecture on the theory of data-flow analysis.
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Welcome to the lecture on Theoretical Foundations of Data-flow Analysis.
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Why do we actually explore the theoretical foundations? These are the questions that we
are going to answer in this lecture. Under what situations is the iterative data-flow
analysis correct? So far in the data-flow analysis, we just studied the equations, how to
implement them in the form of a while loop, with a change variable, and so on and so
forth, but we never thought about the question of — is the answer correct, is it always
correct, or is it correct only a few times? Under what situations is the iterative data-flow
analysis correct? This is the question we never answered. We will try to provide answer

to this question.

How precise is the solution provided by the iterative algorithm? How close are we to the
ideal solution? This is also something that we have never understood. Let us try
understanding this issue as well. Will the algorithm converge? How do we know that we
are going to stop? May be the iterations will go on and on. There is a theory, which

ensures that the algorithms indeed converge and we are going to study that theory now.

What is the meaning of a solution? What do we mean by a solution, are there other
solutions possible, etcetera need to be answered. So, we are going to define a data-flow
analysis framework formally, a little more mathematically than we did before. Then, the

properties of this framework will help us in understanding these questions and answers.

Further, by actually proposing a theoretical framework for data-flow analysis, reusable
components of the data-flow analysis algorithm can be identified once we define such a
framework. Which of these are the components? Etcetera; we will see very soon.

What is a data-flow analysis framework? It has a direction of dataflow, D. There is a
domain of values, V. There is a meet operator; that is, the confluence operator that we
have been talking about. There is a family of transfer functions. What are the formal
aspects of these? The direction of course is just forward or backward. We are not
studying any other type of direction here. The domain of values, V along with the meet
operator, they actually form a semi-lattice. So, we are going to study what is a semi-
lattice and how is it applicable to our problem. The family of transfer functions, V to V;
that is, the domain and range are V to V; V and range is also V. The family, F includes
constant transfer functions for ENTRY and EXIT nodes. It includes identity transfer

functions, etcetera. So, we are going to explore these possible topics very soon.
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What exactly is a semi-lattice? A semi-lattice is a mathematical structure, an algebraic
structure. It consists of a set, V and a binary operator, meet. The inverted V is called as

meet. So, that is the one we are talking about.

Why is it a binary operator? Because it takes two operands. What are the properties to be
satisfied by a set and a binary operator in order to become a semi-lattice? The set V is
closed under the meet operation. In other words, whenever we say V 1 meet V 2 and we
getan element V 3, if V1 and V 2 are in V, then V 3 must also be in V. So, this a well-
known closure operation and closure property. This must be satisfied for the set V and

the binary operator meet.

Meet is idempotent; that is, x meet x is equal to x. So, nothing happens if you apply the
meet on yourself. Meet is also commutative. So, X meet y is same as y meet x. Further, it
IS associative. So, X meet y meet z. So, we are associating y and z first and then with x.
The answer you get will be the same as when you associate x and y first and then with z.
So, idempotency, commutativity, and associativity are all true for this set and the binary
operator meet. The semi-lattice also has a set V, rather has a special element called a top
element. This is denoted as this T (Refer Slide Time: 20:46) and read as top. So, this is

the highest element in some sense.

How do you formally state it? For all x in V, top meet x is always x. So, the meet

operation with the top always gives you the same element. This is the definition of the



top element. There can only be one top element. So, there cannot be more than one in a
semi-lattice. It may have a bottom element. It is not essential that the bottom element be
present. So, this is the inverted T (Refer Slide Time: 21:26) (()) it has bottom. How do
you define the bottom element? For all x in V, bottom meet x is bottom. So, in this case,
top meet x came down to X, whereas bottom meet x always comes to bottom. So, this is

the lowest element. That is why it is called a bottom.
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Here is an example — we are going to show a semi-lattice in this form of a diagram called
the Hasse diagram. d1 d2 d3, d1 d2, d1 d3, d2 d3, d1 d2 d3 - so, there are many sets.
Here is an empty set and then singleton element sets, 2 element sets, and finally, the 3
element sets. These are actually nothing, but the power set of this set d1 d2 d3; this entire
thing; the set of all subsets of d1 d2 d3. So, this empty set is the top element and d1 d2
d3, the entire set is the bottom element.
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The meet operator also defines a partial order less than or equal to on this set V. What is
the property of this partial order? x less than or equal to y if and only if x meet y equal to
X. In other words, you want to actually call something less than something else. That is
why it is called as a partial order and it is defined using the meet operator x less than

equal to y if and only if x meet y equal to x.
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In this case, for example, x less than or equal to y is indicated by the arrow direction y to

X. This is y and this is X. So, x less than or equal to y. So, the low elements are less than



or equal to the top element in that sense. This less than or equal to is the superset
operator. So, this single element, singleton d1 is a superset of the empty set, the d1 d2

d3, a full set is a superset of d1 d2, etcetera.

(Refer Slide Time: 24:04)
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Any two elements x and y in a semi-lattice have a greatest lower bound g | b, what is the
definition of g? such that g equal to x meet y, g less than or equal to X, g less than or
equal to y. So, g is lower than either x or y in that sense in the partial order. If there is
any other element z, which is less than or equal to x and it is less than or equal to y, then
z is also less than or equal to g. So, in some sense, the greatest lower bound is not the
lowest element in the set. So, you really cannot have... If you have any other z, which is
less than or equal to x and less than or equal to vy, then it is also less than or equal to g.

So, this is the largest element, which is smaller than either x or y; both x and y.
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Let us look at the semi-lattice of reaching definitions. This is what | showed you here
(Refer Slide Time: 25:16). Let us formally discuss it now. There are 3 definitions — d1,
d2, and d3. V is the set of all the subsets of d1 d2 d3.

(Refer Slide Time: 25:31)
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| already showed you. There are three elements. So, 2 to power 3 is 8. We have 8
elements in V. The meet operator is the union operator. If you look at d1 d2 and take the

meet operation - d1 meet d2, then we get the union of the two sets d1 and d2. Similarly,



d1 and d3 will give you d1 d3, the meet of d1 d2 and d1 d3 will give you d1 d2 d3, and

so on and so forth.

The diagram shows the partial order relation induced by the meet operator. Here, this is
the diagram we are referring to (Refer Slide Time: 26:17). We do not want to show the
transitive relationship explicitly in this diagram. This is called as a Hasse diagram. The
transitivity is implicit. For example, d1 is a superset of phi and d1 d3 is a superset of d1.
So, d1 d3 is obviously a superset of phi, but this should be inferred by the two arcs and
there is no explicit arc between phi and d1 d3. So, transitive relationships are not explicit

in this diagram; otherwise, the diagram becomes too clumsy to understand and read.

An arrow, y to x indicates x superset y or x less than or equal to y. This is something |
already mentioned; x superset y. Each set in the diagram is a data-flow value. Now, we
are talking. We have already seen the iterative data-flow analysis algorithm. So, at every
point, we compute the IN and OUT, they are sets of data-flow values. That set is what
we are talking about. So, the data-flow value is a set. So, reaching definitions is a semi-

lattice and it forms a data-flow frame work as we shall soon see.

Transitivity is implied in the diagram. | mentioned this already. What is an ascending
chain? Instead of ‘less than’ or equal to, we just use less than. So, if we use the self-
element also, then equal to is necessary; otherwise, we use distinct element, then less
than is sufficient. So, d1 less than or equal to phi, d1 d3 less than or equal to di, but
since these are all different elements (Refer Slide Time: 28:22), we can get rid of the
equal to and say - d1 less than phi, d1 d3 less than d1, d1 d2 d3 less than d1 d3. So, this

is an ascending chain. This entire thing is an ascending chain (Refer Slide Time: 28:37).

The height of a semi-lattice is the largest number of less than relations in any ascending
chain. If you look at this (Refer Slide Time: 28:45), 1 2 3, there are three edges we

traverse to the top and there are three heights of this particular semi-lattice.

Semi-lattices in our dataflow framework will always be of finite height. We are not
going to deal with infinite lattices, infinite height lattices rather. There may be number of

elements as we will see soon.
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We discussed the semi-lattice. That was the set V and the meet operator that we talked

about.

(Refer Slide Time: 29:24)
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In the previous diagram, union is the meet operator and that is the confluence operator of
our iterative data-flow analysis algorithm as well. That is why, whenever we take the

meet, we take the union in the iterative data-flow analysis.
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The dataflow analysis framework also had a transfer function set F. What are the
properties of the set F. F has an identity function | x equal to x for all x in V. So, it does

not do anything, takes an element and returns the same element.

This is a very important property. F is closed under composition; that is, if F and g are in
the set F, then f.g, which is the composition of F and g is also in the set F. So, this is the
one which enables us to take one quadruple at a time, locate the transfer function for that
quadruple, then compose the two transfer functions, and get the transfer function for two
quadruples. So, if we do this for all the quadruples in the basic block, we get the transfer

function for the entire basic block. So, this is a very important property.

Let us again consider the reaching definitions problem. Assume that each quadruple is in
a separate basic block. Then, we have this equation OUT B equal to GEN B union IN B
minus KILL B. If we generalize this and call OUT B as f x, then IN B is actually the
input that we are going to use; that is, we are talking about the x. B is not the parameter,
IN B is the parameter and it is modified in this function. So, f x equal to G union x minus
K, where G is GEN B and K is KILL B. This is the general form of the equation.

Other function - if we would consider two such functions, transfer functions, one for
each basic block, which consists of only one quadruple in this case, we have f 1 x is G 1
union X minus K 1 and f 2 x is G 2 union x minus K 2. So, these are the two transfer

functions of two basic blocks: B1 and B2



There is an identity function in the set. So, we easily verify, make G and K; that is, GEN
and KILL phi. In that case, we get f x equal to x, G is phi, and K is phi. So, identity
function already exist. So, if you consider this as the general form of transfer functions in
the reaching definitions case, G and K are of course constants. So, this includes an

identity function as well.

(Refer Slide Time: 32:50)
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Suppose control flows from B1 to B2; there is an arc from B1 to B2 in the control flow-
graph, then whatever comes to basic block B2 is the output of the basic block B1. So, we
look at f 2 of f 1 of x. So, f 1 processes the input x and output is given to f 2 as input.
That is why, f 2 of f 1 of x. When we expand this and substitute, we get G 2 union; this is
our X, which is f 1 x G 1 union x minus K 1 and then minus K 2 as usual for the f 2. Just
rewrite the right hand side. So, you can write G 2 union G 1 minus K 2 union x minus K
1 union K 2. So, we can simply say K is K 1 union K 2; this part (Refer Slide Time:
34:01). G is G 2 union G 1 minus K 2; that is very easy to see. So, G 1 minus K 2. They

are constants again; K and G are constants computed from K1 G 1K 2 G 2.

If you do this, then again is of the form f x equal to G union x minus K. So, this is G and
this is K (Refer Slide Time: 34:26). So, this entire f 2 of f 1 of x is of the same form as
the original equation. f 2 of f 1 of x is nothing, but the composition of f 2 and f 1. So, f 2.
f 1. Therefore, composition property is true. Further, reaching definitions example; the

transfer functions of the reaching definitions example are composable.



(Refer Slide Time: 34:53)
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Let us take an example instead of talking about just mathematical symbols. Here is a
simple flow-graph B1 B2 B3 and then start and stop as well. There are two definitions in

B1, two definitions in B2, and then one in B3. This is d5; that is missed out.

What are the transfer functions for the various statements? We are looking at one
statement at a time. That is why, we have said f of d1, f of d2, f d3, f d4, and f d5 instead
of basic block. So, the definitions generated by d1 are d1 union x minus d4. Why? d1 is
defining a. So, it kills all statements, which are defining a. So, d4 is definition for a; that
will be killed by d1. That is why, the kill function is d4 and kill constant is d4 k.

Similarly, f d2 is d2 union x minus d3. So, d3 is a definition of B. f d3 is d3 union x
minus d2; d2 is a definition of B and similarly, for d4, d4 union x minus d1, whereas d1
is a definition of a. Interestingly, for d5, we have f d5 equal to d5; of course, union x
minus phi because there is no definition of ¢ elsewhere in the control flow-graph.

The transfer functions for start and stop blocks are just identity; they do not do anything.
Now, let us compute the transfer functions of the basic blocks and show composition. f
d2.f d1 x is d2 union d1 union x minus d4 minus d3. So, this is the f d1 part and the outer
part is f d2 part (Refer Slide Time: 36:59). So, we get d1 d2 union x minus d3 d4.
Intuitively, this is what we get. It generates d1 and d2 and kills all others with a and b.
So, that is d3 d4. Similarly, f B2 is d3 d4 union x minus d1 d2. So, that is exactly the



other way. f B3 is f d5, which is d5 union x; doing nothing else generates d5 and then

whatever is coming inside passes it out.

(Refer Slide Time: 37:35)
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What exactly is the monotonicity of the data-flow framework? This is a very important
property and let see what it means. A data-flow framework D, F, V, meet is monotone, if
for all x y in V and f in the capital F; that is, the f is a member of transfer functions
family, x less than or equal to y implies f x less than or equal to f y. In other words, if x

is smaller than y, f x is smaller than f y in the lattice theoretic sense.

The other possible definition for monotonicity is f of x meet y is f x meet f y. Both
definitions are identical because the less than or equal to is defined using the meet
operator. It will be easy to show that these two are identical. Now, we claim that the

reaching definitions lattice is monotone. Let see how.

The meet operator is union here in the reaching definitions framework lattice. What we
need to prove is that f of x union y; that is, here (Refer Slide Time: 39:02), f of x meet y
is f of x union y. This less than or equal to is superset. So, we replace that with super set
symbol. f x meet f y is f x union f y. Now, let us expand the f x union y part by
substituting the transfer function. So, G union x union y minus K. So, x minus K is the

original form. So, instead of X, you have x union y. So, X union y minus K.



What about f x union fy, the right hand side? f x is G union x minus K, fy is G uniony
minus K, and therefore, we have G union x minus K union y minus K. Finally, we have
G union x union y minus K. Observe that this is same as f of x union y. So, the superset
obviously is weaker than equal to. We have proved that f of x union y equal to f x union f
y. So, superset is obviously is trivially true. This tells us that the reaching definitions
framework is indeed a monotone framework. So, the monotonicity becomes very

important for us when we say that the iterative analysis is going to terminate.

(Refer Slide Time: 40:46)
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The next important property of the framework is the distributivity. A data-flow
framework is said to be distributive, if for all x y in V and little f in the transfer functions
at F, we have x meet y equal to f x meet f y. Recall that (Refer Slide Time: 41:14) we
have already proved f of x union y equal to f x union f y. That is what is need here. So,
trivially, we have already proved that the reaching definition lattice is distributive. We

have already done that.

However, let us prove the other interesting result - if a framework or lattice is
distributive, then it is indeed monotone, but if it is just monotone, then it is not
necessarily distributive. Let us say - if equal to b, then a meet b is a. This is obvious. So,
a and b are the same. a meet b equal to a or a meet b equal to b; both are the same. Let us

say a meet b equal to a. So, by the definition of the partial order relation less than or



equal to, if a meet b equal to a, then a less than or equal to b. So, this is the definition of

this less than or equal to.

Now, apply the definition of distributivity. We know that we must have f of X meet y
equal to f x meet f y. These two are now going to be substituted for a and b because a
equal to b is needed and we have f x meet y equal to f x meet f y. So, this is a and this is

b. So, we substitute in this particular relation a less than or equal to b.

We get f of x meet y less than or equal to f x meet f y. This is exactly the definition of
monotonicity. So, distributivity indeed implies monotonicity, but monotonicity does not
imply distributivity trivially because this is less than or equal to, whereas equal to is a
stronger relation. So, it is easy to construct a counter example to show that a lattice,
which is monotone need not be distributive. We will see one very soon in the constant
propagation framework later. So, we have proved that the reaching definitions lattice is

also distributive. It is monotone and it is distributive.

(Refer Slide Time: 43:40)
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Now, let us take a look at the iterative algorithm for data-flow analysis. Assuming that
there is a forward flow, OUT of B1 is some initial value. For each basic block B not
equal to B1, we have OUT B equal to top. Remember - the lattice of reaching definitions
top is phi; nothing. So, this is DFA algorithm for forward flow. So, we do not use any
reaching definition confluence operator here, but we use the generic meet operator here.

That is why the generic top value has been used; not phi.



The change part remains while changes to any OUT occur do for each basic block B not
equal to B1 do. So, we go on iterating until the OUT or IN sets are changing, or rather do
not change any more. So, IN B is meet of OUT P, where P is the predecessor of B. So,
we had union here in the reaching definitions case and intersection in the available

expressions case. So, the generic operator is meet.

OUT B - now, you apply the transfer function f B on IN B. Remember - it was G union
x minus KILL; x minus K. So, that is the transfer function we are applying on the set IN
of B.

(Refer Slide Time: 45:29)
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Let us take the same example and continue it. We have the transfer functions from our
previous example f B1 equal to d1 comma d2 union X minus d3 comma d4. Similarly, f
B2 and f B3.

Here are the two equations. This iterative algorithm requires 3 iterations to converge. So,
in every iteration, we use the depth first search order. So, we start here (Refer Slide
Time: 46:06), go here go here, we go here, here, then here, then this, and then this. So,
when we come to this, both these results are available to us for the meet operation;
otherwise, we need to make one more iteration. So, if we do that, apply these things - IN
of B1 equal to IN of B2 equal to phi; that is, well known. Nothing is coming from the
start block. OUT of B1 is d1 comma d2; that is very simple to see. So, these are the only

two definitions, which come out. That is what we get. We get that by f B of IN B. IN B is



phi. So, if we apply f of B1, then we get x minus phi. IN B is phi. So, this becomes phi
minus d3 d4 nothing. So, that is phi again. So, this part is d1 comma d2; that is what is
mentioned here (Refer Slide Time: 47:05).

It is very similar. OUT B2 is similar. IN B2 is phi. So, we apply x as phi here (Refer
Slide Time: 47:13). So, we get d3 d4. What about IN B3? We need to take the meet of
these two (Refer Slide Time: 47:20); that is the union. So, OUT B1 union OUT B2,
which is d1 d2 d3 d4. These two are d1 d2 and this is d3 d4. So, we get d1 d2 d3 d4.

What about OUT of B3? We now apply this transfer function d5 union x. That is d5
union IN of B3; that is x, the parameter coming in. So, we get d1 d2 d3 d4 d5. This is
intuitively also correct because whatever comes here, whatever comes here (Refer Slide
Time: 47:52) and what is generated here will all reach this point. So, at this point, all the
5 definitions reach. That is why, the reaching definitions set contains all these here.
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What are the properties of the iterative data-flow analysis algorithm? We have defined
many terms now - monotonicity, distributivity, composition of transfer functions, and so
on and so forth. Let see where some of these actually fit. If the iterative algorithm
converges, the result is a solution to the data-flow equations. We are not saying it

converges; we will see that a little later.



If it converges, then the result is a solution to the data-flow equations. This is obvious
because we iterate see - if the equations are not satisfied by the time the loop ends, at
least one of the OUT sets change and then we iterate again. So, if they were not satisfied,
then we would have iterated again and again. So, the constraints that we have set should
have been satisfied. Only then, the OUT sets or IN sets do not change from one iteration
to another and that is the time we stop it. If it does not change once, it does not change

again and again in any of the other iterations as well.

If the framework is monotone, then the solution found is the maximum fix point of the
data-flow equations. So, maximum fix point is a property such that in any other solution,
values of IN B and OUT B are less than or equal to the corresponding values of the MFP.
This is the maximum solution. So, any other solution is actually going to be just weaker.
This property can be proved by induction. We can show by the induction that the values
of IN B and OUT B only decrease in the sense of the less than or equal to relation. In
other words, we start from the top of the lattice; that is, phi and then we actually move
downwards. So, when we move downwards, we get weaker and weaker solutions in this

less than or equal to sense.

(Refer Slide Time: 50:20)
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Now, if the framework is monotone and is of finite height, then the algorithm is
guaranteed to converge. This is obvious almost because we initialize the values to phi

and then with each one of the iterations, we can only move downwards. How many steps



can we go down? That is nothing, but the height of the lattice. So, the data-flow values

decrease with each iteration; that is, we go down the lattice.

The maximum number of iterations is the height of the lattice into the number of nodes
in the flow graph. We are not assuming that the depth first search numbering is used
here. So, in the worst case, is just in upper bound height of the lattice into the number of
nodes in the flow graph is the maximum number of iterations possible. You cannot really
do anything more than that because for each one of these nodes, the stabilization occurs;
let us say in one iteration. To get this stabilization, we need to pass through the entire
lattice. So, from phi to the last one. So, that is the height of the lattice. For each node, we

have to do it as many times. So this is the product.
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Now, we want to look at the meaning of an ideal data-flow solution. So far, when we
computed data-flow values and solved the equations in the iterative way, we always said
the values are conservative, they are not the best that we can get, but practical situations

forces to accept these conservative values and so on.

That makes it interested to see, what exactly is an ideal solution. To find the ideal
solution is very simple. Find all the possible execution paths from the start node to the
beginning of the basic block B. So, now, we are really looking at the execution paths.
Some conditions may be true and some may be false during execution. So, we are

looking at the path during execution.



Assuming forward flow, compute the data-flow value at the end of each path using
composition of transfer functions and apply the meet operator to these values to find
their greatest lower bound, glb. You have many paths coming to that basic block. Let us
say - the input of the basic block. Now, at the input for each path, apply the composition
of the various transfer functions of the basic blocks that occur along the path and find the

value. Now, there are many paths. So, you take the glb.

IDEAL B is the meet of f P V init. This is the initial value. Now, what is P? P is a
possible execution path from start node to B. So, no execution of the program can
produce a smaller value for that program point. That is, the input of B in this case
because we have considered all the execution paths. So, there is nothing else that can be
possible. If we had considered one of the execution paths, then may be the other one
would have produced a smaller value, but now we have looked at all execution paths and
then found the values taken their meet. Any answer, which is greater in the sense of less
than or equal to this partial order than this IDEAL value are incorrect; one or more
execution paths have been ignored in this case. So, may be the meet did not take us low
downwards sufficiently.

Any value smaller than or equal to IDEAL is conservative; that is, safe. So, one or more
infeasible paths have been included in this case. So, this is what happens when we do
iterative analysis. Closer the value is to IDEAL, more precise it is. This is the best that

we can get and we still have not seen where we stand in the case of the iterative analysis.

We will understand the meaning of the values produced by iterative analysis, which are

practical algorithms, in the next lecture. Thank you.



