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Machine-Independent Optimizations – Part 2 

Welcome to the lecture on Machine-Independent Optimizations part 2. In the last lecture, 

we covered global common sub-expression elimination, copy propagation and loop 

invariant code motion. Also, I gave you an introduction to what induction variables are. 

We will continue that lecture today along with region based data-flow analysis. 
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An induction variable is actually related to a loop; essentially, the counter values in a 

loop or induction variables. The other variables, which are dependent on the loop 

variables are also induction variables provided they satisfy certain conditions. The basic 

requirement is – the value only changes through an increment or decrement operation by 

a constant variable constant amount. There are basic induction variables, which have a 

form i equal to i plus minus n, where n is a constant. Then, there are derived induction 

variables such as j, which have the form c star i plus d and they are defined only once 

within the loop; c and d are constants essentially in your functions. If i goes as 1, 2, 3, 4, 

then j let us say is 5 star i; then, it goes as 5, 10, 15, etcetera. If it is 5 star i plus 3, then 

the first value will be 5 plus 3, which is 8 and then 8 plus 5, which is 13 and so on and so 

forth. 

For each induction variable, we have a triple. For a basic induction variable, it is denoted 

as (i,1,0) and any other variable in the family of i is denoted as (i,c,d); c and d are the 

constants. This means, j equal to i star c plus d; that is how it would be read. 



(Refer Slide Time: 02:19) 

 

Here is an example from the last lecture: i is an induction variable, which is being 

incremented by 1 in the loop; t5 is a derived induction variable in the family of i, which 

is defined as 4 star i. 

(Refer Slide Time: 02:38) 

 

Here is another example: i and j are both induction variables, both in the inner loop, this 

loop, and the outer loop; t2 is an induction variable derived from i, which is in the family 

of i; again both in this loop and the outer loop. Similarly, j is an induction variable in the 



family of t4, which is an induction variable in the family of j, both in this loop and the 

outer loop. 

(Refer Slide Time: 03:10) 

 

How do you detect induction variables? Basic induction variables are easy to find. You 

just scan the statements of the loop L whenever you have i equal to i plus minus n. They 

are basic induction variables. It is not necessary that basic induction variables are defined 

exactly once. They may be defined many times, but for derived induction variables in the 

family of a basic induction variable, the definition should be exactly once in the loop. 

Search for variables such as k with a single assignment to k within the loop L having one 

of the following forms: There are many forms – j star b, b star j, etcetera. What is not 

permitted is b slash j because it becomes non-linear. Once we find something of this 

kind, we check for other conditions, which need to be satisfied. Just because k equal to b 

star j, it does not mean that k is an induction variable. 

First, we check if j is basic. Let us assume that we are looking at k equal to j star b. If j is 

basic, then k equal to j star b and the triple for k is very simple, j, b and 0. Similarly, for 

other forms as well; if it is j plus b, then we have j, 1 and b here (Refer Slide Time: 

04:53). Similarly, for (( )) Keep in mind that when you have (i,c,d), it is i star c plus d 

and we just put those constants here. The conditions are necessary to be checked when j 

is not basic. 



In other words, there is a basic induction variable i and then j is in the family of i. So, its 

triple is (i,c,d). Now, we need to determine whether k, which is based on j can also be set 

to be in the family of i. What are the necessary conditions to be checked here? (Refer 

Slide Time: 05:32) Two conditions: First one is – there is no assignment to i between the 

lone point of assignment to j in L and the assignment to k; Second condition is – no 

definition of j outside L reaches k. 

(Refer Slide Time: 05:49) 

 

Let us understand these conditions slightly better. Here is a basic induction variable i; 

here is the definition of j and j is in the family of i; here is the definition of k; k equal to j 

star b and it is supposed to be in the family of j. Now, the conditions 2 b i and 2 b ii are 

satisfied here. Let us see what they are? (Refer Slide Time: 06:25) Condition (i) says – 

there is no assignment to i between the lone point of assignment to j in L and the 

assignment to k. Lone point of assignment to j and the assignment to k between these 

two (Refer Slide Time: 06:37), there is no assignment to i again. So, condition (i) is 

satisfied. No definition of j outside L reaches k. There is no definition of j outside L, 

which is reaching k. It is only this definition j, which is reaching this k (Refer Slide 

Time: 06:54). So, both the conditions are satisfied. 

In this example, condition 2 b i is not satisfied. Let us see why. i is the basic induction 

variable as before, j is the derived induction variable in the family of i, then here (Refer 

Slide Time: 07:12) is the assignment to k, but there is an assignment to i as well. So, 



between the assignment to j and assignment to k, there is an assignment to i. Now, the 

condition (i) is obviously violated. What is the problem? The problem is – j is updated 

here and assignment to i is ok. We now have j star b; the old value of j is used here. So, 

there is no harm done. Whenever j is updated, the value of k is based on j and everything 

ok; it is not dependent on i at all. 

Once we replace this assignment to k (Refer Slide Time: 07:58), which actually is a 

function of j by a function of i. Then, whenever i changes here, this k value will also 

change. This is the difficulty. Here, the old value of j is still available to me even though 

the value of i has changed, but once I replace this j (Refer Slide Time: 08:21); j star b by 

a suitable function of i because it is supposed to be in the family of i, then whenever i 

changes, k will also change. This will lead to a different program and it may be an 

erroneous condition. So, semantic violation has occurred here. Therefore, this is not a 

valid transformation. We cannot base any transformation on this in particular 

information. So, we cannot say that k is in the family of i. 

In the last illustration here (Refer Slide Time: 09:02), condition 2 b i is satisfied. So, 

there is this assignment to k and this assignment to j, and there is no assignment to i in 

between. However, condition 2 b ii is violated. The reason is – for this particular k equal 

to j star b, there is a definition of j, which is reaching it from the outside; that is, from 

B1. There is another definition of j, which is reaching it from within the loop. So, there 

are two definitions of j. So, both B1 and B2 reach this particular use of (Refer Slide 

Time: 09:41) j. If this k, which is dependent on j is actually replaced by a function of i, 

this dependence goes away and it could be a mistake. There is a semantic violation if we 

replace this by a function of i. Therefore, this transformation is also not permitted. This 

is the reason why these conditions (Refer Slide Time: 10:09) have to be checked. 



(Refer Slide Time: 10:12) 

 

How do we check these conditions? Fairly straight forward; If both j and k are 

temporaries in the same basic block, then checking conditions (i) and (ii) above is very 

easy. We do not have to go beyond basic blocks. So, we just check the space between the 

two definitions of j and k and see if there is a definition of i. There is nothing else, that is 

really going to cause problems. So, we are sure that j and k do not live beyond the basic 

blocks; that is the assumption here; j and k temporaries in the same block. There can be 

no definition of j, which arrives from outside the block. They live only within the block, 

they are defined, and they are actually not useful after the basic block. So, checking 

condition (i) is redundant, rather condition (ii) is redundant. 

Otherwise, if they are not temporaries in the same basic blocks, then we need to find all 

the basic blocks on the paths from the point of assignment to j, to the point of assignment 

to k, and then check condition (i). So, you have to look at all the paths, find out all the 

basic blocks on the paths. So, every one of the paths must be taken. Only thing is that 

you do not have to go around the loops any number of times. So, you just have to go 

through the loop once and find all the basic blocks; that is it. Then, you can check 

condition (i) quite easily. 

Condition (ii) can be very trivially checked using u-d chain of j in the assignment to k. 

So, this use-definition n chain will tell us how many definitions of j are reaching that 



particular point. If there is more than one, then we have a problem and immediately 

condition (ii) is violated. 

Assuming that the conditions are satisfied, how do you compute the triple for k? The 

triple for j is assumed to be (i,c,d) and let us say the form of assignment to k is k equal to 

j star b and j is i star c plus d. Make a simple substitution and find the constants. k 

becomes i star c plus d into b; that becomes i star b star c plus d star b so this is our 

(Refer Slide Time: 12:51) c prime and this is our b prime. So, i comma b star c and 

comma d star b are going to be our new triple. b star c and d star b are constants and 

therefore, can be evaluated by the compiler. That is how we get the new triple for k. If 

there is next induction variable dependent on k, we know how to convert it and make it 

dependent only on i. 

(Refer Slide Time: 13:26) 

 

The next transformation that we need to understand is strength reduction. After this, we 

will look at induction variable elimination. Consider each basic induction variable, i. For 

each induction variable, j in the family of i; let us say its triple (i,c,d), we want to 

actually reduce the strength of j. If it is 4 star j, we want to actually replace it with by 

some addition operation. 



(Refer Slide Time: 14:14) 

 

To do that, we create a new variable s. Let me give you an example of that and then go 

back to the algorithm itself. Here, we have the basic induction variable, i, which is 

incremented; i equal to i plus 1, etcetera. t5 is the induction variable in the family of i; it 

has 4 star i. Assuming that star is a costly operation and it needs to be replaced by a 

simpler plus operation; after transformation, it becomes t5 is equal to t7 and t7 equal to 

t7 plus 4 with an initialization of t7 equal to 4. So, there is no 4 star i any more. So, it has 

been replaced by an addition. That is why in the example (Refer Slide Time: 15:00) we 

had t7. Similarly, we have a new variable called s for each of the derived variables j, 

whose strength reduction has to be carried out; replace the assignment to j by j equal to s. 

We did that here (Refer Slide Time: 15:17). We replaced t5 is equal to 4 star i by t5 is 

equal to t7. 

If there are two induction variables, j 1 and j 2 with the same triples (Refer Slide Time: 

15:27), that means both of them advanced with the same constant value. Then, we can 

use the single variable for these two triples together. 

Immediately after each assignment to i; that is, i equal to i plus n in L, where n is a 

constant, place the assignment s equal to s plus c star n; c star n is a constant obviously. 

this is the n (Refer Slide Time: 15:52) that we are talking about. Whenever i is 

incremented, we are also incrementing s by the appropriate amount, c star n because 

whenever i increments, j will also increment by the appropriate quantity. So, that is what 



we want to do here; s is equal to s plus c star n. For example, j is equal to 4 star i, as i 

goes 1, 2, 3, j goes 4, 8, 12 and so on. That means addition of 4. That is what we are 

doing here (Refer Slide Time: 16:28), or add c star n. 

Here, (Refer Slide Time: 16:32) we have placed t7 equal to t7 plus 4 immediately after 

this statement i equal to i plus 1 because this constant is 4 and this is (i,4,0). So, this is i 

equal to i plus 1; so, 4 star 1 is 4; so, t7 plus 4. 

(Refer Slide Time: 16:51) 

 

Place s in the family of i with the triple (i,c,d); actually s is nothing but j. So, it is just a 

replacement for j. So, its triple is identical. We have replaced a costly star operation by a 

cheaper plus operation. 

Place the code to initialize s to c star i plus d at the end of the preheader. We did that 

here (Refer Slide Time: 17:17); t7 equal to 4. So, c star i plus d is 4 star i plus 0; that is, 

4. This is how the strength reduction has happened. 



(Refer Slide Time: 17:32) 

 

Let us take another simple example. This is example 2. For example, let us look at this 

(Refer Slide Time: 17:45). We had t2 and t4, which are dependent on i and j respectively. 

Those have been replaced. Now, we have s2 equal to s2 plus 4 instead of 4 star i and s4 

equal to s4 minus 4 instead of 4 star j. The reason this has become (Refer Slide Time: 

18:09) minus and this is still plus is this is i equal to i plus 1, whereas this is j equal to j 

minus 1. n is minus 1 here and that is why this has become minus 4. Then, there is 

initialization s2 is equal to 4 star i and s4 is equal to 4 star j. These two statements: s2 is 

equal to and s4 equal to; have in place immediately after i is equal to n; j equal to… So, 

this is a very simple strength reduction operation; star has been replaced by plus. This 

strength reduction happened within this loop and within this loop, respectively. 



(Refer Slide Time: 18:47) 

 

We did all these with a view to see if we can finally eliminate the induction variable. The 

idea is – in this case (Refer Slide Time: 19:00), here t5 increments by 4 in every loop, 

whereas i increments by 1. So, wherever we have the test for i, if we are able to replace it 

by the test for t5, then it is done. So, the first step in that process is to do strength 

reduction and then do induction variable elimination. 

(Refer Slide Time: 19:30) 

 

Let me give you the same example here. This is the old example. This t7 is equal to t7 

plus 4 has replaced that t5 equal to 4 star i. So, we do not have that anymore. Now, i is 



ready to be replaced by t7 itself. Instead of i greater than 100, can we put t7 greater than 

something? Yes, but t7 increments by 4 at a time. So, if i is compared with 100, t7 must 

be compared with a quantity, which is 4 times that. That is what we do here; t7 greater 

than 400 instead of i greater than 100. The rest of the loop remains the same and when 

we have got rid of that, this statement i equal to i plus 1 can be deleted. 

How to do this systematically? (Refer Slide Time: 20:28) Consider each basic induction 

variable i whose only uses are to compute other variable in its family and in conditional 

branches. If this is so, we can eliminate this induction variable. Now, consider j in i’s 

family with the triple (i,c,d). We want to remove i and replace it with it with j. 

If there is a relational operation, rather conditional statement if i relop x goto B, we want 

to replace this i (Refer Slide Time: 21:06) by j, which is in the family of i. Then, what is 

the replacement for x? If i becomes i star c, x should become x star c. If this becomes i 

star c plus d, this should become x star c plus d. So, i star c plus d is j and x star c plus d 

will be computed that will be put into the variable, r. That is why if i relop x goto B is the 

conditional statement, we replace it by r is equal to c star x, r equal to r plus d. So, that 

updates x appropriately and makes it get a value comparable to j. Then, we write if j 

relop r goto B. This is the transformation. 

There is a small hitch here; what if c is negative? In other words, what if we have j equal 

to minus 4 star i? i increases 1, 2, 3, but j will decrease in the negative direction minus 4, 

minus 8, minus 12, etcetera. In such a case, replacing this (Refer Slide Time: 22:27) i 

relop x by j relop r by this transformation would be become incorrect. Let us lake a 

simple example: If you had minus 5 less than minus 2, it is a correct statement. Now, 

change it to plus 5; 5 less than 2 is obviously wrong. Similarly, if you had 5 greater than 

2 and now, you change it to minus 5 greater than minus 2, that would be incorrect. What 

we need to do whenever we change the sign is – to complement the relational operator as 

well. If you have less than, you must replace it by greater than; if you had less than or 

equal to, then you must replace it by greater than or equal to and so on and so forth. 

If c is negative, then we use relop bar; that is the complement of that relational operator 

in place of relop in the above code sequence. For example, if c is minus 4, then if i 

greater than equal to x goto B is replaced by the code sequence, r equal to minus 4 star x, 

r equal to r plus d, and then if j less than equal to r, goto B. So, this would be a correct 



replacement for if i greater than equal to x. This is based on the assumption that we know 

the direction in which the decrement or increment is happening. So, the sign of c. That is 

why we always insist that c and d are constants. In theory, there could be loop-invariant 

values. The values comes from outside, but if we do not know the sign of that particular 

value, then this elimination of induction variables is not a possibility. We must know the 

direction in which the values increase or decrease; that is, the sign of this constant c; 

otherwise, we cannot do anything about induction variable elimination. 

We delete all the assignment to the eliminated induction variable in the loop; in this case, 

i (Refer Slide Time: 24:38). Apply copy propagation to eliminate statements of the form 

j equal to s, if necessary. Here (Refer Slide Time: 24:48), we did this replacement – 

instead of i greater than 100, it became t7 greater than 400. That is about it. 

(Refer Slide Time: 24:58) 

 

The second example; instead of i equal to i plus 1, t2 equal to 4 star i, we did strength 

reduction. It became s3 equal to s2 plus 4, but why do we have to keep i greater than 

equal to j here? j equal to j minus 1 and t4 equal to 4 star j are the other two statements. 

So, t4 equal to 4 star j has been replaced by s4 equal to s4 minus 4. 

Can we replace i greater than equal to j by s2 and s4, respectively? It so happens that we 

can; it is just that it should be the inverse of the condition. So, s2 not of s2 greater than 

equal to s4. If we have that, then goto B6; works perfectly here. So, this is the way we 

actually do induction variable elimination. 



(Refer Slide Time: 25:59) 

 

Let us take a running example starting from i; looking at the old program that we had. 

We really have several induction variables here; they are all listed here. i is also one of 

them, but let us ignore i. Let us look at j only and its derivatives. j is a basic induction 

variable. So, (j,1,0) is its triple. Then, we have t4 equal to 4 star j here. So, that is a 

derived induction variable in the family of j with (j,4,0). Then, t6 is j plus 1. So, that is 

another derived induction variable with the triple (j,1,1). 

Then, t7 is one more says (Refer Slide Time: 26:50) – 4 star t6. So, it is in the family of 

t6; so, (t6,4,0), but t6 itself happens to be in the family j. So, t7 is also in the family of j 

with the triple (j,4,4). These are the induction variables that we have deducted in this 

loop. 



(Refer Slide Time: 27:13) 

 

Now, let us do strength reduction. Here, (Refer Slide Time: 27:19) t4 equal to 4 star j 

was replaced by t4 equal to s4 and s4 equal to s4 plus 4. Then, t6 equal to j plus 1 was 

replaced by t6 equal to s6 and s6 is equal to s6 plus 1. t7 equal to 4 star t6 was replaced 

by t7 is equal to s7 and s7 equal to s7 plus 4. Then, appropriate initializations were all 

carried out in this particular preheader. So, this is strength reduction. 

(Refer Slide Time: 27:52) 

 

After common sub-expression elimination and copy propagation. For example, (Refer 

Slide Time: 28:00) all these t4 etcetera becomes s4. So, these are the copy propagations 



that have taken place; a of s4, a plus s4, a of s7, a plus s7 etcetera. After we did this, 

where was… Here, (Refer Slide Time: 28:24) we had 4 star j, 4 star j. So, these are two 

common sub-expressions. Those were also removed and that is why CSE is mentioned 

here (Refer Slide Time: 28:34); little more efficient code. 

(Refer Slide Time: 28:38) 

 

Finally, removed the useless code that is corresponding to the i and did induction 

variable j elimination. We had in this; for example, (Refer Slide Time: 28:51) we had – if 

t3 equal to j less than t2; if not, t3 goto B3 or B8. That was replaced by t2. So, s2 became 

4 star t2 and t3 equal to s4 less than s2. So, we replaced for example, (Refer Slide Time: 

29:09) j by s4 and t2 was replaced by its appropriate multiplicand; that is, s2; 4 star t2. 

So, that is how the induction variable elimination took place. Now, this becomes not of 

t3; it is not dependent on j anymore. 

The quadruples for j were all removed and only those (Refer Slide Time: 29:34), which 

are required – s4, s7, etcetera were retained. This is a detailed example of how induction 

variable detection, strength reduction and induction variable elimination happens for a 

nontrivial program. 



(Refer Slide Time: 29:50) 

 

So, that is as far as some of the basic optimizations are concerned. Let us look at a very 

interesting version of data-flow analysis called region based data-flow analysis. In one of 

the previous lectures, we talked about iterative data-flow analysis in which the basic 

blocks for all traverse in particular order to find a solution for the data-flow analysis 

problem. Whereas here, we divide the control flow graph into regions; we looked at 

regions very briefly. Let us recapitulate - what exactly regions are. So, region is a set of 

nodes N that includes a header, which dominates all other nodes in the region. All edges 

between nodes in N are in the region, except; possibly for some of those that enter the 

header. 



(Refer Slide Time: 31:05) 

 

It is very easy to give you some examples of this. Let me go little further; Here, for 

example, if this is the big region. When we are constructing the yellow region outside 

this, the arcs A C and A D are not in the region U, they are in the region V. So, when we 

consider region U, we do not consider these two arcs; we will consider it only when we 

go to region V. 

(Refer Slide Time: 31:34) 

 

All intervals are regions, but there are regions that are not intervals. A region may omit 

some nodes that an interval would actually include or they may omit some edges also 



back to the header. For example, the interval for 7 was 7, 8, 9, 10, 11, but 8, 9, 10 could 

be a region. 

(Refer Slide Time: 31:55) 

 

Let me show you that example. So, i 7 is 7, 8, 9, 10, 11; this entire thing, but 8 9 10 

could be just this region. This could be a region on its own; 8 nominates 9 and 10. So, 

that is how this becomes a small region on its own. 

A region may have multiple exits. This region – 8, 9, 10 has 2 exits; so, no problem. 

Now, what we are going to do is (Refer Slide Time: 32:30 – we will compute gen of R 

comma B and kill of R comma B of definitions generated and killed along the paths 

within the region R, from the header to the end of the block B. This will become clear as 

we go along. 

This is the interval graph (Refer Slide Time: 32:55) that we had already looked at. This is 

the interval 1 2 3 and then, this reduces further, so on and so forth. 



(Refer Slide Time: 33:04) 

 

This was the other interval graph. Interestingly, if you look at 3 as the header, then this 3 

4 5… There is a minor change here in the graph from… Instead of this (Refer Slide 

Time: 33:18), we made it that. So, this changes the intervals structure; so, 3 4 5 6 become 

an interval and rest of its 7 8 9 10 11 become another intervals. Finally, reduction takes 

place. 

Each of these (Refer Slide Time: 33:32) could be a region actually; so, no problem; an 

interval could be a region. This is an example of how regions are, or each of these (Refer 

Slide Time: 33:42) could be a region. So, there are 4 regions in this example and 3 

regions in this example. 



(Refer Slide Time: 33:50) 

 

What exactly is region based data-flow analysis? The basic idea is to define a transfer 

function called trans of R comma B with a parameter S. So, this will tell us that for the 

input S, which is a set of definitions; Let us say - we are looking at reaching definition 

problems. For any set S, which is sent as a parameter; that is a set of definition in this 

example, what subset of definitions reach the end of the basic block B by travelling 

along paths wholly within R; this is important; we are not looking at edges, which are not 

in the region, assuming that all and only definitions in S reach the header of R. So, there 

is no other way of reaching the header of R; only the definitions in S will reach the 

header of R. Then, how do they travel inside the region R is what is captured by this 

trans function. 

trans of R comma B with the parameter S would be whatever is generated within the 

region R; that is, gen of R comma B for that basic block B and reach the end of the basic 

block B, union S minus whatever is killed by the basic block B with respect to the region 

R. So, if you look at the entire region; let us say – trans of U comma B and then let us 

say – the incoming set of definitions is phi; that is what the initialization we always had. 

That becomes are out B. This is the (Refer Slide Time: 35:43) out function that we 

defined in iterative data-flow analysis. So, here is the connection between the region 

based data-flow analysis in which we want to find trans functions and the out functions 

that we have in iterative data-flow analysis. This out B is nothing but gen of U comma B 

because S is phi here; phi minus something is phi. So, gen of R comma B becomes gen 



of U comma B with R equal to U, where U is the region consisting of the entire flow 

graph. 

Basically, we need to provide a method to compute the transfer function, trans of R 

comma B for progressively larger regions defined by some T 1 T 2 transformation of a 

control flow graph. You could use interval methods and define regions, but in our 

example we are using T 1 T 2 transformation to define regions. 

Since out B is gen of U comma B, we need to compute only gen of R comma B and kill 

of R comma B for the basic blocks. These are needed for computing gen for 

progressively larger regions. We do not have to compute in B function at all; it is not 

necessary in this approach. 

(Refer Slide Time: 37:03) 

 

There are couple of observations here. Before we take up an example, let me show you 

this structure (Refer Slide Time: 37:05). Here, is our control flow graph for which are 

going to do region based data-flow analysis. At the inner most level are the regions A, B, 

C, D. When we combine them using T 2 transformation, we get regions T and R. This 

edge D to C is outside the region R. When we apply the T 1 transformation, we get on 

this region R; we get region S. 



Finally, when we apply T 2 transformation between T and S, we get the region U. The 

edges from D to A and C to A are not part of U, but they are part of V. So, we need to 

apply T 1 transformation on U in order to get V and V is the final. 

We are going to start our region based data-flow analysis from the basic blocks and grow 

the regions. This error key of regions is provided by the T 1 T 2 analysis. As we perform 

the transformations of T 1 and T 2, we keep track of the regions as well. We compute the 

gen information for the basic blocks and then provide a method to compute the gen 

information for T, R, S, U, V, etcetera when we perform either the T 1 or T 2 

transformations. 

(Refer Slide Time: 38:33) 

 

As we reduce the flow graph G by T 1 and T 2 transformations, the following conditions 

are true at all times. A node represents a region of G. An edge from a to b in a reduced 

graph represents a set of edges. So, this is clear. For example, (Refer Slide Time: 39:00) 

this edge S to T; so, we have S here and this is T; this is something that I already told 

you. These are the two edges corresponding to one edge in the bigger reduced graph. 

Each node and edge of G is represented by exactly one node or edge of the current graph. 

In the reduced graph, there is representation; each node and edge of G will be 

represented by exactly one node or region. So, you cannot have a node of this graph G 

(Refer Slide Time: 39:40) in say A; it cannot be present in more than one region at any 



point in time; it can be a part of exactly one region. The same is true for an edge as well; 

an edge cannot belong to two regions at any point in time. 

Region based DFA can be compared to syntax-directed translation, with the structure 

being provided by the hierarchy of regions. In other words, let us say that we are trying 

to generate machine independent code; quadruples for expressions. We start from the 

lowest level, look at the expression, and then if it is a star b plus c, we generate code for 

a star b, put it into a temporary, then use that t plus b, generate code t plus b, so on and so 

forth. So, this is the syntax-directed translation. Similar thing is done in the case of 

region based analysis also (Refer Slide Time: 40:51). The regions grow bigger and 

bigger just like the syntax tree becomes bigger and bigger. From inside that is, 

corresponding to leaves; that is, the basic region here, we go to the outer most region; 

that is the route of the syntax tree, we actually compute the data flow information. 

We consider the data-flow analysis for reaching definitions in this particular case and 

immediately afterwards, we will see how to do available expression analysis as well. It 

should be emphasized that all data-flow values, which reach the header of a region will 

surely flow to all the constituent regions and basic blocks since all the basic blocks are 

reachable from the header of the enclosing region. So, what we are trying to say here is – 

(Refer Slide Time: 41:50) in each region, there is full connectivity. So, the header of any 

region can reach any node in that particular region; there is connectivity. So, if some 

information reaches the header of a particular region, then it will definitely flow to every 

node in that particular region; the smallest node as well. That is what we say here. This 

connectivity information is very important because the only way we can enter a region is 

through the header and if the header is not connected to some node, then some 

information cannot flow. So, our basic assumption is that; you can reach every node in 

that particular region. However, the region formation itself ensures this; so, there is 

nothing to worry. 



(Refer Slide Time: 42:41) 

 

There are two transformations: T 1 and T 2. For each of these transformations, we 

provide the method of computing the transfer functions. As I told you, we need to 

compute only the gen and kill information for each basic block corresponding to each 

region; from the lowest level to the highest level. 

For the basic regions; that is, the basic blocks, we know how to compute gen B and kill 

B is another quantity, which we already know how to compute from iterative data-flow 

analysis. So, gen B of B comma B instead of gen R comma B; that is, the lowest level. 

gen of B comma B is nothing but gen B and kill of B comma B is nothing but kill B. 

With this information, let us take a region such as R, which is built by a T 2 

transformation from the regions R1 and R2. So, R1 has been built before, R2 was also 

built before. Now, there is an edge between R1 and R2. So, we can collapse R1 and R2 

and make it a single region R. So, this was the transformation if you have supplied. 

Now, the structure is available to us. How exactly the transformation happened? Given 

the transfer functions gen and kill for R1 and R2, how do we compute the transfer 

function gen and kill for the region R for the same basic block B in these two (Refer 

Slide Time: 44:27? 

Region building by T2; suppose you consider the basic block within the region R1 such 

as B. There are many basic blocks, but we have shown only one. R2 does not affect R1 



because there is no path to go back to R1 within this region R (Refer Slide Time: 44:46). 

You cannot go from R2 to R1 within this region R. The only connection between regions 

R1 and R2 is this particular edge, which may correspond to more than one edge in the 

actual control flow graph, but there is no back edge; nothing; you cannot go back. That is 

the way the regions have been constructed. Therefore, since R2 does not affect R1 at all, 

the gen of R comma B; that is, gen of with respect to region R for the basic block B, is 

same as gen of this particular B with respect to R1; that is, R1 comma B. Similarly, kill 

information is also the same. Kill of R comma B is same as kill of R1 comma B. 

Now, this is what i was saying (Refer Slide Time: 45:34) – Edges from R2 to R1 are not 

part of region R. So, we do not have to worry about going from here to here. If you look 

at basic block within the region R2, they are definitely affected by the region R1, but 

which blocks in R1 affect R2? Since the connection is just this, the only block, which 

can affect R2. Or, if this edge corresponds to let us say – three edges, there will be three 

blocks connected to those three edges here. So, those are the only three edges, which will 

hurt R2. Let us take this example (Refer Slide Time: 46:19). Here, T and S; this C is the 

header of the region S. So, there is an edge from T to C and A to C; this is the region. T 

corresponds to R1 and S corresponds to R2. So, these are the only two basic blocks, 

rather regions from which we can enter C. 

Therefore, we need to consider blocks corresponding to the predecessor of the header of 

R2. Here, for example (Refer Slide Time: 46:58), this is a header of R2. We want to look 

at the predecessor of the header of R2. Those are the two blocks – A and B. So, gen of R 

comma B now (Refer Slide Time: 47:12) will be gen of R2 comma B, whatever is 

generated by V with respect to the region R2 union G minus kill of R2 comma B. What 

is G? G is union of gen of R1 comma P for all predecessors P of the header of R2 in R1. 

So, those are the blocks I was talking about. Header of R2 is here; there are many 

predecessors. Take all those predecessors; they are only ones, which can hurt R2. Take 

the union of the gen of all those predecessors; they will all able to reach the header of 

R2. That is the set G. From that set G, remove whatever is killed by this R2. So, kill of 

R2 comma B; killed by B with respect to R2. Add gen of R2 comma B; generated by B 

with respect to R2. Then, you get whatever is generated by B with respect to the region 

R. So, this should be clear. 



Kill is very similar. Kill of R2 comma B union K minus gen of R2 comma B. So, (( )) K 

is intersection of kill of R1 comma P. Why? If there are many predecessors like this 

(Refer Slide Time: 48:34), unless the definition is killed along both these paths, we do 

not take it as killed. That is the reason why we take the intersection. For generation, it 

can reach along any one of the paths, but for killing, it should killed along all paths. That 

is why this is an intersection and this is a union (Refer Slide Time: 48:53). 

(Refer Slide Time: 48:55) 

 

What about the transformation T 1? T 1 is like this. There is a region R1, there is a self-

loop and we want to get rid of it. So, that is the transformation T 1. If you look at the kill 

set for the region R, it is same as the kill set of the basic block B with respect to R1. 

Why? A definition gets killed going from the header to B, if and only if it is killed along 

all acyclic paths. Hence, back edges such as this incorporated into R will not cause more 

definitions to be killed. So, from the header here, along every path to B, the definitions 

are killed. So, those are the kill definitions that we already know. 

This back edge will not create further problems and therefore, kill of R comma B is 

nothing but kill of R1 comma B. So, whatever gets killed from the header to B, is kill of 

R1 comma B and that is precisely, kill of R comma B as well; nothing more can be 

added by this. Whatever is killed along all paths are already taken. So, back edge will not 

add extra information. 



The same is not true for the gen set. There may be gen of R1 comma B union G minus 

kill of R1 comma B is gen of R comma B. Why? G is union of gen of R1 comma P, for 

all the predecessors. So, it is possible that some definitions here (Refer Slide Time: 

50:43) come… We are looking at all possible paths and any one of these paths can 

generate a definition; it is unlike kill. So, maybe from here, I go back and then take some 

paths, which come here; that could be generating a definition for us. 

Whereas, in the case of kill, every path was covered. Here, (Refer Slide Time: 51:11) not 

all paths are covered; any one of the paths is good enough for our generation. Therefore, 

we need to look at all the predecessors of this particular edge. This is a compound edge. 

So, there may be many predecessors corresponding to this compound edge. Look at all of 

them and then take… To give you an example, here, (Refer Slide Time: 51:34) in this 

region V, we had a self-loop. So, these two edges corresponded to a single compound 

edge. For this header, we had two predecessors C and D; one was this (Refer Slide Time: 

51:50) and one was that. Both these together corresponded to a compound edge. This 

compound edge (Refer Slide Time: 51:56). 

We take the predecessors of this compound edge. When we actually travel along this 

edge, they may actually reach the header of R1 and then further reach B. That is the 

reason why we take the union of all these gen sets of the predecessors, then remove 

whatever is killed by this basic block, and add whatever is generated by this basic block. 

That gives us gen R comma B. So, this is very similar to what we did in the T 2 

transformation, but this is different because of this particular (Refer Slide Time: 52:37) 

reason. This is very similar. So, we take the predecessors and then they can all come 

here; possibly along any one of the paths. 



(Refer Slide Time: 52:49) 

 

Here, is an example, region based analysis. Here, we have all the regions that I showed 

you. Let us say – there are 4 blocks, here are the gen and kills sets, and here is our 

control flow graph. 

(Refer Slide Time: 53:10) 

 

For example, if you are building region R from C and D by T 2 transformation, gen of R 

comma C is gen of C comma C. This is at the lowest level. So, it is same as the gen and 

kill sets; kill is similar. 



The header of D is just D and predecessor of D in C is just the node C. This is a T 2 

transformation; we are computing G and K. We are looking at the predecessors; that is 

only one, which is C. So, we get gen C comma C. This also becomes only C; kill of C 

comma C. 

Now for the bigger region R (Refer Slide Time: 53:57), gen of R comma D from the 

equation is gen of D comma D union G minus kill of D comma D; that gives us 0 0 1. 

Similarly, kill of R comma D is kill of D comma D union K minus gen of D comma D; 

that gives us 0 1 0. 

(Refer Slide Time: 54:15) 

 

Now, we apply the T 1 transformation to get region S from R. So, there is only one 

predecessor for this header node C, which is D within S. This is the edge we are looking 

at; this is D. G is gen of R comma D; R is this region. So, 0 0 1 as we computed before. 

gen of R comma D is 0 0 1. 

The kill set is not modified; it is same as that of R comma C. That is written here. The 

gen set is computed using that formula gen union G minus kill. So, we get the 

appropriate 0 0 1 and 0 0 1 for the C and D nodes with respect to the region S. 



(Refer Slide Time: 55:00) 

 

Then, we have building region T; that is, this which is very similar to building region R. 

So, let us not spend too much time on it. Similarly, we get gen of T comma A, kill of T 

comma A, G, K, gen of T comma B and T comma B. This is very similar to what we did 

for C and D to build region R. 

(Refer Slide Time: 55:25) 

 

Then, we want to build the region U from T and S; this is by T 2 transformation. These 

two: A and B will not be modified too much because this corresponds to region R1. So, 

they are as it is; they are as they are. 



(Refer Slide Time: 55:44) 

 

Whereas, for this region S, it is different; so, the header of S is C and predecessors of C 

are B and A. So, there are two nodes here. Because of that, we have to compute G and K 

with these two predecessors: gen union gen; A and B. kill is intersection; A and B. So, 

we get this. Then, apply the gen equal to gen union G minus kill formula and obtain 

these four quantities. 

(Refer Slide Time: 56:19) 

 

Then, we build the region V from U, rather this is a small mistake; from region U by T 1 

transformation. The header of U is A and predecessors of U in C and D. So, these are the 



two. Now, we need to compute the G set using the two gens. Finally, compute gen of V 

comma A, V comma B and so on and so forth. 

(Refer Slide Time: 56:53) 

 

Finally, to compare the iterative approach and this region based approach, I have listed 

here the out and in sets for the iterative data-flow analysis. In the fourth iteration, there is 

convergence and we produce exactly the same information as in the iterative data-flow 

analysis. These two are actually identical; it is just that they are two different approaches 

for the same problem. 

(Refer Slide Time: 57:29) 

. 



The available expression analysis problem is very similar. It is just that in this particular 

case, the gen and kill definitions become G equal to intersection and K equal to union 

because available expression information has this. 

We will stop at this point and continue this example in the next lecture. Thank you. 


