Compiler Design
Prof. Y. N. Srikant
Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 10
Lecture No. # 17

Machine-Independent Optimizations — Part 2
Welcome to the lecture on Machine-Independent Optimizations part 2. In the last lecture,
we covered global common sub-expression elimination, copy propagation and loop

invariant code motion. Also, | gave you an introduction to what induction variables are.

We will continue that lecture today along with region based data-flow analysis.
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Induction Variables
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An induction variable is actually related to a loop; essentially, the counter values in a
loop or induction variables. The other variables, which are dependent on the loop
variables are also induction variables provided they satisfy certain conditions. The basic
requirement is — the value only changes through an increment or decrement operation by
a constant variable constant amount. There are basic induction variables, which have a
form i equal to i plus minus n, where n is a constant. Then, there are derived induction
variables such as j, which have the form c star i plus d and they are defined only once
within the loop; ¢ and d are constants essentially in your functions. If i goes as 1, 2, 3, 4,
then j let us say is 5 star i; then, it goes as 5, 10, 15, etcetera. If it is 5 star i plus 3, then
the first value will be 5 plus 3, which is 8 and then 8 plus 5, which is 13 and so on and so
forth.

For each induction variable, we have a triple. For a basic induction variable, it is denoted
as (i,1,0) and any other variable in the family of i is denoted as (i,c,d); c and d are the

constants. This means, j equal to i star ¢ plus d; that is how it would be read.
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Induction Variables - Example 1
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Here is an example from the last lecture: i is an induction variable, which is being
incremented by 1 in the loop; t5 is a derived induction variable in the family of i, which

is defined as 4 star i.
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| @nd j are bolh basic Ly, 0
nai nner BN SUler sopa

12 (in thee Farmily of £} and

14 (In Ched Farmily o |) aro BoEh
darmved i v in Bolh inner and
aUter [oops

Here is another example: i and j are both induction variables, both in the inner loop, this
loop, and the outer loop; t2 is an induction variable derived from i, which is in the family

of i; again both in this loop and the outer loop. Similarly, j is an induction variable in the



family of t4, which is an induction variable in the family of j, both in this loop and the

outer loop.
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How do you detect induction variables? Basic induction variables are easy to find. You
just scan the statements of the loop L whenever you have i equal to i plus minus n. They
are basic induction variables. It is not necessary that basic induction variables are defined
exactly once. They may be defined many times, but for derived induction variables in the

family of a basic induction variable, the definition should be exactly once in the loop.

Search for variables such as k with a single assignment to k within the loop L having one
of the following forms: There are many forms — j star b, b star j, etcetera. What is not
permitted is b slash j because it becomes non-linear. Once we find something of this
kind, we check for other conditions, which need to be satisfied. Just because k equal to b
star j, it does not mean that k is an induction variable.

First, we check if j is basic. Let us assume that we are looking at k equal to j star b. If j is
basic, then k equal to j star b and the triple for k is very simple, j, b and 0. Similarly, for
other forms as well; if it is j plus b, then we have j, 1 and b here (Refer Slide Time:
04:53). Similarly, for (( )) Keep in mind that when you have (i,c,d), it is i star ¢ plus d
and we just put those constants here. The conditions are necessary to be checked when j

is not basic.



In other words, there is a basic induction variable i and then j is in the family of i. So, its
triple is (i,c,d). Now, we need to determine whether k, which is based on j can also be set
to be in the family of i. What are the necessary conditions to be checked here? (Refer
Slide Time: 05:32) Two conditions: First one is — there is no assignment to i between the
lone point of assignment to j in L and the assignment to k; Second condition is — no

definition of j outside L reaches k.

(Refer Slide Time: 05:49)

Induction Variables - Conditions
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Let us understand these conditions slightly better. Here is a basic induction variable i;
here is the definition of j and j is in the family of i; here is the definition of k; k equal to |
star b and it is supposed to be in the family of j. Now, the conditions 2 b i and 2 b ii are
satisfied here. Let us see what they are? (Refer Slide Time: 06:25) Condition (i) says —
there is no assignment to i between the lone point of assignment to j in L and the
assignment to k. Lone point of assignment to j and the assignment to k between these
two (Refer Slide Time: 06:37), there is no assignment to i again. So, condition (i) is
satisfied. No definition of j outside L reaches k. There is no definition of j outside L,
which is reaching k. It is only this definition j, which is reaching this k (Refer Slide
Time: 06:54). So, both the conditions are satisfied.

In this example, condition 2 b i is not satisfied. Let us see why. i is the basic induction
variable as before, j is the derived induction variable in the family of i, then here (Refer

Slide Time: 07:12) is the assignment to k, but there is an assignment to i as well. So,



between the assignment to j and assignment to k, there is an assignment to i. Now, the
condition (i) is obviously violated. What is the problem? The problem is — j is updated
here and assignment to i is ok. We now have j star b; the old value of j is used here. So,
there is no harm done. Whenever j is updated, the value of k is based on j and everything

ok; it is not dependent on i at all.

Once we replace this assignment to k (Refer Slide Time: 07:58), which actually is a
function of j by a function of i. Then, whenever i changes here, this k value will also
change. This is the difficulty. Here, the old value of j is still available to me even though
the value of i has changed, but once I replace this j (Refer Slide Time: 08:21); j star b by
a suitable function of i because it is supposed to be in the family of i, then whenever i
changes, k will also change. This will lead to a different program and it may be an
erroneous condition. So, semantic violation has occurred here. Therefore, this is not a
valid transformation. We cannot base any transformation on this in particular

information. So, we cannot say that k is in the family of i.

In the last illustration here (Refer Slide Time: 09:02), condition 2 b i is satisfied. So,
there is this assignment to k and this assignment to j, and there is no assignment to i in
between. However, condition 2 b ii is violated. The reason is — for this particular k equal
to j star b, there is a definition of j, which is reaching it from the outside; that is, from
B1. There is another definition of j, which is reaching it from within the loop. So, there
are two definitions of j. So, both B1 and B2 reach this particular use of (Refer Slide
Time: 09:41) j. If this k, which is dependent on j is actually replaced by a function of i,
this dependence goes away and it could be a mistake. There is a semantic violation if we
replace this by a function of i. Therefore, this transformation is also not permitted. This
is the reason why these conditions (Refer Slide Time: 10:09) have to be checked.
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Detection of Induction Variables (2)
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How do we check these conditions? Fairly straight forward; If both j and k are
temporaries in the same basic block, then checking conditions (i) and (ii) above is very
easy. We do not have to go beyond basic blocks. So, we just check the space between the
two definitions of j and k and see if there is a definition of i. There is nothing else, that is
really going to cause problems. So, we are sure that j and k do not live beyond the basic
blocks; that is the assumption here; j and k temporaries in the same block. There can be
no definition of j, which arrives from outside the block. They live only within the block,
they are defined, and they are actually not useful after the basic block. So, checking

condition (i) is redundant, rather condition (ii) is redundant.

Otherwise, if they are not temporaries in the same basic blocks, then we need to find all
the basic blocks on the paths from the point of assignment to j, to the point of assignment
to k, and then check condition (i). So, you have to look at all the paths, find out all the
basic blocks on the paths. So, every one of the paths must be taken. Only thing is that
you do not have to go around the loops any number of times. So, you just have to go
through the loop once and find all the basic blocks; that is it. Then, you can check

condition (i) quite easily.

Condition (i) can be very trivially checked using u-d chain of j in the assignment to k.

So, this use-definition n chain will tell us how many definitions of j are reaching that



particular point. If there is more than one, then we have a problem and immediately

condition (ii) is violated.

Assuming that the conditions are satisfied, how do you compute the triple for k? The
triple for j is assumed to be (i,c,d) and let us say the form of assignment to k is k equal to
j star b and j is i star ¢ plus d. Make a simple substitution and find the constants. k
becomes i star ¢ plus d into b; that becomes i star b star ¢ plus d star b so this is our
(Refer Slide Time: 12:51) ¢ prime and this is our b prime. So, i comma b star ¢ and
comma d star b are going to be our new triple. b star ¢ and d star b are constants and
therefore, can be evaluated by the compiler. That is how we get the new triple for k. If
there is next induction variable dependent on k, we know how to convert it and make it

dependent only on i.
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The next transformation that we need to understand is strength reduction. After this, we
will look at induction variable elimination. Consider each basic induction variable, i. For
each induction variable, j in the family of i; let us say its triple (i,c,d), we want to
actually reduce the strength of j. If it is 4 star j, we want to actually replace it with by

some addition operation.
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To do that, we create a new variable s. Let me give you an example of that and then go
back to the algorithm itself. Here, we have the basic induction variable, i, which is
incremented; i equal to i plus 1, etcetera. t5 is the induction variable in the family of i; it
has 4 star i. Assuming that star is a costly operation and it needs to be replaced by a
simpler plus operation; after transformation, it becomes t5 is equal to t7 and t7 equal to
t7 plus 4 with an initialization of t7 equal to 4. So, there is no 4 star i any more. So, it has
been replaced by an addition. That is why in the example (Refer Slide Time: 15:00) we
had t7. Similarly, we have a new variable called s for each of the derived variables j,
whose strength reduction has to be carried out; replace the assignment to j by j equal to s.
We did that here (Refer Slide Time: 15:17). We replaced t5 is equal to 4 star i by t5 is
equal to t7.

If there are two induction variables, j 1 and j 2 with the same triples (Refer Slide Time:
15:27), that means both of them advanced with the same constant value. Then, we can

use the single variable for these two triples together.

Immediately after each assignment to i; that is, i equal to i plus n in L, where n is a
constant, place the assignment s equal to s plus c star n; ¢ star n is a constant obviously.
this is the n (Refer Slide Time: 15:52) that we are talking about. Whenever i is
incremented, we are also incrementing s by the appropriate amount, ¢ star n because

whenever i increments, j will also increment by the appropriate quantity. So, that is what



we want to do here; s is equal to s plus c star n. For example, j is equal to 4 star i, as i
goes 1, 2, 3, j goes 4, 8, 12 and so on. That means addition of 4. That is what we are
doing here (Refer Slide Time: 16:28), or add c star n.

Here, (Refer Slide Time: 16:32) we have placed t7 equal to t7 plus 4 immediately after
this statement i equal to i plus 1 because this constant is 4 and this is (i,4,0). So, thisis i

equal to i plus 1; so, 4 star 1 is 4; so, t7 plus 4.

(Refer Slide Time: 16:51)
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Place s in the family of i with the triple (i,c,d); actually s is nothing but j. So, it is just a
replacement for j. So, its triple is identical. We have replaced a costly star operation by a

cheaper plus operation.

Place the code to initialize s to ¢ star i plus d at the end of the preheader. We did that
here (Refer Slide Time: 17:17); t7 equal to 4. So, c star i plus d is 4 star i plus 0O; that is,
4. This is how the strength reduction has happened.
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Let us take another simple example. This is example 2. For example, let us look at this
(Refer Slide Time: 17:45). We had t2 and t4, which are dependent on i and j respectively.
Those have been replaced. Now, we have s2 equal to s2 plus 4 instead of 4 star i and s4
equal to s4 minus 4 instead of 4 star j. The reason this has become (Refer Slide Time:
18:09) minus and this is still plus is this is i equal to i plus 1, whereas this is j equal to |
minus 1. n is minus 1 here and that is why this has become minus 4. Then, there is
initialization s2 is equal to 4 star i and s4 is equal to 4 star j. These two statements: s2 is
equal to and s4 equal to; have in place immediately after i is equal to n; j equal to... So,
this is a very simple strength reduction operation; star has been replaced by plus. This

strength reduction happened within this loop and within this loop, respectively.
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Elimination of Induction Variables
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We did all these with a view to see if we can finally eliminate the induction variable. The
idea is — in this case (Refer Slide Time: 19:00), here t5 increments by 4 in every loop,
whereas i increments by 1. So, wherever we have the test for i, if we are able to replace it
by the test for t5, then it is done. So, the first step in that process is to do strength

reduction and then do induction variable elimination.

(Refer Slide Time: 19:30)
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Let me give you the same example here. This is the old example. This t7 is equal to t7

plus 4 has replaced that t5 equal to 4 star i. So, we do not have that anymore. Now, i is



ready to be replaced by t7 itself. Instead of i greater than 100, can we put t7 greater than
something? Yes, but t7 increments by 4 at a time. So, if i is compared with 100, t7 must
be compared with a quantity, which is 4 times that. That is what we do here; t7 greater
than 400 instead of i greater than 100. The rest of the loop remains the same and when

we have got rid of that, this statement i equal to i plus 1 can be deleted.

How to do this systematically? (Refer Slide Time: 20:28) Consider each basic induction
variable i whose only uses are to compute other variable in its family and in conditional
branches. If this is so, we can eliminate this induction variable. Now, consider j in i’s

family with the triple (i,c,d). We want to remove i and replace it with it with j.

If there is a relational operation, rather conditional statement if i relop x goto B, we want
to replace this i (Refer Slide Time: 21:06) by j, which is in the family of i. Then, what is
the replacement for x? If i becomes i star ¢, x should become x star c. If this becomes i
star ¢ plus d, this should become x star ¢ plus d. So, i star ¢ plus d is j and x star ¢ plus d
will be computed that will be put into the variable, r. That is why if i relop x goto B is the
conditional statement, we replace it by r is equal to c star x, r equal to r plus d. So, that
updates x appropriately and makes it get a value comparable to j. Then, we write if j

relop r goto B. This is the transformation.

There is a small hitch here; what if ¢ is negative? In other words, what if we have j equal
to minus 4 star i? i increases 1, 2, 3, but j will decrease in the negative direction minus 4,
minus 8, minus 12, etcetera. In such a case, replacing this (Refer Slide Time: 22:27) i
relop x by j relop r by this transformation would be become incorrect. Let us lake a
simple example: If you had minus 5 less than minus 2, it is a correct statement. Now,
change it to plus 5; 5 less than 2 is obviously wrong. Similarly, if you had 5 greater than
2 and now, you change it to minus 5 greater than minus 2, that would be incorrect. What
we need to do whenever we change the sign is — to complement the relational operator as
well. If you have less than, you must replace it by greater than; if you had less than or

equal to, then you must replace it by greater than or equal to and so on and so forth.

If ¢ is negative, then we use relop bar; that is the complement of that relational operator
in place of relop in the above code sequence. For example, if ¢ is minus 4, then if i
greater than equal to x goto B is replaced by the code sequence, r equal to minus 4 star X,

r equal to r plus d, and then if j less than equal to r, goto B. So, this would be a correct



replacement for if i greater than equal to x. This is based on the assumption that we know
the direction in which the decrement or increment is happening. So, the sign of c. That is
why we always insist that ¢ and d are constants. In theory, there could be loop-invariant
values. The values comes from outside, but if we do not know the sign of that particular
value, then this elimination of induction variables is not a possibility. We must know the
direction in which the values increase or decrease; that is, the sign of this constant c;

otherwise, we cannot do anything about induction variable elimination.

We delete all the assignment to the eliminated induction variable in the loop; in this case,
i (Refer Slide Time: 24:38). Apply copy propagation to eliminate statements of the form
j equal to s, if necessary. Here (Refer Slide Time: 24:48), we did this replacement —

instead of i greater than 100, it became t7 greater than 400. That is about it.

(Refer Slide Time: 24:58)

Induction Variable Elimination and Strength Reduction
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The second example; instead of i equal to i plus 1, t2 equal to 4 star i, we did strength
reduction. It became s3 equal to s2 plus 4, but why do we have to keep i greater than
equal to j here? j equal to j minus 1 and t4 equal to 4 star j are the other two statements.

So, t4 equal to 4 star j has been replaced by s4 equal to s4 minus 4.

Can we replace i greater than equal to j by s2 and s4, respectively? It so happens that we
can; it is just that it should be the inverse of the condition. So, s2 not of s2 greater than
equal to s4. If we have that, then goto B6; works perfectly here. So, this is the way we

actually do induction variable elimination.



(Refer Slide Time: 25:59)

I.V. Detection - Running Example

Let us take a running example starting from i; looking at the old program that we had.
We really have several induction variables here; they are all listed here. i is also one of
them, but let us ignore i. Let us look at j only and its derivatives. j is a basic induction
variable. So, (j,1,0) is its triple. Then, we have t4 equal to 4 star j here. So, that is a
derived induction variable in the family of j with (j,4,0). Then, t6 is j plus 1. So, that is

another derived induction variable with the triple (j,1,1).

Then, t7 is one more says (Refer Slide Time: 26:50) — 4 star t6. So, it is in the family of
t6; so, (t6,4,0), but t6 itself happens to be in the family j. So, t7 is also in the family of j
with the triple (j,4,4). These are the induction variables that we have deducted in this

loop.



(Refer Slide Time: 27:13)

I.V. Strength Reduction - Running Example

Now, let us do strength reduction. Here, (Refer Slide Time: 27:19) t4 equal to 4 star |
was replaced by t4 equal to s4 and s4 equal to s4 plus 4. Then, t6 equal to j plus 1 was
replaced by t6 equal to s6 and s6 is equal to s6 plus 1. t7 equal to 4 star t6 was replaced
by t7 is equal to s7 and s7 equal to s7 plus 4. Then, appropriate initializations were all

carried out in this particular preheader. So, this is strength reduction.

(Refer Slide Time: 27:52)

I.V. CSE and Copy Elimination - Running Example

After common sub-expression elimination and copy propagation. For example, (Refer

Slide Time: 28:00) all these t4 etcetera becomes s4. So, these are the copy propagations



that have taken place; a of s4, a plus s4, a of s7, a plus s7 etcetera. After we did this,
where was... Here, (Refer Slide Time: 28:24) we had 4 star j, 4 star j. So, these are two
common sub-expressions. Those were also removed and that is why CSE is mentioned
here (Refer Slide Time: 28:34); little more efficient code.

(Refer Slide Time: 28:38)

I.V. Elimination - Running Example

Finally, removed the useless code that is corresponding to the i and did induction
variable j elimination. We had in this; for example, (Refer Slide Time: 28:51) we had — if
t3 equal to j less than t2; if not, t3 goto B3 or B8. That was replaced by t2. So, s2 became
4 star t2 and t3 equal to s4 less than s2. So, we replaced for example, (Refer Slide Time:
29:09) j by s4 and t2 was replaced by its appropriate multiplicand; that is, s2; 4 star t2.
So, that is how the induction variable elimination took place. Now, this becomes not of

t3; it is not dependent on j anymore.

The quadruples for j were all removed and only those (Refer Slide Time: 29:34), which
are required — s4, s7, etcetera were retained. This is a detailed example of how induction
variable detection, strength reduction and induction variable elimination happens for a

nontrivial program.
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Region Based Data-flow Analysis
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So, that is as far as some of the basic optimizations are concerned. Let us look at a very
interesting version of data-flow analysis called region based data-flow analysis. In one of
the previous lectures, we talked about iterative data-flow analysis in which the basic
blocks for all traverse in particular order to find a solution for the data-flow analysis
problem. Whereas here, we divide the control flow graph into regions; we looked at
regions very briefly. Let us recapitulate - what exactly regions are. So, region is a set of
nodes N that includes a header, which dominates all other nodes in the region. All edges
between nodes in N are in the region, except; possibly for some of those that enter the

header.



(Refer Slide Time: 31:05)
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It is very easy to give you some examples of this. Let me go little further; Here, for
example, if this is the big region. When we are constructing the yellow region outside
this, the arcs A C and A D are not in the region U, they are in the region V. So, when we
consider region U, we do not consider these two arcs; we will consider it only when we

go to region V.

(Refer Slide Time: 31:34)

Hegion Based Data-flow Analysis
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All intervals are regions, but there are regions that are not intervals. A region may omit

some nodes that an interval would actually include or they may omit some edges also



back to the header. For example, the interval for 7 was 7, 8, 9, 10, 11, but 8, 9, 10 could

be a region.

(Refer Slide Time: 31:55)

Intervals and Hegions

Let me show you that example. So, i 7 is 7, 8, 9, 10, 11, this entire thing, but 8 9 10
could be just this region. This could be a region on its own; 8 nominates 9 and 10. So,

that is how this becomes a small region on its own.

A region may have multiple exits. This region — 8, 9, 10 has 2 exits; so, no problem.
Now, what we are going to do is (Refer Slide Time: 32:30 — we will compute gen of R
comma B and kill of R comma B of definitions generated and killed along the paths
within the region R, from the header to the end of the block B. This will become clear as

we go along.

This is the interval graph (Refer Slide Time: 32:55) that we had already looked at. This is
the interval 1 2 3 and then, this reduces further, so on and so forth.



(Refer Slide Time: 33:04)

Intervals and Regions

This was the other interval graph. Interestingly, if you look at 3 as the header, then this 3
4 5... There is a minor change here in the graph from... Instead of this (Refer Slide
Time: 33:18), we made it that. So, this changes the intervals structure; so, 3 4 5 6 become
an interval and rest of its 7 8 9 10 11 become another intervals. Finally, reduction takes
place.

Each of these (Refer Slide Time: 33:32) could be a region actually; so, no problem; an
interval could be a region. This is an example of how regions are, or each of these (Refer
Slide Time: 33:42) could be a region. So, there are 4 regions in this example and 3
regions in this example.
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Region Based Data-flow Analysis (2)
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What exactly is region based data-flow analysis? The basic idea is to define a transfer
function called trans of R comma B with a parameter S. So, this will tell us that for the
input S, which is a set of definitions; Let us say - we are looking at reaching definition
problems. For any set S, which is sent as a parameter; that is a set of definition in this
example, what subset of definitions reach the end of the basic block B by travelling
along paths wholly within R; this is important; we are not looking at edges, which are not
in the region, assuming that all and only definitions in S reach the header of R. So, there
is no other way of reaching the header of R; only the definitions in S will reach the
header of R. Then, how do they travel inside the region R is what is captured by this

trans function.

trans of R comma B with the parameter S would be whatever is generated within the
region R; that is, gen of R comma B for that basic block B and reach the end of the basic
block B, union S minus whatever is killed by the basic block B with respect to the region
R. So, if you look at the entire region; let us say — trans of U comma B and then let us
say — the incoming set of definitions is phi; that is what the initialization we always had.
That becomes are out B. This is the (Refer Slide Time: 35:43) out function that we
defined in iterative data-flow analysis. So, here is the connection between the region
based data-flow analysis in which we want to find trans functions and the out functions
that we have in iterative data-flow analysis. This out B is nothing but gen of U comma B
because S is phi here; phi minus something is phi. So, gen of R comma B becomes gen



of U comma B with R equal to U, where U is the region consisting of the entire flow

graph.

Basically, we need to provide a method to compute the transfer function, trans of R
comma B for progressively larger regions defined by some T 1 T 2 transformation of a
control flow graph. You could use interval methods and define regions, but in our

example we are using T 1 T 2 transformation to define regions.

Since out B is gen of U comma B, we need to compute only gen of R comma B and kill
of R comma B for the basic blocks. These are needed for computing gen for
progressively larger regions. We do not have to compute in B function at all; it is not

necessary in this approach.

(Refer Slide Time: 37:03)
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There are couple of observations here. Before we take up an example, let me show you
this structure (Refer Slide Time: 37:05). Here, is our control flow graph for which are
going to do region based data-flow analysis. At the inner most level are the regions A, B,
C, D. When we combine them using T 2 transformation, we get regions T and R. This
edge D to C is outside the region R. When we apply the T 1 transformation, we get on
this region R; we get region S.



Finally, when we apply T 2 transformation between T and S, we get the region U. The
edges from D to A and C to A are not part of U, but they are part of V. So, we need to
apply T 1 transformation on U in order to get V and V is the final.

We are going to start our region based data-flow analysis from the basic blocks and grow
the regions. This error key of regions is provided by the T 1 T 2 analysis. As we perform
the transformations of T 1 and T 2, we keep track of the regions as well. We compute the
gen information for the basic blocks and then provide a method to compute the gen
information for T, R, S, U, V, etcetera when we perform either the T 1 or T 2

transformations.

(Refer Slide Time: 38:33)

RHegion Based Data-flow Analysis (3)
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As we reduce the flow graph G by T 1 and T 2 transformations, the following conditions
are true at all times. A node represents a region of G. An edge from a to b in a reduced
graph represents a set of edges. So, this is clear. For example, (Refer Slide Time: 39:00)
this edge S to T; so, we have S here and this is T; this is something that | already told

you. These are the two edges corresponding to one edge in the bigger reduced graph.

Each node and edge of G is represented by exactly one node or edge of the current graph.
In the reduced graph, there is representation; each node and edge of G will be
represented by exactly one node or region. So, you cannot have a node of this graph G

(Refer Slide Time: 39:40) in say A, it cannot be present in more than one region at any



point in time; it can be a part of exactly one region. The same is true for an edge as well;

an edge cannot belong to two regions at any point in time.

Region based DFA can be compared to syntax-directed translation, with the structure
being provided by the hierarchy of regions. In other words, let us say that we are trying
to generate machine independent code; quadruples for expressions. We start from the
lowest level, look at the expression, and then if it is a star b plus ¢, we generate code for
a star b, put it into a temporary, then use that t plus b, generate code t plus b, so on and so
forth. So, this is the syntax-directed translation. Similar thing is done in the case of
region based analysis also (Refer Slide Time: 40:51). The regions grow bigger and
bigger just like the syntax tree becomes bigger and bigger. From inside that is,
corresponding to leaves; that is, the basic region here, we go to the outer most region;
that is the route of the syntax tree, we actually compute the data flow information.

We consider the data-flow analysis for reaching definitions in this particular case and
immediately afterwards, we will see how to do available expression analysis as well. It
should be emphasized that all data-flow values, which reach the header of a region will
surely flow to all the constituent regions and basic blocks since all the basic blocks are
reachable from the header of the enclosing region. So, what we are trying to say here is —
(Refer Slide Time: 41:50) in each region, there is full connectivity. So, the header of any
region can reach any node in that particular region; there is connectivity. So, if some
information reaches the header of a particular region, then it will definitely flow to every
node in that particular region; the smallest node as well. That is what we say here. This
connectivity information is very important because the only way we can enter a region is
through the header and if the header is not connected to some node, then some
information cannot flow. So, our basic assumption is that; you can reach every node in
that particular region. However, the region formation itself ensures this; so, there is

nothing to worry.



(Refer Slide Time: 42:41)
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There are two transformations: T 1 and T 2. For each of these transformations, we
provide the method of computing the transfer functions. As | told you, we need to
compute only the gen and kill information for each basic block corresponding to each

region; from the lowest level to the highest level.

For the basic regions; that is, the basic blocks, we know how to compute gen B and Kill
B is another quantity, which we already know how to compute from iterative data-flow
analysis. So, gen B of B comma B instead of gen R comma B; that is, the lowest level.
gen of B comma B is nothing but gen B and kill of B comma B is nothing but kill B.

With this information, let us take a region such as R, which is built by a T 2
transformation from the regions R1 and R2. So, R1 has been built before, R2 was also
built before. Now, there is an edge between R1 and R2. So, we can collapse R1 and R2

and make it a single region R. So, this was the transformation if you have supplied.

Now, the structure is available to us. How exactly the transformation happened? Given
the transfer functions gen and kill for R1 and R2, how do we compute the transfer
function gen and kill for the region R for the same basic block B in these two (Refer
Slide Time: 44:27?

Region building by T2; suppose you consider the basic block within the region R1 such

as B. There are many basic blocks, but we have shown only one. R2 does not affect R1



because there is no path to go back to R1 within this region R (Refer Slide Time: 44:46).
You cannot go from R2 to R1 within this region R. The only connection between regions
R1 and R2 is this particular edge, which may correspond to more than one edge in the
actual control flow graph, but there is no back edge; nothing; you cannot go back. That is
the way the regions have been constructed. Therefore, since R2 does not affect R1 at all,
the gen of R comma B; that is, gen of with respect to region R for the basic block B, is
same as gen of this particular B with respect to R1; that is, R1 comma B. Similarly, kill
information is also the same. Kill of R comma B is same as kill of R1 comma B.

Now, this is what i was saying (Refer Slide Time: 45:34) — Edges from R2 to R1 are not
part of region R. So, we do not have to worry about going from here to here. If you look
at basic block within the region R2, they are definitely affected by the region R1, but
which blocks in R1 affect R2? Since the connection is just this, the only block, which
can affect R2. Or, if this edge corresponds to let us say — three edges, there will be three
blocks connected to those three edges here. So, those are the only three edges, which will
hurt R2. Let us take this example (Refer Slide Time: 46:19). Here, T and S; this C is the
header of the region S. So, there is an edge from T to C and A to C; this is the region. T
corresponds to R1 and S corresponds to R2. So, these are the only two basic blocks,

rather regions from which we can enter C.

Therefore, we need to consider blocks corresponding to the predecessor of the header of
R2. Here, for example (Refer Slide Time: 46:58), this is a header of R2. We want to look
at the predecessor of the header of R2. Those are the two blocks — A and B. So, gen of R
comma B now (Refer Slide Time: 47:12) will be gen of R2 comma B, whatever is
generated by V with respect to the region R2 union G minus kill of R2 comma B. What
is G? G is union of gen of R1 comma P for all predecessors P of the header of R2 in R1.
So, those are the blocks | was talking about. Header of R2 is here; there are many
predecessors. Take all those predecessors; they are only ones, which can hurt R2. Take
the union of the gen of all those predecessors; they will all able to reach the header of
R2. That is the set G. From that set G, remove whatever is killed by this R2. So, kill of
R2 comma B; killed by B with respect to R2. Add gen of R2 comma B; generated by B
with respect to R2. Then, you get whatever is generated by B with respect to the region
R. So, this should be clear.



Kill is very similar. Kill of R2 comma B union K minus gen of R2 comma B. So, (()) K
is intersection of kill of R1 comma P. Why? If there are many predecessors like this
(Refer Slide Time: 48:34), unless the definition is killed along both these paths, we do
not take it as killed. That is the reason why we take the intersection. For generation, it
can reach along any one of the paths, but for killing, it should killed along all paths. That

is why this is an intersection and this is a union (Refer Slide Time: 48:53).

(Refer Slide Time: 48:55)

Hegion Building by T1 Trans. - Reaching Detf

What about the transformation T 1? T 1 is like this. There is a region R1, there is a self-
loop and we want to get rid of it. So, that is the transformation T 1. If you look at the kill
set for the region R, it is same as the Kill set of the basic block B with respect to R1.
Why? A definition gets killed going from the header to B, if and only if it is killed along
all acyclic paths. Hence, back edges such as this incorporated into R will not cause more
definitions to be killed. So, from the header here, along every path to B, the definitions

are killed. So, those are the kill definitions that we already know.

This back edge will not create further problems and therefore, kill of R comma B is
nothing but kill of R1 comma B. So, whatever gets killed from the header to B, is kill of
R1 comma B and that is precisely, kill of R comma B as well; nothing more can be
added by this. Whatever is killed along all paths are already taken. So, back edge will not

add extra information.



The same is not true for the gen set. There may be gen of R1 comma B union G minus
kill of R1 comma B is gen of R comma B. Why? G is union of gen of R1 comma P, for
all the predecessors. So, it is possible that some definitions here (Refer Slide Time:
50:43) come... We are looking at all possible paths and any one of these paths can
generate a definition; it is unlike kill. So, maybe from here, | go back and then take some

paths, which come here; that could be generating a definition for us.

Whereas, in the case of kill, every path was covered. Here, (Refer Slide Time: 51:11) not
all paths are covered; any one of the paths is good enough for our generation. Therefore,
we need to look at all the predecessors of this particular edge. This is a compound edge.
So, there may be many predecessors corresponding to this compound edge. Look at all of
them and then take... To give you an example, here, (Refer Slide Time: 51:34) in this
region V, we had a self-loop. So, these two edges corresponded to a single compound
edge. For this header, we had two predecessors C and D; one was this (Refer Slide Time:
51:50) and one was that. Both these together corresponded to a compound edge. This
compound edge (Refer Slide Time: 51:56).

We take the predecessors of this compound edge. When we actually travel along this
edge, they may actually reach the header of R1 and then further reach B. That is the
reason why we take the union of all these gen sets of the predecessors, then remove
whatever is Killed by this basic block, and add whatever is generated by this basic block.
That gives us gen R comma B. So, this is very similar to what we did in the T 2
transformation, but this is different because of this particular (Refer Slide Time: 52:37)
reason. This is very similar. So, we take the predecessors and then they can all come

here; possibly along any one of the paths.



(Refer Slide Time: 52:49)
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Here, is an example, region based analysis. Here, we have all the regions that | showed
you. Let us say — there are 4 blocks, here are the gen and Kills sets, and here is our

control flow graph.

(Refer Slide Time: 53:10)

Region Based RD Analysis - An Example (2)
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For example, if you are building region R from C and D by T 2 transformation, gen of R
comma C is gen of C comma C. This is at the lowest level. So, it is same as the gen and

kill sets; kill is similar.



The header of D is just D and predecessor of D in C is just the node C. Thisisa T 2
transformation; we are computing G and K. We are looking at the predecessors; that is
only one, which is C. So, we get gen C comma C. This also becomes only C; kill of C

comma C.

Now for the bigger region R (Refer Slide Time: 53:57), gen of R comma D from the
equation is gen of D comma D union G minus kill of D comma D; that gives us 0 0 1.
Similarly, kill of R comma D is kill of D comma D union K minus gen of D comma D;

that givesus 01 0.

(Refer Slide Time: 54:15)

Region Based RD Analysis - An Example (3)
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Now, we apply the T 1 transformation to get region S from R. So, there is only one
predecessor for this header node C, which is D within S. This is the edge we are looking
at; this is D. G is gen of R comma D; R is this region. So, 0 0 1 as we computed before.

genof RcommaDis00 1.

The kill set is not modified; it is same as that of R comma C. That is written here. The
gen set is computed using that formula gen union G minus kill. So, we get the

appropriate 0 0 1 and 0 0 1 for the C and D nodes with respect to the region S.
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Region Based RD Analysis - An Example (4)
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Then, we have building region T; that is, this which is very similar to building region R.
So, let us not spend too much time on it. Similarly, we get gen of T comma A, kill of T
comma A, G, K, gen of T comma B and T comma B. This is very similar to what we did
for C and D to build region R.

(Refer Slide Time: 55:25)

Hegion Based RD Analysis - An Example (5)
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Then, we want to build the region U from T and S; this is by T 2 transformation. These
two: A and B will not be modified too much because this corresponds to region R1. So,

they are as it is; they are as they are.
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Region Based RD Analysis - An Example (6)
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Whereas, for this region S, it is different; so, the header of S is C and predecessors of C
are B and A. So, there are two nodes here. Because of that, we have to compute G and K
with these two predecessors: gen union gen; A and B. kill is intersection; A and B. So,
we get this. Then, apply the gen equal to gen union G minus kill formula and obtain

these four quantities.

(Refer Slide Time: 56:19)

Hegion Based RD Analysis - An Example (8)
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Then, we build the region V from U, rather this is a small mistake; from region U by T 1

transformation. The header of U is A and predecessors of U in C and D. So, these are the



two. Now, we need to compute the G set using the two gens. Finally, compute gen of V

comma A, V comma B and so on and so forth.

(Refer Slide Time: 56:53)

Results from Iterative RD DFA for the same example
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Finally, to compare the iterative approach and this region based approach, I have listed
here the out and in sets for the iterative data-flow analysis. In the fourth iteration, there is
convergence and we produce exactly the same information as in the iterative data-flow
analysis. These two are actually identical; it is just that they are two different approaches

for the same problem.
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The available expression analysis problem is very similar. It is just that in this particular
case, the gen and kill definitions become G equal to intersection and K equal to union
because available expression information has this.

We will stop at this point and continue this example in the next lecture. Thank you.



