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Machine-Independent Optimizations

Welcome to the lecture on Machine-Independent Optimizations.

(Refer Slide Time: 00:21)

QOutline of the Lecture

& Giobal comman sub-gxprasson gliminabon
@ Copy propagaion
@ Loop invarnani coda mahion

# Induciion variable elimination and slrangin redwchon
@ Fegion based data-flow analysis

The outline of the lecture is - it consists of the following topics. We will look at the
global common sub-expression elimination. We have seen examples of this already.
Now, we will look at the algorithm itself. We will look at copy propagation. Again, we
have seen examples, but not the algorithms. So, we are going to discuss that now. Loop
invariant code motion, induction variable elimination and strength reduction, and then a
new type of data-flow analysis called region based data-flow analysis. Partial
redundancy elimination is also a very important optimization. We will discuss that as a

separate lecture because it is fairly detailed and involved.
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Elimination of Global Common Sub-expressions
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What is global common sub-expression elimination?

(Refer Slide Time: 01:25)

GCSE Conceplual Example

Basically, we have expressions, which are defined in various basic blocks of the
program. Now, in a particular block such as this for example, there is an expression y
plus z. Is it necessary to recompute this expression y plus z? Or can we use the
recomputed value, which already is available in this particular basic block? That is the

question. If we are going to provide conditions to check whether the previously



computed values of the expression can be used here, otherwise, we are going to

recompute it.

This requires the available expression information (Refer Slide Time: 02:14). Recall that
we discussed available expression data-flow analysis couple of lectures ago. An
expression is available at a particular point if it is computed along a path starting from
the starting point to that particular point and the operands are not modified in between. If
the operands are modified, obviously the value of the expression changes, though the
expression is not set to be available. So, we assume that the data-flow analysis of
available expressions has been carried out and the information is already available to us

at in and out points of the various basic blocks.

What is the algorithm? For every statement x equal to y plus z such that, y plus z is
available at the beginning of s’s block. If the expression y plus z is computed in a block
and we want to reuse the previous computation of y plus z, obvious condition to be
satisfied is that y plus z is available at the beginning of s’s block. Then, the expression
value should not have changed. So, neither y nor z is defined prior to s in that block. So,
this is also very important; otherwise, the value would have changed. If these conditions
are satisfied, then the availability of the expression y plus z at the entry point of the basic
block tells us that (Refer Slide Time: 04:02) the expression is available along every path
that reaches this particular block. Recall that the confluence operator is intersection. We
would have made sure at the time of data-flow analysis that the expression is available

along every one of these paths.

The available expression information only (Refer Slide Time: 04:28) tells us that it is
available, but in which block has it been computed? That is not yet known. To determine
this, we need to search backwards from the s’s block in the flow graph and find the first
block in which y plus z is evaluated. This has to be done for every path that actually re

parts backwards in the flow graph.

We have this particular basic block (Refer Slide Time: 05:06). There are three paths that
we have shown here. We must make sure that along each path, we search backwards and
come to the block that evaluates y plus z. Along this path, again search backwards and
come to the block that evaluates y plus z. Same along this path as well, but what is

important is that we do not have to cross this block and go beyond; that is not even



necessary. We just have to locate the first computation along this path (Refer Slide Time:
05:34) in the backward direction.

If that is done, then we would have actually located the three of these (Refer Slide Time:
05:44) for the three paths. Each one of them actually has evaluated y plus z. The
common sense (( )) to do now is — use the same temporary into which we want to
evaluate y plus z. So, u equal to y plus z, u equal to y plus z, and u equal to y plus z.
Here, we can say x equal to u, but the variable k, I, and m cannot be disposed of. So, we
also have statements k equal to u, | equal to u, and m equal to u.

That is what he said here (Refer Slide Time: 06:18) — Create a new variable u and
replace each statement w equal to y plus z found in the above step by the code segment,
u equal to y plus z and w equal to u. Then finally, replace the statement s by x equal to u.
This takes care of one particular common sub-expression. It is probably necessary to
apply GCSE again and again to catch deep common sub-expressions. Let me explain that

now.

Here is another example (Refer Slide Time: 06:55), which we have seen before, but in
the light of GCSE. Let us look at it again. There is a block here containing a equal to x
plus y and b equal to a star z. It leads to another block containing ¢ equal to x plus y and
d equal to c star z. Clearly, x plus y is a common sub-expression. So, let us eliminate it.
We do that u equal to x plus y and a equal to u and here, it is ¢ equal to u. The other two

statements remain as they are.

Now, suppose we do copy propagation, we find this a equal to u is a copy. So, the value
of a here (Refer Slide Time: 07:42) can be replaced by u and the value of ¢ here can also
be replaced by this u. So, we get b equal to u star z and d equal to u star z, which actually
are common sub-expressions again. Elimination of these uses the more compact code, u
equal to x plus y, v equal to u star z, b equal to v, and d equal to v. So, this is what we
mean by application of GCSE repeated number of times. Usually, we apply GCSE copy
propagation and GCSE again. In fact, it may happen that we apply all the optimizations
once, but then again apply it once more and so on and so forth. However, GCSE in copy
propagation are so closely linked to each other that we may have to apply them in pairs

until no more GCSE can be performed.
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GCSE on Running Example - 2
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Let us look at a bigger example. We use this as the running example in our introduction
to optimizations lecture as well. There are many common sub-expressions here for
example, t2 equal to i minus 1 here and t21 equal to i minus 1. So, i minus 1 is a
common sub-expression. t4 equal to 4 star j here and then t10 equal to 4 star j and t12
equal to 4 star j; one more. Then, we have t6 equal j plus 1 here and then t14 equal to j
plus 1, t17 equal to j plus 1, t20 equal to j plus 1. So, there are many of... Then, 4 star t6

will be caught as a common sub-expression in the second round.

(Refer Slide Time: 09:34)

GCSE on Running Example - 2

1
] 1&g

3
T == =

% i pove g ||-:|m.:|':7-:|'

I';!I_' lemp -I'II
Rl = 1is wid

= LT TRAL
Fid =

=4

(ALET i

I3 =il
T =t

| ]
= A EF
til =5 118
*1E = femp




Let us look at the primary sub-expressions and once they are eliminated, we get this
picture. This i minus 1 is a common sub-expression. So, we have caught that here and
replaced by t2. So, t2 equal to i minus 1 is actually computed only once. Then, 4 star j is
computed in t4. So, t10 equal to t4.

We have not computed 4 star j again and again. j plus 1 is computed into t6 (Refer Slide
Time: 10:02) here. We have this; j plus 1 is t6. So, t14 equal to t6 and t17 equal to t6.
Finally, t20 equal to t6. So, we are reusing the same value again and again. We did not
introduce yet another temporary for 4 star j like in the algorithm here (Refer Slide Time:
10:30); see for example, here we said u equal to x plus y and then a equal to u. We did
not do that here because these are already temporaries. So, there was no need to... If
there were global variables, we would have had to do it over and over again, but now this

IS not necessary. So, we straight away use the same temporary.

Once we do this (Refer Slide Time: 10:53), there is a need to do some copy propagation
because you can see easily that t10 can be replaced by t4 here and then t12 can be
replaced by t4 here and so on and so forth. So, t14 can be replaced by t6 and so on and so
forth.

(Refer Slide Time: 11:13)

Copy Propagation
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If we do that, we actually would have done some copy propagation. So, let us study the
algorithm for copy propagation and continue this example (Refer Slide Time: 11:24)

after the copy propagation is understood.



What is copy propagation? Statements of the form x equal to y are called copies. Copy of
y is maintained in x. Elimination of such copy statements to the extent possible is copy
propagation because instead of x, we are going to replace it by y itself. So, we do not
have to go to x and then copy the value from x again into some other location. We are
going to straight away use the value of y in the place of x. So, that is propagating the
copy from this point to some other point; substituting y for x in all uses of x reached by

this particular copy.

There are a couple of conditions to be checked to make sure that copy propagation can
be performed. First condition: the u-d chain; the use-definition chain of the use u of x;
so, this is the copy (Refer Slide Time: 12:34), x equal to y; x would have many uses. If
you look at the u-d chain of that particular use u of x, it must consist of s only. Suppose
the u-d chain of some use of x had two definitions in it, then this copy s would be one of
them and there would be some other statement teaching that particular use as well. In
such a case, we are not certain that copy propagation must be carried out. So, we do not
do it. We must be certain that s is the only definition of x reaching u. If that is so, then
copy propagation can be performed, but that is not all.

On every path from s to u, including paths that go through u several times, there could be
a loop, which involves u, but not s; but, do not go through s a second time. So, you need
not go through s a second time, but you can go through u any number of times. There are
no assignments to y. So, this is very important. We do not want to have any assignments
to y because the value of y would change in that case. This ensures that the copy is valid.
If y has not changed, then there is no problem. To check this, it is necessary that we
formulate a data-flow analysis problem. When we formulate the data-flow analysis
problem, condition 1 automatically gets tackled.

Here is an optimization problem (Refer Slide Time: 14:14) — copy propagation. We are
trying to solve that problem using another data-flow analysis. This is not something very
special because to perform partial redundancy elimination, which is an optimization, we
are going to use data-flow analysis as a tool again. So, what is this new data-flow
analysis problem? Here, the values in the domain of the data-flow analysis problem are
the sets of copy statements. The domain itself consist of sets of copy statements. ¢ gen B
is the set of all copy statements, s x equal to y in B, such that there are no subsequent
assignments to either x or y within B after the statement, s.



Again, we have a gen kill in and out; ¢ gen is the equivalent of gen that we have seen so
far. So, what are the copies generated by a certain basic block B? Those copies x equal to
y, such that x and y are not modified after s. So, that is the statement, which will be in
the ¢ gen. If you take all such copies within the basic blocks, whose left hand side or the

right hand side are not modified, then that is the gen function.

What is the kill function? This is straight forward. Suppose you have either x or y
assigned in a basic block then this assignment (Refer Slide Time: 16:02) to either x or y
kills copies in other basic blocks. For example, ¢ kill B is the set of all copy statements, s
x equal to y, s is not in the basic block B; we are killing it, such that either x or y is
assigned a value in B. So, it make sense because if you are assigning some value to x or
some value to y, then any copy, which comes to the basic block will not be useful
because it is being destroyed within the basic block. It cannot pass through the basic
block and cannot retain that copy because these assignments will kill that particular

copy. Then finally, let u be the universal set of all copy statements in the program.

(Refer Slide Time: 16:57)

Copy Propagation - The Data-flow Equations
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What are the data-flow equations? Here are the data-flow equations. Let us take a look at
this structure of these equations and find out the usual parameters. We have the usual ¢
gen, c kill, c in, and ¢ out. Then, we have intersection of ¢ out p; p being a predecessor of

B. That means, the confluence operator is an intersection here. Is this a backward



problem or a forward problem? out B is being defined in terms of in B. So, this is a

forward-flow analysis problem.

This has the same flavor as the available expression problem, which also was a forward-
flow problem with intersection as the confluence operator. As in that case, c in of B1 is
phi, where B1 is the initial block; so, no copies are assumed to enter the basic block B1,
which is the initial block. The initialization for ¢ out B will be u minus c kill B, for all B
not equal to B1. So, you could have also said c in of B equal to u, where B not equal to

B1; that is also possible.

We make sure that it is the universe of all statements so that we get the maximum benefit
in the data-flow analysis. What is ¢ in B? ¢ in B is the set of all copy statements, x equal
to y; obviously reaching the beginning of the basic block; that is why it is ¢ in B; along
every path such that there are no assignments to either x or y following the last
occurrence of x equal to y on the path. You are looking at intersection of course (Refer
Slide Time: 18:48); so, you have look at all paths leading to the basic block; the copy
must come to the basic block along all paths; that is why the intersection. Along such
paths, there should be no assignments to either x or y; so, if there were, then we would

have eliminated such copies from the set c in B.

C out B is similar. It is at the end of the basic block. Copy statements, x equal to y
reaching the end of the block along every path such that there are no assignments to
either x or y following the last occurrence of x equal to y on the path; same thing. So,
this is out (Refer Slide Time: 19:25) and that is in. Since we want the copy to reach along
all paths leading to basic block, we are taking the intersection. This also makes sense.
The copies can be generated in the block and not killed of course; otherwise, they could
be coming from outside to the beginning of the block and not killed in the basic block.

So, that is what is ¢ out.



(Refer Slide Time: 20:00)

Copy Propagation Example 1
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Now, let me show you an example first before we look at the algorithm for using this
data-flow analysis result. There are several basic blocks B1, B2, B3, B4, and B5 here. B1
has s1 and s2; both are copy statements. ¢ in of B1 is phi because nothing is coming in;
this is the initial block. ¢ out of B1 is (s1, s2) because neither of these is killed within the

basic block; they are generated. ¢ out happens to be that itself.

There is no need to loop through the statements here because this is an acyclic graph;
directed acyclic graph. So, one pass over the blocks is sufficient. ¢ in of B2 will be
whatever comes from here (Refer Slide Time: 20:48); no need to take any intersection.
So, s1, s2, which is the output of basic block B1. What is ¢ out of B2? It is s2 and s4.
Why? Here, we have a statement, which is not a copy and s4 redefines X. So, s1 defines x
and s4 redefines Xx. So, the copy sl is last; it is killed by this (Refer Slide Time: 21:17)
statement, s4. Only s4 is visible at this point. So, s2 of course, is not modified and not

killed. So, s2 and s4 are available, rather reach this particular point after B2.

In B3, in is the same as out of B1. So, s1 and s2 (Refer Slide Time: 21:35) and X is again
killing... This statement s5 is a copy killing the statement s1, which is also a copy. As in
this (Refer Slide Time: 21:45), ¢ out of B3 is (s2,55).

Now, take B4. In of B4 is this (Refer Slide Time: 21:55); out of B3. So, that is (s2,s5)
and out of B4 is also (s2,s5) because it is not assigning anything to either x or z. The

important thing here is — this particular x (Refer Slide Time: 22:11) can be replaced by z;



a copy propagation can be performed here for this particular x. This is the only copy,
which is reaching here; x equal to s5; s2 and s5. s2 is p equal to q and s5 is x equal to z.

We are using X here; so, this is the only copy, which is relevant and z can replace x.

Let us look at this (Refer Slide Time: 22:42); m equal to x plus 9 and n equal to p. ¢ in of
B5 is what comes out of this. So, that is... There is one more arc, which is coming in

here. So, ¢ out of B4 is (s2,s5) and c out of B2 is (s2,54). So, the intersection is only s2.

Please observe that the x equal to z (Refer Slide Time: 23:11) here and the x equal to z
here; even though they are syntactically the same statement, the same copy, but they are
two different copies; syntactically they are similar, but s4 and s5 are two different

statement numbers and they are two different copies.

Since s4 reaches here (Refer Slide Time: 23:35) and s5 reaches along this point, these
two are not the same and neither this nor that actually are in ¢ in of B5, whereas the copy
s2 reaches along this path (Refer Slide Time: 23:50) and it also reaches along this path.
So, it is in the set ¢ in B5. That is how we are taking the intersection. This is a very
important point; syntactically, the copies may look alike, but the statement numbers will
be different because they are in different basic blocks and their statement numbers are all
different. Therefore, we cannot say x equal to z reaches this point (Refer Slide Time:
24:17). So, that is very important. Then, this p can be replaced by g because s2 is
reaching this particular basic block. This is the...; x here cannot be replaced by either
this or (Refer Slide Time: 24:35) this because no copy corresponding to x equal to

something reaches the in point of this particular basic block.
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Algorithm for Copy Propagation
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Now, let us look at the algorithm for copy propagation, which uses the copy data-flow

analysis problem results.

(Refer Slide Time: 24:58)
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Remember — we had to check two conditions and | said that this condition number 1 will
be subsumed in number 2 during the solution of the data-flow analysis problem. We
already made sure of that because whenever there is more than one definition; (Refer
Slide Time: 25:16) either x or y is assigned a value, then the previous copy is not taken at

all; it is killed. That is how it is actually taking condition number 1 (Refer Slide Time:



25:27) also in it; embedding condition number 1 in condition number 2. For each copy, x
equal to y, we use the d-u chain and find out all uses of x. So, there may be many uses of
that. For each of these, we need to check the conditions. How do we do that? We just
check whether s is in in of basic block. If it is already there, B is a basic block, which
uses to which the use of x belongs. So, we found a use; at the input point of that basic
block, this copy is reaching; it is there. What does this ensure us? This ensures us that
this is the only definition of x that reaches this block; that is, condition number 1 and no
definitions of x or y appear on this path from s to B (Refer Slide Time: 26:25). Because it

isinsin of B, ¢ in of B, this particular condition 2 is also satisfied; the copy is valid.

No definitions of x or y occur (Refer Slide Time: 26:36) within B prior to this use of x
found in (1) above. In other words, we should make sure that within the basic blocks
also, the 2 conditions hold. That is what we are checking - whether x or y is assigned; if
it is, then | cannot do anything about this use. The copy even though it reaches the

beginning of the basic block, will be modified and hence will not be valid.

(Refer Slide Time: 27:02)

Copy Propagation Example 1
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The point is — suppose here is n equal to p, we had p equal to something here. Even
though c in the contains s2, p value would be modified by p equal to something.
Therefore, this n equal to p cannot be replaced by s2. It can possibly be replaced by the

previous value if it was a copy within the basic block, but not definitely in order by s2.



(Refer Slide Time: 27:28)

Algorithm for Copy Propagation
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If s meets the conditions above, then remove s and replace all uses of x found in (1) by y.

So, this is the copy propagation. Here, is the first example (Refer Slide Time: 27:41).

(Refer Slide Time: 27:42)

Copy Propagation on Hunning Example 1.1
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Let us look at another example. In our running example, we saw so many copies; this t21
is here; it is a copy. t10 is another copy, t12 is third copy, t4 is one more copy, and so on

and so forth.



(Refer Slide Time: 28:04)
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Let us see how many of these copies can be eliminated. We replaced one of the copies by
t4, then another copy by t4, then third one by t6, fourth one by t6, and so on and so forth.
We have eliminated quite a few of these, but once we did copy propagation, there is
chance for some more common sub-expression elimination. So, 4 star t6 is here and 4

star t6 is here. So, we can eliminate those also.

(Refer Slide Time: 28:37)
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Let us assume that we do copy propagation and GCSE together. Now, we get this t15
equal to t7, t18 equal to t7, and all the others; we did some copy propagation.



(Refer Slide Time: 28:51)
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Now, another round of copy propagation, will give us this particular compact code. See
that (Refer Slide Time: 28:58) t15 is replaced by t7 and this again, t18 equal to t7. So,
this t7 is again a copy. t18 equal to t7; so, t7 can replace t18. That is what happens here;
a plus t7, a t7, a plus t4, etcetera. So, we are not computing any common sub-expression
and we are not making unnecessary copies. So, this is a very compact code after common

sub-expression elimination and copy propagation.

(Refer Slide Time: 29:37)
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What we have seen for can be done using just the data-flow analysis information. Now,
we move on to loop-invariant computation and elimination of loop-invariant
computation, rather movement of loop-invariant computations. To do this, it is not
enough if we do data-flow analysis, we also have to do control-flow analysis, discover
the loop structure, which intern implies finding dominators, back edges, natural loops,
and so on. Let us assume that all that is done; that is what we mean by given a loop L.

We also need the u-d chain and the d-u chain.

(Refer Slide Time: 30:33)
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Loop-invariant computation; let me give you an example just to refresh your memory. t3
equal to address a; address a is the base address of the array a, which is a constant. This
base address is within the activation record; the offset and it is a value, which is a

constant assigned by the compiler.

t3 equal to address a — is an assignment of a constant to a temporary variable and there is
no other assignment to t3 anywhere. So, whether we keep this assignment within the
loop or we move it outside the loop, the value of t3 will remain the same. Similarly, look
at t4; t4 equal to t3 minus 4. t3 itself carries a constant value and therefore, t3 minus 4
will also be a constant value. So, we can move t3 equal to address a and t4 equal to t3
minus 4 together as loop-invariant computations outside the loop. So, they do not vary
within the loop. That is why they are called loop-invariant computations. They can be

removed and put outside the loop.
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How do we find such loop-invariant computations. The first round — mark as invariant,
those statements whose operands are all either constant or have their reaching definitions

outside L.

(Refer Slide Time: 32:07)
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Let us state this one at a time — Statements whose operands are all constants. This is a
constant. So, t3 equal to address a is a loop-invariant computation, or (Refer Slide Time:
32:17) have all the reaching definitions outside L. In other words, suppose this address a

is a constant and it was computed outside the loop; it is not computed within the loop,



even then... Actually this is a loop-invariant computation. So, address a would not have
been written as address a, it should have been written as some t prime equal address a,
and we would have had t3 equal to t prime. t prime is defined outside the loop and that
definition reaches that particular use here. So, that is what we mean by the definition of
the variable being outside the loop and therefore, being loop-invariant. So, such

computations are marked as invariant; that is the first round.

What about the second round? See this (Refer Slide Time: 33:09) was marked as
invariant. This t3 is an operand in the next one; t4 equal to t3 minus 4 and the second
operand of this assignment is also a constant. So, obviously, this is also a loop-invariant

computation. Because t3 equal to address a, it is a loop-invariant computation.

We have to repeat this loop (Refer Slide Time: 33:35) many times. Mark as invariant all
those statements not previously so marked all of whose operands are constants,
obviously possible have all their reaching definitions outside L, or have exactly one
reaching definition, and that definition is a statement in L marked invariant. This is what
I showed you; definition is a statement in L marked invariant; that is the example which
is given here (Refer Slide Time: 34:01).

The others; the operands are all constants, have their reaching definitions outside L and
this (Refer Slide Time: 34:10). This particular loop is repeated until no new statements
are marked invariant. In fact, this particular last one is the one which discovers more and

more new invariant computations. In doing so, u-d and d-u chains are useful. How?

Here (Refer Slide Time: 34:38), what happens is — may be one of the operands is a
constant and the other one is defined in the loop. So, like this (Refer Slide Time: 34:46);
that is possible or it is also possible that both are defined in the loop, may be one of them
come from outside the loop. All variations are possible. That is why, this loop is
necessary. In the first round, we would not have marked anything like this (Refer Slide
Time: 35:08). That is why, we need to go on and on until no more statements can be

marked as invariant.

Why are u-d chains useful? (Refer Slide Time: 35:17) They are useful in marking the
statements as invariant. So, you are going to look at the definitions for the particular use

inside the loop and see whether those definitions come from within the loop, entirely



outside the loop, etcetera. Whether they are loop-invariant computations; or otherwise,

can be checked after we discover these definitions.

Why are d-u chains useful? (Refer Slide Time: 35:44) They are useful in examining all
uses of a definition marked invariant. So, these are basically tricks in making the
algorithm run faster. Once you mark something as invariant, for example, (Refer Slide
Time: 35:55) t3, then you can look at all the uses of t3 and see whether they can be
marked as invariant, which they satisfied the conditions that we have shown. So, this is
one simple example of how to detect loop-invariants and move them from inside to

outside.

Typically, here is the basic block, which is just outside this (Refer Slide Time: 36:19).
So, we have moved these two assignment statements in the same order to the basic block,
which is preceding. If actually we had a junction point; this particular basic block was a
junction point with two incoming arcs, we would had to introduced a new preheader and

move these computations into that particular preheader.

(Refer Slide Time: 37:03)
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How do you move loop-invariant code to outside the loop? That is the question. This is a
very tricky situation; the example that | showed you here (Refer Slide Time: 36:57) was
a very simple example and we could move very simply, but there are many conditions to
be checked.



Find the loop invariant computations for each statement s defining x found in (1), check.
So, there are three conditions. Let us look at each of these conditions and see what they

mean. It is in a block; this statement s is in a block that dominates all exits of L.

(Refer Slide Time: 37:31)
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Let us understand what happens if there is a violation. Here is a small flow graph;
condition (( )); the basic block B1, B2, B3, B4, and B5. Now, the statement in basic
block B3; that is, i equal 2; is what we want to consider. This is a statement, which is
loop invariant. i is assigned value 2, which does not get changed within the loop. So, this

is loop-invariant computation.

The question is — Can we move this to (Refer Slide Time: 38:04) B1? Now, the condition
number 2(a) said s dominates all exits of L. In other words, this particular basic block B3
must dominate all exits of L. In this case, B4 is the only exit of L. Does B3 dominate
B4? No because all paths from B1 to B4 do not go through B3; they can go to B2 and
directly to B4. So, B3 does not dominate B4. Because this is not true, moving i equal to 2

to B1 will have some side effects.

What is that side effect? If we actually take this original flow graph; look at the value of i
taken by j in B5. Value i equal to 1 could have travelled all the way from B1 to B2 to B4
and then to B5. So, j equal to 1 was possible; otherwise, we could have travelled with i
equal to 1, then go to B2, go to B3; now i gets changed to 2, go to B4, and then to B5.
Now, j gets the value 2. Suppose we move this i equal 2 (Refer Slide Time: 39:17) to this



basic block B1 immediately after equal i to 1, then i equal to 1 is actually overridden by i
equal to 2. So, the value of i permanently changes to 2. Even if we take the old path in
which j would have got the value 1, now j gets the value 2 because i has changed its
value permanently to 2. So, this is the change in the semantics of computation of this
particular program. Therefore, any change in semantics is not permitted; this is illegal.

So, just because it is loop invariant, we cannot move i equal to 2 to B1.

(Refer Slide Time: 40:03)
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x is not defined elsewhere in the loop L. So, let us see what happens here. This flow
graph now satisfies condition 2(a). What was 2(a)? s dominates all exits of L. We are
looking at B2; not B3 this time. We cannot move i equal to 2; so, we have given up.
Now, we consider i equal to 3 in the basic block B2. B2 definitely dominates B4, which
is the exit of the flow graph, rather the loop because all paths from B1 to B4 have to go
through B2. So, whether | take this path or this path, | would have crossed B2. Condition
2(a) is satisfied.

What is condition 2(b)? x is not defined elsewhere in L. i is defined here and i is defined
again here (Refer Slide Time: 40:56). So, the condition is violated. Now, what happens?
I want to move i equal to 3 to outside the loop. Suppose I move this to outside the loop,
now, if the loop is executed twice, i may pass its value of 3 from B2 to j in the original

loop. So, if we go through this, i equal to 1, then i equal to 2, i equal to 3, then possibly i



can become 2 again. We come here, we go back, i gets the value 3, and then i passes out

of the loop and j gets value 3 corresponding to i equal 3.

In other words, i is getting reset to 3 every time that i go back to the header, but suppose
i equal to 3 goes out and goes in to the basic block B1, first time i gets the value 3. Now,
if 1 do not execute iterate through the loop at all, j can still get the value 3. However,
suppose | get back i equal to 3, come here (Refer Slide Time: 42:01), then pass through
this particular block, I get the value i equal to 2.

Now, let us say | go back any number of times, i still retains the value 2; it never
changes, whereas in the original loop as it is written here (Refer Slide Time: 42:14), i
would have been reset to 3. Whereas with i equal to 3 moved into B1, once i travels this
particular path, i gets stuck with the value 2 and never changes irrespective of the
number of times i execute this loop. So, j always gets a value 2 once i travels this
particular path (Refer Slide Time: 42:34). So, there is a change in the semantics of the

loop and therefore, this transformation is illegal.

(Refer Slide Time: 42:41)

Loop-Invariant Code Malion Algarithm

@ Find loop-invariant stalamants
@ For each slatement 5 defining & found i stap (1), chadck
Ehat
1% in A block that dominabes all exits of [
¥ is nol delined elsewhans in
Al uses & Loof x can cnly D mached Dy B oelineton of
s
ﬂ- Move each stalemend & lound in Step (1] and satislying
conditions of Glep 2i o a f"."|'|'|:|' crealed Fi-!l"'|'l|."-'ll'.|l.'-'
+ provided any cpernnds of 3 thal afe delined in loop L have

seviously had thes dafinilion slalaments moved &
Pe el
QD Update al the ¢ - d and o = u chains appropralp
-

The third one — all uses in L of the variable x can only be reached by the definition of x

ins.



(Refer Slide Time: 42:58)
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Let us see what happens. This flow graph satisfies condition 2(a), which says s
dominates all exits of L. So, we are now looking at i equal to 2 in the basic block B4. B4
dominates itself and it is the exit. So 2(a) is trivially satisfied. What is 2(b)? x is not
defined elsewhere in L. So, we are considering i equal 2 again in this block. i is not

defined anywhere in the loop. So 2(b) also satisfied.

What is 2(c)? All uses of x in L can only be reached by the definition of x in s. So, here
is i equal to 2. This is the definition of i. Here is (Refer Slide Time: 43:45) a use of i; k
equal to i, but this i equal to 1 in the basic block B1 can reach this k equal to i, i equal to
2 in the basic block B4 can reach k equal to i after one iteration. So, both these
definitions — i equal to 1 and i equal to 2 reach this basic block B6 and therefore, it is a

violation of this condition 2(c).

Can we now move i equal 2 into the basic block B1 because it is a loop-invariant
computation? The answer is no because there is going to be a change in the semantics of
this computation. k could have received the value of either 1 or 2 in the original loop;
that is very clear. i equal to 1 could reach this (Refer Slide Time: 44:35), i equal 2 could
reach this after one iteration. So, both the values are possible for this particular k.
Whereas, once we move i equal to 2 outside, i always gets stuck with the value 2.

Because i equal to 1 is overridden by i equal 2, this k will always get the value of 2 and



will never get the value of 1. So, there is a change in this semantics of the computation

and therefore, this is also an illegal transformation.

Assuming that the transformations are legal, we check these (Refer Slide Time: 45:09).
How do we know that if we check these, they are legal? The proofs of these statements
are all provided in the early papers written by Ullman and his students. So, they are all
there. If you look up Sethi-Ullman’s book, at the end of it there are a large number of

references, where the papers containing proofs of these statements are all provided.

Move each statement of statement s found in step (1) (Refer Slide Time: 45:44) and
satisfying these conditions of step (2) to a newly created preheader. Preheader may
become necessary if the basic block at the entry of the loop actually does not have a

predecessor, which is a simple predecessor. In such a case, we need a preheader.

Provided any operands of s that are defined in loop L have previously had their

definitions statements moved to the preheader.

(Refer Slide Time: 46:22)
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In other words, you cannot move k equal to i unless the statement i equal 2 is also
moved. That is very clear in our simple example itself. I cannot move t4 equal to t3
minus 4 ahead of t3 equal to address a and | cannot move it in any other order except the

same; that is real.



(Refer Slide Time: 46:39)
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So, | must move t3 equal address a first and then move t4 equal to t3 minus 4. That is
what this really says. You must move the definition statements first and then move the

used statements later.

Now, we need to update u-d and d u-chains also because the information has really

changed. So, this is the loop-invariant code motion algorithm.

(Refer Slide Time: 46:59)
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Now, we come to the next optimization, which is induction variable elimination and

strength reduction.



Let us see what is an induction variable is. There is a variable x in a loop L and if that
variable changes its value only through an increment or decrement operation by a
constant amount; so, i equal to plus or minus k, where k is a constant. Then, it is not
necessary to have just one statement, which changes the value of the variable; you could
have i equal to i plus 2 in the loop in one place and i equal to i plus 3 in another place in
the same loop. So, there could be more than one such statement. Such a variable is called
as an induction variable. Why? If we are actually either adding or subtracting a constant
to or from a variable, then the value of that variable changes in arithmetic progression.

That is the reason why it is called as an induction variable.

What is the basic induction variable? Variables , whose only assignments in the loop are
of the form i plus minus n, where n is a constant. The above one (Refer Slide Time:
48:30) was a very general statement and it did not say that n must be a constant; it could
have been i plus minus k, where k actually is incremented or decremented by a constant
amount. So, indirectly i also gets incremented or decremented by a constant amount.
That was possible here; we did not say it is plus minus; it could have been star also. So, a
change is a constant amount; that is all. Whereas, in the basic induction variable, the

specific form is given — i equal to i plus minus n.

Another variable j which is defined only once within L, and whose value is c star i plus
d; linear function of d, is an induction variable in the family of the variable i. So, this is
also an induction variable; it is just that j depends on i. So, if say, i isiequal to 1,s01, 2,
3, 4, etcetera are the values of i, and then j is 4 star i; then j takes value 4, 8, 12, etcetera.
Again it is an arithmetic progression, but j is defined in terms of i. Therefore, this is

called as a derived induction variable, which is in the family of i.

We associate a triple — i, ¢, d with a derived induction variable; ¢ and d are constants and
i belongs to its own family with a triple — i, 1, 0. This is a definition; i, 1, 0, where as i, c,
d is for any other variable, which is derived from i. In the previous example, with 4 star i,

we would have had i, 4, and 0 as the triple.



(Refer Slide Time: 50:30)
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Here, we have a simple example. If you take i equal to i plus 1, this is a basic induction
variable. It is incremented by 1 in this particular loop. t5 equal to 4 star i is a derived
induction variable, which is in the family of i. So, this is the example I have been giving.
So, i has its triple as i, 1, 0 (Refer Slide Time: 50:57). Now, t5 has its triple as I, 4, 0. So,
that is the triple for t5.

(Refer Slide Time: 51:09)

Induction Variables - Example 2

L and j are both basic Ly, n
hath inner and outer loeopa

12 (in the Farnily of £} and

14 (in the family of |) are bobth
darived i v in both inner and
oUber 100PS

In this example, there are many loops — there is a loop here, there is a another loop here,

and the third loop here. When we consider induction variables, we need to look at the



variable and every loop that is possible. For example, i equal i plusl and this loop (Refer
Slide Time: 51:32), it is incremented once and it is not modified in any other way. So, i

IS a basic induction variable in this particular loop.

If you consider the outer loop (Refer Slide Time: 51:43) and same i, it is still an
induction variable in the outer loop also; that too a basic induction variable because i is
not modified anywhere else and it is of the form i equal i plus minus n. The same is true
for j as well; j equal j minus 1 is a basic induction variable in this loop and it is also a
basic induction variable in the outer loop because j is not modified by any other quantity

in the outer loop as well.

t2 equal to 4 star i is based on i. So, it is in the family of i and is a derived induction
variable in this loop (Refer Slide Time: 52:23) and also in the outer loop. Similarly, t4
equal to 4 star j is an induction variable, which is derived from j; it is in the family of j

both in this particular loop and also in the outer loop.

(Refer Slide Time: 52:40)
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How do you detect induction variables? Easier said than done; let us see how to do that.
We need a loop L, reaching definitions, and loop-invariant computation information. So,
all these are necessary. Find all the basic induction variables by scanning the statements
of L. This is fairly easy because the structure of the basic induction variables is i equal to

i plus minus n. Then, the derived once are not so trivial.



Search for variables k, with a single assignment to k. So, k should not have been
assigned more than once. Remember — Even in the definition of (Refer Slide Time:
53:28) variable in the family of I, we said j must defined only once. So, that is what we
are sticking to in this particular algorithm. So, with a single assignment to k within L,
having one of the following forms: k equal j star b, k equal to b star j, k equal j slash b, k
equal j plus minus b; b plus minus j, and then j star b plus minus a, or a plus j star a plus
minus j star b, where b is a constant and j is an induction variable; either basic or
otherwise; you should have already detected it. That is what it really says. If it is basic,
we should have (()). If it is not a basic induction variable, we should have already said in
which family this j lies. That information should be already available to us. Please
observe that we do not have b slash j; that is not a linear form; j cannot be in the

denominator.

If j is a basic induction variable, then for k equal to j star b, the triple for k is very simple,
J, b, 0; this we already saw — j star b plus d; so, d is 0. Similarly, if you let us take k equal
to j slash b, 1 by b is a constant, we might as well evaluate that constant at compile time
and then say j comma 1 by b comma 0. That value can be substituted here (Refer Slide
Time: 55:03). Similarly, for others also; j star b plus a, it is j comma b comma a or minus

a and so on and so forth.

If j is not a basic induction variable, then there are many complications. Let the triple be
i, ¢, d and we need to check two more conditions: there is no assignment to i between the
lone point of assignment to j in L and the assignment to k, and no definition of j outside

L reaches L.
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I am going to demonstrate these conditions and explain them in the next class. So, this is

the end of today’s class.

Thank you.



