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Welcome to the lecture on Machine-Independent Optimizations. 

(Refer Slide Time: 00:21) 

 

The outline of the lecture is - it consists of the following topics. We will look at the 

global common sub-expression elimination. We have seen examples of this already. 

Now, we will look at the algorithm itself. We will look at copy propagation. Again, we 

have seen examples, but not the algorithms. So, we are going to discuss that now. Loop 

invariant code motion, induction variable elimination and strength reduction, and then a 

new type of data-flow analysis called region based data-flow analysis. Partial 

redundancy elimination is also a very important optimization. We will discuss that as a 

separate lecture because it is fairly detailed and involved. 



(Refer Slide Time: 01:12) 

 

What is global common sub-expression elimination? 

(Refer Slide Time: 01:25) 

 

Basically, we have expressions, which are defined in various basic blocks of the 

program. Now, in a particular block such as this for example, there is an expression y 

plus z. Is it necessary to recompute this expression y plus z? Or can we use the 

recomputed value, which already is available in this particular basic block? That is the 

question. If we are going to provide conditions to check whether the previously 



computed values of the expression can be used here, otherwise, we are going to 

recompute it. 

This requires the available expression information (Refer Slide Time: 02:14). Recall that 

we discussed available expression data-flow analysis couple of lectures ago. An 

expression is available at a particular point if it is computed along a path starting from 

the starting point to that particular point and the operands are not modified in between. If 

the operands are modified, obviously the value of the expression changes, though the 

expression is not set to be available. So, we assume that the data-flow analysis of 

available expressions has been carried out and the information is already available to us 

at in and out points of the various basic blocks. 

What is the algorithm? For every statement x equal to y plus z such that, y plus z is 

available at the beginning of s’s block. If the expression y plus z is computed in a block 

and we want to reuse the previous computation of y plus z, obvious condition to be 

satisfied is that y plus z is available at the beginning of s’s block. Then, the expression 

value should not have changed. So, neither y nor z is defined prior to s in that block. So, 

this is also very important; otherwise, the value would have changed. If these conditions 

are satisfied, then the availability of the expression y plus z at the entry point of the basic 

block tells us that (Refer Slide Time: 04:02) the expression is available along every path 

that reaches this particular block. Recall that the confluence operator is intersection. We 

would have made sure at the time of data-flow analysis that the expression is available 

along every one of these paths. 

The available expression information only (Refer Slide Time: 04:28) tells us that it is 

available, but in which block has it been computed? That is not yet known. To determine 

this, we need to search backwards from the s’s block in the flow graph and find the first 

block in which y plus z is evaluated. This has to be done for every path that actually re 

parts backwards in the flow graph. 

We have this particular basic block (Refer Slide Time: 05:06). There are three paths that 

we have shown here. We must make sure that along each path, we search backwards and 

come to the block that evaluates y plus z. Along this path, again search backwards and 

come to the block that evaluates y plus z. Same along this path as well, but what is 

important is that we do not have to cross this block and go beyond; that is not even 



necessary. We just have to locate the first computation along this path (Refer Slide Time: 

05:34) in the backward direction. 

If that is done, then we would have actually located the three of these (Refer Slide Time: 

05:44) for the three paths. Each one of them actually has evaluated y plus z. The 

common sense (( )) to do now is – use the same temporary into which we want to 

evaluate y plus z. So, u equal to y plus z, u equal to y plus z, and u equal to y plus z. 

Here, we can say x equal to u, but the variable k, l, and m cannot be disposed of. So, we 

also have statements k equal to u, l equal to u, and m equal to u. 

That is what he said here (Refer Slide Time: 06:18) – Create a new variable u and 

replace each statement w equal to y plus z found in the above step by the code segment, 

u equal to y plus z and w equal to u. Then finally, replace the statement s by x equal to u. 

This takes care of one particular common sub-expression. It is probably necessary to 

apply GCSE again and again to catch deep common sub-expressions. Let me explain that 

now. 

Here is another example (Refer Slide Time: 06:55), which we have seen before, but in 

the light of GCSE. Let us look at it again. There is a block here containing a equal to x 

plus y and b equal to a star z. It leads to another block containing c equal to x plus y and 

d equal to c star z. Clearly, x plus y is a common sub-expression. So, let us eliminate it. 

We do that u equal to x plus y and a equal to u and here, it is c equal to u. The other two 

statements remain as they are. 

Now, suppose we do copy propagation, we find this a equal to u is a copy. So, the value 

of a here (Refer Slide Time: 07:42) can be replaced by u and the value of c here can also 

be replaced by this u. So, we get b equal to u star z and d equal to u star z, which actually 

are common sub-expressions again. Elimination of these uses the more compact code, u 

equal to x plus y, v equal to u star z, b equal to v, and d equal to v. So, this is what we 

mean by application of GCSE repeated number of times. Usually, we apply GCSE copy 

propagation and GCSE again. In fact, it may happen that we apply all the optimizations 

once, but then again apply it once more and so on and so forth. However, GCSE in copy 

propagation are so closely linked to each other that we may have to apply them in pairs 

until no more GCSE can be performed. 



(Refer Slide Time: 08:39) 

 

Let us look at a bigger example. We use this as the running example in our introduction 

to optimizations lecture as well. There are many common sub-expressions here for 

example, t2 equal to i minus 1 here and t21 equal to i minus 1. So, i minus 1 is a 

common sub-expression. t4 equal to 4 star j here and then t10 equal to 4 star j and t12 

equal to 4 star j; one more. Then, we have t6 equal j plus 1 here and then t14 equal to j 

plus 1, t17 equal to j plus 1, t20 equal to j plus 1. So, there are many of… Then, 4 star t6 

will be caught as a common sub-expression in the second round. 

(Refer Slide Time: 09:34) 

 



Let us look at the primary sub-expressions and once they are eliminated, we get this 

picture. This i minus 1 is a common sub-expression. So, we have caught that here and 

replaced by t2. So, t2 equal to i minus 1 is actually computed only once. Then, 4 star j is 

computed in t4. So, t10 equal to t4. 

We have not computed 4 star j again and again. j plus 1 is computed into t6 (Refer Slide 

Time: 10:02) here. We have this; j plus 1 is t6. So, t14 equal to t6 and t17 equal to t6. 

Finally, t20 equal to t6. So, we are reusing the same value again and again. We did not 

introduce yet another temporary for 4 star j like in the algorithm here (Refer Slide Time: 

10:30); see for example, here we said u equal to x plus y and then a equal to u. We did 

not do that here because these are already temporaries. So, there was no need to… If 

there were global variables, we would have had to do it over and over again, but now this 

is not necessary. So, we straight away use the same temporary. 

Once we do this (Refer Slide Time: 10:53), there is a need to do some copy propagation 

because you can see easily that t10 can be replaced by t4 here and then t12 can be 

replaced by t4 here and so on and so forth. So, t14 can be replaced by t6 and so on and so 

forth. 

(Refer Slide Time: 11:13) 

 

If we do that, we actually would have done some copy propagation. So, let us study the 

algorithm for copy propagation and continue this example (Refer Slide Time: 11:24) 

after the copy propagation is understood. 



What is copy propagation? Statements of the form x equal to y are called copies. Copy of 

y is maintained in x. Elimination of such copy statements to the extent possible is copy 

propagation because instead of x, we are going to replace it by y itself. So, we do not 

have to go to x and then copy the value from x again into some other location. We are 

going to straight away use the value of y in the place of x. So, that is propagating the 

copy from this point to some other point; substituting y for x in all uses of x reached by 

this particular copy. 

There are a couple of conditions to be checked to make sure that copy propagation can 

be performed. First condition: the u-d chain; the use-definition chain of the use u of x; 

so, this is the copy (Refer Slide Time: 12:34), x equal to y; x would have many uses. If 

you look at the u-d chain of that particular use u of x, it must consist of s only. Suppose 

the u-d chain of some use of x had two definitions in it, then this copy s would be one of 

them and there would be some other statement teaching that particular use as well. In 

such a case, we are not certain that copy propagation must be carried out. So, we do not 

do it. We must be certain that s is the only definition of x reaching u. If that is so, then 

copy propagation can be performed, but that is not all. 

On every path from s to u, including paths that go through u several times, there could be 

a loop, which involves u, but not s; but, do not go through s a second time. So, you need 

not go through s a second time, but you can go through u any number of times. There are 

no assignments to y. So, this is very important. We do not want to have any assignments 

to y because the value of y would change in that case. This ensures that the copy is valid. 

If y has not changed, then there is no problem. To check this, it is necessary that we 

formulate a data-flow analysis problem. When we formulate the data-flow analysis 

problem, condition 1 automatically gets tackled. 

Here is an optimization problem (Refer Slide Time: 14:14) – copy propagation. We are 

trying to solve that problem using another data-flow analysis. This is not something very 

special because to perform partial redundancy elimination, which is an optimization, we 

are going to use data-flow analysis as a tool again. So, what is this new data-flow 

analysis problem? Here, the values in the domain of the data-flow analysis problem are 

the sets of copy statements. The domain itself consist of sets of copy statements. c gen B 

is the set of all copy statements, s x equal to y in B, such that there are no subsequent 

assignments to either x or y within B after the statement, s. 



Again, we have a gen kill in and out; c gen is the equivalent of gen that we have seen so 

far. So, what are the copies generated by a certain basic block B? Those copies x equal to 

y, such that x and y are not modified after s. So, that is the statement, which will be in 

the c gen. If you take all such copies within the basic blocks, whose left hand side or the 

right hand side are not modified, then that is the gen function. 

What is the kill function? This is straight forward. Suppose you have either x or y 

assigned in a basic block then this assignment (Refer Slide Time: 16:02) to either x or y 

kills copies in other basic blocks. For example, c kill B is the set of all copy statements, s 

x equal to y, s is not in the basic block B; we are killing it, such that either x or y is 

assigned a value in B. So, it make sense because if you are assigning some value to x or 

some value to y, then any copy, which comes to the basic block will not be useful 

because it is being destroyed within the basic block. It cannot pass through the basic 

block and cannot retain that copy because these assignments will kill that particular 

copy. Then finally, let u be the universal set of all copy statements in the program. 

(Refer Slide Time: 16:57) 

 

What are the data-flow equations? Here are the data-flow equations. Let us take a look at 

this structure of these equations and find out the usual parameters. We have the usual c 

gen, c kill, c in, and c out. Then, we have intersection of c out p; p being a predecessor of 

B. That means, the confluence operator is an intersection here. Is this a backward 



problem or a forward problem? out B is being defined in terms of in B. So, this is a 

forward-flow analysis problem. 

This has the same flavor as the available expression problem, which also was a forward-

flow problem with intersection as the confluence operator. As in that case, c in of B1 is 

phi, where B1 is the initial block; so, no copies are assumed to enter the basic block B1, 

which is the initial block. The initialization for c out B will be u minus c kill B, for all B 

not equal to B1. So, you could have also said c in of B equal to u, where B not equal to 

B1; that is also possible. 

We make sure that it is the universe of all statements so that we get the maximum benefit 

in the data-flow analysis. What is c in B? c in B is the set of all copy statements, x equal 

to y; obviously reaching the beginning of the basic block; that is why it is c in B; along 

every path such that there are no assignments to either x or y following the last 

occurrence of x equal to y on the path. You are looking at intersection of course (Refer 

Slide Time: 18:48); so, you have look at all paths leading to the basic block; the copy 

must come to the basic block along all paths; that is why the intersection. Along such 

paths, there should be no assignments to either x or y; so, if there were, then we would 

have eliminated such copies from the set c in B. 

C out B is similar. It is at the end of the basic block. Copy statements, x equal to y 

reaching the end of the block along every path such that there are no assignments to 

either x or y following the last occurrence of x equal to y on the path; same thing. So, 

this is out (Refer Slide Time: 19:25) and that is in. Since we want the copy to reach along 

all paths leading to basic block, we are taking the intersection. This also makes sense. 

The copies can be generated in the block and not killed of course; otherwise, they could 

be coming from outside to the beginning of the block and not killed in the basic block. 

So, that is what is c out. 



(Refer Slide Time: 20:00) 

 

Now, let me show you an example first before we look at the algorithm for using this 

data-flow analysis result. There are several basic blocks B1, B2, B3, B4, and B5 here. B1 

has s1 and s2; both are copy statements. c in of B1 is phi because nothing is coming in; 

this is the initial block. c out of B1 is (s1, s2) because neither of these is killed within the 

basic block; they are generated. c out happens to be that itself. 

There is no need to loop through the statements here because this is an acyclic graph; 

directed acyclic graph. So, one pass over the blocks is sufficient. c in of B2 will be 

whatever comes from here (Refer Slide Time: 20:48); no need to take any intersection. 

So, s1, s2, which is the output of basic block B1. What is c out of B2? It is s2 and s4. 

Why? Here, we have a statement, which is not a copy and s4 redefines x. So, s1 defines x 

and s4 redefines x. So, the copy s1 is last; it is killed by this (Refer Slide Time: 21:17) 

statement, s4. Only s4 is visible at this point. So, s2 of course, is not modified and not 

killed. So, s2 and s4 are available, rather reach this particular point after B2. 

In B3, in is the same as out of B1. So, s1 and s2 (Refer Slide Time: 21:35) and x is again 

killing… This statement s5 is a copy killing the statement s1, which is also a copy. As in 

this (Refer Slide Time: 21:45), c out of B3 is (s2,s5). 

Now, take B4. In of B4 is this (Refer Slide Time: 21:55); out of B3. So, that is (s2,s5) 

and out of B4 is also (s2,s5) because it is not assigning anything to either x or z. The 

important thing here is – this particular x (Refer Slide Time: 22:11) can be replaced by z; 



a copy propagation can be performed here for this particular x. This is the only copy, 

which is reaching here; x equal to s5; s2 and s5. s2 is p equal to q and s5 is x equal to z. 

We are using x here; so, this is the only copy, which is relevant and z can replace x. 

Let us look at this (Refer Slide Time: 22:42); m equal to x plus 9 and n equal to p. c in of 

B5 is what comes out of this. So, that is… There is one more arc, which is coming in 

here. So, c out of B4 is (s2,s5) and c out of B2 is (s2,s4). So, the intersection is only s2. 

Please observe that the x equal to z (Refer Slide Time: 23:11) here and the x equal to z 

here; even though they are syntactically the same statement, the same copy, but they are 

two different copies; syntactically they are similar, but s4 and s5 are two different 

statement numbers and they are two different copies. 

Since s4 reaches here (Refer Slide Time: 23:35) and s5 reaches along this point, these 

two are not the same and neither this nor that actually are in c in of B5, whereas the copy 

s2 reaches along this path (Refer Slide Time: 23:50) and it also reaches along this path. 

So, it is in the set c in B5. That is how we are taking the intersection. This is a very 

important point; syntactically, the copies may look alike, but the statement numbers will 

be different because they are in different basic blocks and their statement numbers are all 

different. Therefore, we cannot say x equal to z reaches this point (Refer Slide Time: 

24:17). So, that is very important. Then, this p can be replaced by q because s2 is 

reaching this particular basic block. This is the…; x here cannot be replaced by either 

this or (Refer Slide Time: 24:35) this because no copy corresponding to x equal to 

something reaches the in point of this particular basic block. 



(Refer Slide Time: 24:45) 

 

Now, let us look at the algorithm for copy propagation, which uses the copy data-flow 

analysis problem results. 

(Refer Slide Time: 24:58) 

 

Remember – we had to check two conditions and I said that this condition number 1 will 

be subsumed in number 2 during the solution of the data-flow analysis problem. We 

already made sure of that because whenever there is more than one definition; (Refer 

Slide Time: 25:16) either x or y is assigned a value, then the previous copy is not taken at 

all; it is killed. That is how it is actually taking condition number 1 (Refer Slide Time: 



25:27) also in it; embedding condition number 1 in condition number 2. For each copy, x 

equal to y, we use the d-u chain and find out all uses of x. So, there may be many uses of 

that. For each of these, we need to check the conditions. How do we do that? We just 

check whether s is in in of basic block. If it is already there, B is a basic block, which 

uses to which the use of x belongs. So, we found a use; at the input point of that basic 

block, this copy is reaching; it is there. What does this ensure us? This ensures us that 

this is the only definition of x that reaches this block; that is, condition number 1 and no 

definitions of x or y appear on this path from s to B (Refer Slide Time: 26:25). Because it 

is in s in of B, c in of B, this particular condition 2 is also satisfied; the copy is valid. 

No definitions of x or y occur (Refer Slide Time: 26:36) within B prior to this use of x 

found in (1) above. In other words, we should make sure that within the basic blocks 

also, the 2 conditions hold. That is what we are checking - whether x or y is assigned; if 

it is, then I cannot do anything about this use. The copy even though it reaches the 

beginning of the basic block, will be modified and hence will not be valid. 

(Refer Slide Time: 27:02) 

 

The point is – suppose here is n equal to p, we had p equal to something here. Even 

though c in the contains s2, p value would be modified by p equal to something. 

Therefore, this n equal to p cannot be replaced by s2. It can possibly be replaced by the 

previous value if it was a copy within the basic block, but not definitely in order by s2. 



(Refer Slide Time: 27:28) 

 

If s meets the conditions above, then remove s and replace all uses of x found in (1) by y. 

So, this is the copy propagation. Here, is the first example (Refer Slide Time: 27:41). 

(Refer Slide Time: 27:42) 

 

Let us look at another example. In our running example, we saw so many copies; this t21 

is here; it is a copy. t10 is another copy, t12 is third copy, t4 is one more copy, and so on 

and so forth. 



(Refer Slide Time: 28:04) 

 

Let us see how many of these copies can be eliminated. We replaced one of the copies by 

t4, then another copy by t4, then third one by t6, fourth one by t6, and so on and so forth. 

We have eliminated quite a few of these, but once we did copy propagation, there is 

chance for some more common sub-expression elimination. So, 4 star t6 is here and 4 

star t6 is here. So, we can eliminate those also. 

(Refer Slide Time: 28:37) 

 

Let us assume that we do copy propagation and GCSE together. Now, we get this t15 

equal to t7, t18 equal to t7, and all the others; we did some copy propagation. 



(Refer Slide Time: 28:51) 

 

Now, another round of copy propagation, will give us this particular compact code. See 

that (Refer Slide Time: 28:58) t15 is replaced by t7 and this again, t18 equal to t7. So, 

this t7 is again a copy. t18 equal to t7; so, t7 can replace t18. That is what happens here; 

a plus t7, a t7, a plus t4, etcetera. So, we are not computing any common sub-expression 

and we are not making unnecessary copies. So, this is a very compact code after common 

sub-expression elimination and copy propagation. 

(Refer Slide Time: 29:37) 

 



What we have seen for can be done using just the data-flow analysis information. Now, 

we move on to loop-invariant computation and elimination of loop-invariant 

computation, rather movement of loop-invariant computations. To do this, it is not 

enough if we do data-flow analysis, we also have to do control-flow analysis, discover 

the loop structure, which intern implies finding dominators, back edges, natural loops, 

and so on. Let us assume that all that is done; that is what we mean by given a loop L. 

We also need the u-d chain and the d-u chain. 

(Refer Slide Time: 30:33) 

 

Loop-invariant computation; let me give you an example just to refresh your memory. t3 

equal to address a; address a is the base address of the array a, which is a constant. This 

base address is within the activation record; the offset and it is a value, which is a 

constant assigned by the compiler. 

t3 equal to address a – is an assignment of a constant to a temporary variable and there is 

no other assignment to t3 anywhere. So, whether we keep this assignment within the 

loop or we move it outside the loop, the value of t3 will remain the same. Similarly, look 

at t4; t4 equal to t3 minus 4. t3 itself carries a constant value and therefore, t3 minus 4 

will also be a constant value. So, we can move t3 equal to address a and t4 equal to t3 

minus 4 together as loop-invariant computations outside the loop. So, they do not vary 

within the loop. That is why they are called loop-invariant computations. They can be 

removed and put outside the loop. 



(Refer Slide Time: 31:43) 

 

How do we find such loop-invariant computations. The first round – mark as invariant, 

those statements whose operands are all either constant or have their reaching definitions 

outside L. 

(Refer Slide Time: 32:07) 

 

Let us state this one at a time – Statements whose operands are all constants. This is a 

constant. So, t3 equal to address a is a loop-invariant computation, or (Refer Slide Time: 

32:17) have all the reaching definitions outside L. In other words, suppose this address a 

is a constant and it was computed outside the loop; it is not computed within the loop, 



even then… Actually this is a loop-invariant computation. So, address a would not have 

been written as address a, it should have been written as some t prime equal address a, 

and we would have had t3 equal to t prime. t prime is defined outside the loop and that 

definition reaches that particular use here. So, that is what we mean by the definition of 

the variable being outside the loop and therefore, being loop-invariant. So, such 

computations are marked as invariant; that is the first round. 

What about the second round? See this (Refer Slide Time: 33:09) was marked as 

invariant. This t3 is an operand in the next one; t4 equal to t3 minus 4 and the second 

operand of this assignment is also a constant. So, obviously, this is also a loop-invariant 

computation. Because t3 equal to address a, it is a loop-invariant computation. 

We have to repeat this loop (Refer Slide Time: 33:35) many times. Mark as invariant all 

those statements not previously so marked all of whose operands are constants, 

obviously possible have all their reaching definitions outside L, or have exactly one 

reaching definition, and that definition is a statement in L marked invariant. This is what 

I showed you; definition is a statement in L marked invariant; that is the example which 

is given here (Refer Slide Time: 34:01). 

The others; the operands are all constants, have their reaching definitions outside L and 

this (Refer Slide Time: 34:10). This particular loop is repeated until no new statements 

are marked invariant. In fact, this particular last one is the one which discovers more and 

more new invariant computations. In doing so, u-d and d-u chains are useful. How? 

Here (Refer Slide Time: 34:38), what happens is – may be one of the operands is a 

constant and the other one is defined in the loop. So, like this (Refer Slide Time: 34:46); 

that is possible or it is also possible that both are defined in the loop, may be one of them 

come from outside the loop. All variations are possible. That is why, this loop is 

necessary. In the first round, we would not have marked anything like this (Refer Slide 

Time: 35:08). That is why, we need to go on and on until no more statements can be 

marked as invariant. 

Why are u-d chains useful? (Refer Slide Time: 35:17) They are useful in marking the 

statements as invariant. So, you are going to look at the definitions for the particular use 

inside the loop and see whether those definitions come from within the loop, entirely 



outside the loop, etcetera. Whether they are loop-invariant computations; or otherwise, 

can be checked after we discover these definitions. 

Why are d-u chains useful? (Refer Slide Time: 35:44) They are useful in examining all 

uses of a definition marked invariant. So, these are basically tricks in making the 

algorithm run faster. Once you mark something as invariant, for example, (Refer Slide 

Time: 35:55) t3, then you can look at all the uses of t3 and see whether they can be 

marked as invariant, which they satisfied the conditions that we have shown. So, this is 

one simple example of how to detect loop-invariants and move them from inside to 

outside. 

Typically, here is the basic block, which is just outside this (Refer Slide Time: 36:19). 

So, we have moved these two assignment statements in the same order to the basic block, 

which is preceding. If actually we had a junction point; this particular basic block was a 

junction point with two incoming arcs, we would had to introduced a new preheader and 

move these computations into that particular preheader. 

(Refer Slide Time: 37:03) 

 

How do you move loop-invariant code to outside the loop? That is the question. This is a 

very tricky situation; the example that I showed you here (Refer Slide Time: 36:57) was 

a very simple example and we could move very simply, but there are many conditions to 

be checked. 



Find the loop invariant computations for each statement s defining x found in (1), check. 

So, there are three conditions. Let us look at each of these conditions and see what they 

mean. It is in a block; this statement s is in a block that dominates all exits of L. 

(Refer Slide Time: 37:31) 

 

Let us understand what happens if there is a violation. Here is a small flow graph; 

condition (( )); the basic block B1, B2, B3, B4, and B5. Now, the statement in basic 

block B3; that is, i equal 2; is what we want to consider. This is a statement, which is 

loop invariant. i is assigned value 2, which does not get changed within the loop. So, this 

is loop-invariant computation. 

The question is – Can we move this to (Refer Slide Time: 38:04) B1? Now, the condition 

number 2(a) said s dominates all exits of L. In other words, this particular basic block B3 

must dominate all exits of L. In this case, B4 is the only exit of L. Does B3 dominate 

B4? No because all paths from B1 to B4 do not go through B3; they can go to B2 and 

directly to B4. So, B3 does not dominate B4. Because this is not true, moving i equal to 2 

to B1 will have some side effects. 

What is that side effect? If we actually take this original flow graph; look at the value of i 

taken by j in B5. Value i equal to 1 could have travelled all the way from B1 to B2 to B4 

and then to B5. So, j equal to 1 was possible; otherwise, we could have travelled with i 

equal to 1, then go to B2, go to B3; now i gets changed to 2, go to B4, and then to B5. 

Now, j gets the value 2. Suppose we move this i equal 2 (Refer Slide Time: 39:17) to this 



basic block B1 immediately after equal i to 1, then i equal to 1 is actually overridden by i 

equal to 2. So, the value of i permanently changes to 2. Even if we take the old path in 

which j would have got the value 1, now j gets the value 2 because i has changed its 

value permanently to 2. So, this is the change in the semantics of computation of this 

particular program. Therefore, any change in semantics is not permitted; this is illegal. 

So, just because it is loop invariant, we cannot move i equal to 2 to B1. 

(Refer Slide Time: 40:03) 

 

x is not defined elsewhere in the loop L. So, let us see what happens here. This flow 

graph now satisfies condition 2(a). What was 2(a)? s dominates all exits of L. We are 

looking at B2; not B3 this time. We cannot move i equal to 2; so, we have given up. 

Now, we consider i equal to 3 in the basic block B2. B2 definitely dominates B4, which 

is the exit of the flow graph, rather the loop because all paths from B1 to B4 have to go 

through B2. So, whether I take this path or this path, I would have crossed B2. Condition 

2(a) is satisfied. 

What is condition 2(b)? x is not defined elsewhere in L. i is defined here and i is defined 

again here (Refer Slide Time: 40:56). So, the condition is violated. Now, what happens? 

I want to move i equal to 3 to outside the loop. Suppose I move this to outside the loop, 

now, if the loop is executed twice, i may pass its value of 3 from B2 to j in the original 

loop. So, if we go through this, i equal to 1, then i equal to 2, i equal to 3, then possibly i 



can become 2 again. We come here, we go back, i gets the value 3, and then i passes out 

of the loop and j gets value 3 corresponding to i equal 3. 

In other words, i is getting reset to 3 every time that i go back to the header, but suppose 

i equal to 3 goes out and goes in to the basic block B1, first time i gets the value 3. Now, 

if I do not execute iterate through the loop at all, j can still get the value 3. However, 

suppose I get back i equal to 3, come here (Refer Slide Time: 42:01), then pass through 

this particular block, I get the value i equal to 2. 

Now, let us say I go back any number of times, i still retains the value 2; it never 

changes, whereas in the original loop as it is written here (Refer Slide Time: 42:14), i 

would have been reset to 3. Whereas with i equal to 3 moved into B1, once i travels this 

particular path, i gets stuck with the value 2 and never changes irrespective of the 

number of times i execute this loop. So, j always gets a value 2 once i travels this 

particular path (Refer Slide Time: 42:34). So, there is a change in the semantics of the 

loop and therefore, this transformation is illegal. 

(Refer Slide Time: 42:41) 

 

The third one – all uses in L of the variable x can only be reached by the definition of x 

in s. 



(Refer Slide Time: 42:58) 

 

Let us see what happens. This flow graph satisfies condition 2(a), which says s 

dominates all exits of L. So, we are now looking at i equal to 2 in the basic block B4. B4 

dominates itself and it is the exit. So 2(a) is trivially satisfied. What is 2(b)? x is not 

defined elsewhere in L. So, we are considering i equal 2 again in this block. i is not 

defined anywhere in the loop. So 2(b) also satisfied. 

What is 2(c)? All uses of x in L can only be reached by the definition of x in s. So, here 

is i equal to 2. This is the definition of i. Here is (Refer Slide Time: 43:45) a use of i; k 

equal to i, but this i equal to 1 in the basic block B1 can reach this k equal to i, i equal to 

2 in the basic block B4 can reach k equal to i after one iteration. So, both these 

definitions – i equal to 1 and i equal to 2 reach this basic block B6 and therefore, it is a 

violation of this condition 2(c). 

Can we now move i equal 2 into the basic block B1 because it is a loop-invariant 

computation? The answer is no because there is going to be a change in the semantics of 

this computation. k could have received the value of either 1 or 2 in the original loop; 

that is very clear. i equal to 1 could reach this (Refer Slide Time: 44:35), i equal 2 could 

reach this after one iteration. So, both the values are possible for this particular k. 

Whereas, once we move i equal to 2 outside, i always gets stuck with the value 2. 

Because i equal to 1 is overridden by i equal 2, this k will always get the value of 2 and 



will never get the value of 1. So, there is a change in this semantics of the computation 

and therefore, this is also an illegal transformation. 

Assuming that the transformations are legal, we check these (Refer Slide Time: 45:09). 

How do we know that if we check these, they are legal? The proofs of these statements 

are all provided in the early papers written by Ullman and his students. So, they are all 

there. If you look up Sethi-Ullman’s book, at the end of it there are a large number of 

references, where the papers containing proofs of these statements are all provided. 

Move each statement of statement s found in step (1) (Refer Slide Time: 45:44) and 

satisfying these conditions of step (2) to a newly created preheader. Preheader may 

become necessary if the basic block at the entry of the loop actually does not have a 

predecessor, which is a simple predecessor. In such a case, we need a preheader. 

Provided any operands of s that are defined in loop L have previously had their 

definitions statements moved to the preheader. 

(Refer Slide Time: 46:22) 

 

In other words, you cannot move k equal to i unless the statement i equal 2 is also 

moved. That is very clear in our simple example itself. I cannot move t4 equal to t3 

minus 4 ahead of t3 equal to address a and I cannot move it in any other order except the 

same; that is real. 



(Refer Slide Time: 46:39) 

 

So, I must move t3 equal address a first and then move t4 equal to t3 minus 4. That is 

what this really says. You must move the definition statements first and then move the 

used statements later. 

Now, we need to update u-d and d u-chains also because the information has really 

changed. So, this is the loop-invariant code motion algorithm. 

(Refer Slide Time: 46:59) 

 

Now, we come to the next optimization, which is induction variable elimination and 

strength reduction. 



Let us see what is an induction variable is. There is a variable x in a loop L and if that 

variable changes its value only through an increment or decrement operation by a 

constant amount; so, i equal to plus or minus k, where k is a constant. Then, it is not 

necessary to have just one statement, which changes the value of the variable; you could 

have i equal to i plus 2 in the loop in one place and i equal to i plus 3 in another place in 

the same loop. So, there could be more than one such statement. Such a variable is called 

as an induction variable. Why? If we are actually either adding or subtracting a constant 

to or from a variable, then the value of that variable changes in arithmetic progression. 

That is the reason why it is called as an induction variable. 

What is the basic induction variable? Variables , whose only assignments in the loop are 

of the form i plus minus n, where n is a constant. The above one (Refer Slide Time: 

48:30) was a very general statement and it did not say that n must be a constant; it could 

have been i plus minus k, where k actually is incremented or decremented by a constant 

amount. So, indirectly i also gets incremented or decremented by a constant amount. 

That was possible here; we did not say it is plus minus; it could have been star also. So, a 

change is a constant amount; that is all. Whereas, in the basic induction variable, the 

specific form is given – i equal to i plus minus n. 

Another variable j which is defined only once within L, and whose value is c star i plus 

d; linear function of d, is an induction variable in the family of the variable i. So, this is 

also an induction variable; it is just that j depends on i. So, if say, i is i equal to 1, so 1, 2, 

3, 4, etcetera are the values of i, and then j is 4 star i; then j takes value 4, 8, 12, etcetera. 

Again it is an arithmetic progression, but j is defined in terms of i. Therefore, this is 

called as a derived induction variable, which is in the family of i. 

We associate a triple – i, c, d with a derived induction variable; c and d are constants and 

i belongs to its own family with a triple – i, 1, 0. This is a definition; i, 1, 0, where as i, c, 

d is for any other variable, which is derived from i. In the previous example, with 4 star i, 

we would have had i, 4, and 0 as the triple. 



(Refer Slide Time: 50:30) 

 

Here, we have a simple example. If you take i equal to i plus 1, this is a basic induction 

variable. It is incremented by 1 in this particular loop. t5 equal to 4 star i is a derived 

induction variable, which is in the family of i. So, this is the example I have been giving. 

So, i has its triple as i, 1, 0 (Refer Slide Time: 50:57). Now, t5 has its triple as i, 4, 0. So, 

that is the triple for t5. 

(Refer Slide Time: 51:09) 

 

In this example, there are many loops – there is a loop here, there is a another loop here, 

and the third loop here. When we consider induction variables, we need to look at the 



variable and every loop that is possible. For example, i equal i plus1 and this loop (Refer 

Slide Time: 51:32), it is incremented once and it is not modified in any other way. So, i 

is a basic induction variable in this particular loop. 

If you consider the outer loop (Refer Slide Time: 51:43) and same i, it is still an 

induction variable in the outer loop also; that too a basic induction variable because i is 

not modified anywhere else and it is of the form i equal i plus minus n. The same is true 

for j as well; j equal j minus 1 is a basic induction variable in this loop and it is also a 

basic induction variable in the outer loop because j is not modified by any other quantity 

in the outer loop as well. 

t2 equal to 4 star i is based on i. So, it is in the family of i and is a derived induction 

variable in this loop (Refer Slide Time: 52:23) and also in the outer loop. Similarly, t4 

equal to 4 star j is an induction variable, which is derived from j; it is in the family of j 

both in this particular loop and also in the outer loop. 

(Refer Slide Time: 52:40) 

 

How do you detect induction variables? Easier said than done; let us see how to do that. 

We need a loop L, reaching definitions, and loop-invariant computation information. So, 

all these are necessary. Find all the basic induction variables by scanning the statements 

of L. This is fairly easy because the structure of the basic induction variables is i equal to 

i plus minus n. Then, the derived once are not so trivial. 



Search for variables k, with a single assignment to k. So, k should not have been 

assigned more than once. Remember – Even in the definition of (Refer Slide Time: 

53:28) variable in the family of I, we said j must defined only once. So, that is what we 

are sticking to in this particular algorithm. So, with a single assignment to k within L, 

having one of the following forms: k equal j star b, k equal to b star j, k equal j slash b, k 

equal j plus minus b; b plus minus j, and then j star b plus minus a, or a plus j star a plus 

minus j star b, where b is a constant and j is an induction variable; either basic or 

otherwise; you should have already detected it. That is what it really says. If it is basic, 

we should have (( )). If it is not a basic induction variable, we should have already said in 

which family this j lies. That information should be already available to us. Please 

observe that we do not have b slash j; that is not a linear form; j cannot be in the 

denominator. 

If j is a basic induction variable, then for k equal to j star b, the triple for k is very simple, 

j, b, 0; this we already saw – j star b plus d; so, d is 0. Similarly, if you let us take k equal 

to j slash b, 1 by b is a constant, we might as well evaluate that constant at compile time 

and then say j comma 1 by b comma 0. That value can be substituted here (Refer Slide 

Time: 55:03). Similarly, for others also; j star b plus a, it is j comma b comma a or minus 

a and so on and so forth. 

If j is not a basic induction variable, then there are many complications. Let the triple be 

i, c, d and we need to check two more conditions: there is no assignment to i between the 

lone point of assignment to j in L and the assignment to k, and no definition of j outside 

L reaches L. 



(Refer Slide Time: 55:42) 

 

I am going to demonstrate these conditions and explain them in the next class. So, this is 

the end of today’s class. 

Thank you. 


