
Compiler Design
Prof. Y. N. Srikant

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. #01
Lecture No. # 02

An Overview of a Compiler – Part 2 and Run-Time Environments

This is part 2 of a compiler overview; we completed part 1 last time. First of all we will

have a quick overview of what we did last time and then continue with the second part.

(Refer Slide Time: 00:18)

So last time, we looked at the block diagram of a compiler; so this is what we saw, there

is a lexical analyzer phase which changes the character stream into a token stream there

is a syntax analyzer phase, which changes the set of tokens according to a programming

language grammar to a syntax tree and the semantic analyzer changes syntax tree into an

annotated syntax tree in which it checks all the semantics of the programming language.

(Refer Slide Time: 00:26)

(Refer Slide Time: 00:40)

Today, we are going to look at an overview of the intermediate code generator, the

machine dependent code optimizer, the code generator, machine independent code

optimizer etcetera.

(Refer Slide Time: 01:22)

So, this is the slide I showed you last time regarding lexical analysis the input is a an

assignment statement Fahrenheit equal to centigrade into 1.8 plus 32 and a sequence of

tokens id comma 1 assign id comma 2 multop fconst comma 1.8 addop iconst comma 32

comes out of it.

(Refer Slide Time: 01:47)

(Refer Slide Time: 02:01)

This goes into the syntax analyzer and it change the syntax analyzer parses this particular

sequence of tokens and produces the assignment expression tree, as shown here. So the

next phase is the semantic analysis phase in which the syntax tree is validated for

example, the constant 32 is changed into a floating point constant using the function into

float which is inserted into the tree. Similarly, there are checks made whether id and id1

and id2 etcetera are all compatible with the assignment operation and so on. Finally, it

goes into the intermediate code generation.

(Refer Slide Time: 02:32)

This is the intermediate code generation overview. So, the semantically validated

expression tree or the program tree is the input to the intermediate code generator. The

output of the intermediate code generator looks as shown here for example, the bigger

expression is broken into smaller expressions, t1 equal to id2 into 1.8 is a small

expression; then t2 equal to into float 32 is another assignments statement t3 equal to t1

plus t2 and finally, id1equal to t3.

(Refer Slide Time: 03:14)

So now, let us see, why all these needs to be done in the compiler. While generating

machine code directly from the source code is definitely possible, it is not an impossible

problem but, when we do so, we lose out many things. There are two problems that are

well known for example, if there are m languages and n target machines and we generate

compilers directly rather, we write compilers directly which generate machine code from

the source language. Then, we need to write m into n compilers, hardly any part of the

compiler can be reused and there is a lot of effort in writing a fresh compiler. The first

part of a compiler can always be reused that is the lexical analysis, the syntax analysis

and the semantic analysis can always be reused, whether we are generating intermediate

code or we are generating machine code.

But, if you are generating machine code directly then the code optimizer, which is one of

the largest and the most difficult components of any compiler cannot be reused. So what

happens is the code optimizer will have to be now targeted towards the machine code

which is being generated and therefore, every machine code has its characteristics which

are very different from each other and we will not be able to reuse this particular code

optimizer.

Whereas, if we convert source code to an intermediate code, a machine independent code

optimizer may be written, so what is this intermediate code? The intermediate code is

some sort of a universal assembly language. Of course, it should be easy to produce, it

cannot be as difficult as machine code to produce and it must be easy to translate it from

intermediate code - any intermediate code to machine code as well.

Another important characteristic is that it should not contain any machine specific

parameter such as registers, addresses etcetera. The reason is, if it contains machine

specific parameters, the machine independent nature of the code is lost. So we will again

be back to square one and we need to write the machine code generator and this even the

optimizer etcetera, all over again. So this machine independent code is usually produced

during a traversal of the semantically validated tree.

(Refer Slide Time: 06:00)

There are different types of intermediate code; it is not that the same intermediate code

can be deployed in every application. So, it depends on what type of application we have

in mind when we design the intermediate code. For example, quadruples, triples, indirect

triples, abstract syntax trees these are some of the classical forms of intermediate code,

which are machine independent and then these can be used for machine independent

optimization and also for machine code generation; that is fairly easy, this are very well

known and they are used in almost every complier.

There are two other special forms of intermediate code that I am going to mention here.

One of them is the Static Single Assignment form called SSA; this is a very recent

intermediate form and this is much better than the other type of intermediate code that is

used in compilers, because we can do many more optimizations more effectively on this

particular static single assignment form. We are going to look at the details of SSA in

one of the later lectures. For example, conditional constant propagation and what is

known as global value numbering are two optimizations which are far more effective on

the SSA form than on any other form.

The other special intermediate code that I mention here is the Program Dependence

Graph - PDG as it is called. This is very useful in automatic parallelization instruction

scheduling and also software pipelining.

(Refer Slide Time: 07:56)

Here is an example of translation to produce quadruples from arithmetic expressions. So

let us go through it step by step. The grammar is a very simple grammar. S going to id

equal to E, is the production for assignment. SE going to E1 plus E2, is the sum

expression. E going to E1 star E2, is the multiplication expression. E going to minus E1is

the negation; then E going to bracket E1; bracket is the parenthesize expression. E going

to id is the terminating production, which gives you a single variable. So, if this is the

grammar, first of all let us look at the kind of expressions that we produce and then come

back to this grammar all over again.

(Refer Slide Time: 08:58)

Here is a nice example, let say we have a simple tree in which a equal to b star c plus d is

the expression, so b star c plus d is the expression and it is being assigned to a, so this is

our complete assignment statement. Now, let us go back one step and see how this is

translated. Before that, please observe the syntax tree that is produced. So at the first

level, we have id then equal to an E.

(Refer Slide Time: 10:20)

At the second level, we have E plus E and at the third level, we have E star E and at the

fourth level, we have the identifiers. So the code generation the machine the intermediate

code generation actually goes in a bottom-up fashion. So for example, the code is

generated for E going to E star E first and then, the code intermediate code is generated

for E going to E plus E and finally, the intermediate code for S going to id equal to E, so

let us see how this happens. So if it is an assignment id equal to E, we search the action

indicates that we search the symbol table get the pointer for that particular name from the

symbol table and if the name is already present in the symbol table then the pointer is not

null; then, we generate just the simple assignment statement in the intermediate code

idptr equal to E dot result.

So, E dot result is the place where the result of the arithmetic expression is going to be

placed. This E dot result is also a pointer into the symbol table; it is not that it is a

machine location. The machine location will come later and it will be assign during the

machine code generation phase. So, if the name is not present in the symbol table,

obviously it is an error.

Let us take the next production, E going to E1plus E2. So in this case, we have the result

of E1 in E1 dot result; the result of E2 in E2 dot result and to add them up, we actually

need a temporary. So, the gentemp routine creates a temporary and E dot result equal to

gentemp will transfer the pointer into to the temporary variable into the variable E dot

result. So gentemp actually generates a temporary name and puts it in the symbol table

and also returns a pointer to it that is the way, we have assumed it.

So now, once the temporary is generated; the next is to generate intermediate code E dot

result equal to E1 dot result plus E2 dot result. So there we have the intermediate code for

the arithmetic expression consisting of plus. E one star - E going to E1 star E2 is very

similar instead of plus there is a star, otherwise there is no difference. Similar is the case

of E going to minus E1 and E going to parenthesis E1; parenthesis does not require any

intermediate code generation it is just that the location, where the result of E1 is stored is

transfer to the location E dot result.

Finally, E going to id again makes us search in the symbol table, gets the pointer to the

name id dot name and if it is not null then, the place E dot result is going to be a the

pointer to the symbol table, otherwise it is an error. So in other words there is no code

generated for the productions 5 and 6; it is only for the other productions that we have

really generated the intermediate code.

Intermediate code is very similar to the higher level programming language code but, the

most important characteristic is that it can have only a single unary operator or a single

binary operator; bigger arithmetic expressions have to be broken into smaller ones and

finally, temporaries must be used to calculate the result.

(Refer Slide Time: 13:47)

This is very clear from this particular diagram. So, if you look at this expression E going

to E star E - E dot result is b for this particular E, E dot result is c for this particular E

and here, we generate a new temporary t1 and E dot result will be t1(Refer Slide Time:

14:00). Here, E dot result is d here we generate a new temporary t2 and that will keep the

result of t1 plus d and finally, the assignment is a equal to t2. So finally, the intermediate

code that we generate would be t1 equal to b star c; then t2 equal to t1 plus d and finally,

a equal to t2. These are the three intermediate code statements that would be generated in

a bottom-up fashion.

(Refer Slide Time: 14:44)

Now, let us look at the next phase of compilation called the code optimization. This is

the input that we got from - rather the output that we generated from the intermediate

code generator. Here, we have these statements but, as you can see where is some

inefficiency in these. Look at the output here, the output that we generate after the code

is optimized; it directly says t1 equal to id2 into 1.8, instead of accumulating id2 into 1.8

in t1 and then rather sorry t2 equal to into float 32 and then t3 equal to t1 plus t2 is

directly and then id1 equal to t3 is directly translated into id1 equal to t1 plus 32.0.

So, the three statements t2 equal to, t3 equal to and id1 equal to have been combine into a

single statement id1 equal to t1 plus 32.0. So, such elimination of unnecessary statements

is possible using the code optimizer. Code optimizer improves the quality of the

intermediate code that is generated and fits it into the code generator.

(Refer Slide Time: 16:07)

So here is the detail; intermediate code generation process introduces many

inefficiencies; this is the reason why we require the code optimizer phase - machine

independent code optimizer phase. So extra copies of variables that is, the temporaries,

we already saw the t1 t2 etcetera, all temporaries being generated. Then using variables

instead of constants, so we would have simply initialize the variable to a constant and

use that variable in place of the constant and then there are expressions which are going

to be repeatedly evaluated; so these are all the sources of inefficiency, you can eliminate

these. If there are extra copies of variables, we can retain one of them and eliminate the

rest; instead of variables, we can simply do constant propagation and replace the variable

name by the constant value and in the case of repeated evaluation of expressions we

evaluate the expression only once and use the same value again and again.

So, code optimization removes such inefficiencies and improves code that is what I just

now mentioned. Improvement may be time, space or power consumption for example;

we may want to make the code fastest; so in that case, we want to reduce or minimize the

amount of time that the code takes. We want to make the code space efficient; for

embedded applications the amount of memory that the code takes may be very important

and in such case, the number of instructions will have to be reduced in order to save

space.

Finally, in the same embedded application such as sensor networks, power consumption

is a very important factor. So, we may want to actually optimize the code to save power

instead of time or space. So, it is possible to do optimization in many ways. The code

optimizer also changes the structure of the programs; sometimes it is beyond recognition.

So for example, the functions are all inline there are no functions any more. The body

replaces that function call; unrolls loops. So, if the loop runs from one to ten in one to

one million may be I am going to unroll the loop one thousand times and run the loop

only from one to one thousand, the rest of it is unrolled and it is going to be a huge body

inside the loop and it also eliminates some of the programmer defined variables etcetera.

For example, if the same variable the different variables have the same value as I told

you, we can use one of them and eliminate the rest.

Code optimization consists of a bunch of heuristics and percentage of improvement

depends on the programs. This is a heuristic, so it is not guaranteed to give you any

definite result. If the improvement happens then it is very good; if the improvement does

not happen even then it is not going to change the functionality of the code that is the

best guarantee that I can give you but, on the average most of the programs benefit by

code optimization.

(Refer Slide Time: 19:31)

Then, here are some of the examples of machine independent optimizations, some of

them I already mentioned for example, common sub expression elimination the same

expression need not be evaluated again and again. Copy propagation so I do not have

several variables carry the same value so I do not have to keep all of them I can just use

one of them.

Loop invariant code motion: there is a lot of code inside a loop which is not altered

inside then in that case, the code can be moved outside the loop. Partial redundancy

elimination is a bit complex to explain but, it is one of the most useful optimizations and

we will be looking at it in detail in one of the late lectures.

Induction variable elimination and strength reduction are similar; they actually are

carried out in a loop. So multiplications can be change to addition and induction

variables which are nothing but, incrementing variables sometimes can be eliminated,

code optimization needs information about the program, where this is very obvious and

the compiler actually obtains this information using a process called data flow analysis,

so for example which expressions are recomputed in a function, which definitions reach

a point. These are some of the optimizations possible; the information that are necessary

for an optimization.

(Refer Slide Time: 21:08)

Next, the code generation process is, it follows the code optimization process. For

example, the intermediate code, which is improved in a code optimizer, is input to the

machine code generator and here is a sample of the machine code. The assignment

statement t1 equal to id2 star 1.8 is translated into load floating point R2 comma id2 and

then multiply floating point R2 comma R2 comma 1.8. Now R2 will contain the value of

the expression id2 star 1.8 and now, instead of id1 equal to t1 plus 32.0. Since the value

of t1 is already in the register R2, we can simply say, add floating point R2 comma R2

comma 32.0 and finally, store floating point id1 comma R2 will assign the value of this

entire expression to id1. This is the sample machine code which is generated in compiler.

(Refer Slide Time: 22:14)

So here is some detail, a machine code generator converts intermediate code to machine

code. Each intermediate code instruction may result in many machine instructions or vice

versa, it is possible sometimes to compress many intermediate instructions into one

machine instruction as well. It must also handle all aspects of machine architecture for

example, we must use the registers very efficiently, try to use as many registers as

possible because a registers are very fast; it must take care of the pipelining nature of the

processor, then it must handle the cache sometimes; then if there are multiple function

units, it must put them to efficient use. It should not be that only one of the function units

is used and rest are all idle etcetera.

Generating efficient code is an NP-complete problem, so it is one of those problems

which is extra difficult. There are many techniques, which are used to simplify this

particular operation for example, tree pattern matching based strategies are the best

strategies we look at these in detail later; this needs, what is known as tree intermediate

code instead of a quadruples and which we have seen so far.

(Refer Slide Time: 23:52)

Storage allocation decisions are also made here. Register allocation and assignment are

the most important problems here, so which resistors use which are the variables that can

be placed in these registers are there the best allocations that we can do etcetera are the

questions we answered during this particular phase of compilation. Then we also have

machine dependent optimizations; we saw machine independent optimizations a few

minutes ago and now, we see some of the machine independent optimizations. For

example, what are known as peephole optimizations? These peephole optimizations they

analyze a sequence of instructions in a small window which is called as a peephole and

using preset patterns, replace them with more efficient sequence. So it may be that a

particular sequence of instructions is inefficient and there is a way of writing them in a

efficient fashion, which is known to all programmers, such patterns can be put into a

peephole optimizer.

Redundant instruction elimination here is an example, if you have a sequence load A

comma R1 followed by store R1 comma A; then actually this is not necessary- it is not

necessary to have this store instruction after all because, A already has the value that we

require and therefore, these two instructions may be replaced by load A comma R1 itself.

The eliminate ‘jump to jump’ instructions: So, there is a jump instruction which does not

execute any other code but, just jumps to another jump instruction; such multiple jumps

can be eliminated, we will see a little bit of this later on. It is also possible to use

machine instructions- idioms for example, use increment instead of load followed by add

etcetera. So instruction scheduling is a very important machine dependent optimization;

it is used to eliminate pipeline interlocks and increase the parallelism in programs; it is

nothing but reordering instructions in order to reduce the pipeline stalls.

Trace scheduling is used to increase the size of basic blocks and then increase the

parallelism. Finally, software pipelining is used to increase parallelism in loops. So these

are some of the examples of machine independent optimizations that we have and this

brings us to the end of the overview of a compiler.

(Refer Slide Time: 26:15)

(Refer Slide Time: 26:25)

So, now we begin the next lecture on runtime environments. Here is an outline of the

lecture; let us see what runtime support is; then we are going to see a few of the

parameter passing methods. So we will discuss storage allocation; what are known as

activation records will be used throughout this lecture, so we have to understand what

they are. We discuss static scope and dynamic scope; what are these? Why are they

necessary? How to handle them, and so on. How to pass functions as parameters to other

functions? Then heap management - heap memory management and garbage collection,

one of the techniques which is possible to discuss in the limited time.

(Refer Slide Time: 27:15)

So what is runtime support? See, it is not enough if we generate machine code from

intermediate code and then hope for the best; it does not run at all. Interfaces between the

program and the computer system resources are also necessary, otherwise just dumping

the code which is produced into memory and then trying to execute, it will never work.

There is a need to manage memory, when a program is running. So for example, this

memory management must connect to the data objects of the program. So, it must

understand, how to fetch values of the variables and then if there are parameters, how to

pass them to functions and then where to store the return address, if there is a subroutine

jump and how to access the function result after the function returns etcetera.

So, programs normally request for memory blocks and then they go on releasing memory

blocks whenever they are of not much use. So, all such memory functions must be taken

care of by the memory manager. Other resources such as printers, file systems etcetera

are also to be accessed and the runtime support provides facilities to access these as well

but, these are kind of outside the preview of our lecture; so we are not going to discuss,

how to access printers and file systems but, we will stick to the other task that we

mention memory management and so on and so forth.

(Refer Slide Time: 29:10)

So these are some of the main task of a runtime support system. So let us review the

parameter passing methods. One of the most well known parameter passing method is

the call-by-value method; at runtime prior to the call, the parameter is evaluated and its

actual value is placed in a location private to the called procedure. So this is exactly what

happens during call-by-value. Therefore, it is just not possible for us to change the actual

parameters, we always operate on the copy. This type of parameter passing mechanism is

found in C and C plus plus of course, it is also found in Pascal but, Pascal is not used

anymore, so that is the reason I mentioned C and C plus plus.

C has only call-by-value method of passing parameters; it does not have other methods

such as call-by-reference, we will see those methods later. So for example, even though

we pass parameters frequently has a two functions, passing pointers as parameters does

not constitute call-by-reference. So there is a general misunderstanding that if we pass

pointers then it constitutes call-by-reference it is not.

I will show you an example, why this is not possible in C. Pointers are also going to be

copied; if we pass a parameter pointer as a parameter to a C function, the pointer is also

going to be copied to another location and then that copy is used. Therefore in C, there is

no way to write a function which inserts a node at the front of a linked list just after the

header without using pointers to pointers - that is double pointers. We will see this in the

picture here.

(Refer Slide Time: 31:20)

So, here is the original linked list, we have written a function - let say we assumed that

we have a function, which is passed this header as a parameter; this is a pointer to this

linked list. So when we make that function insert a node in the front of the header, what

we want is something like this. So this is the original header, then we have the new node

which is inserted and then the rest of the linked list but, because call-by-value copies this

pointer to a private location, so this is actually a copy of the original pointer - the original

header. So the insert function actually inserts the node right here and then makes it point

to this. So, we have not achieved this; but, this is a completely different linked list, the

original linked list is unchanged, this is not what we want. So, that is the reason I said

you in C you cannot do something like this, without using double pointers.

(Refer Slide Time: 32:28)

So that is about call-by-value nothing more to it than this. Let us look at call-by-

reference, at runtime prior to the call, the parameter is evaluated put in a temporary

location, if it is not a variable, so the address of the variable is also passed to called

procedure, so this is the difference. So we have the address of the variable which

corresponds to the parameter and value is also available through this particular address,

so if the parameter itself is a function, there is not much that we can do - what I have said

here happens - if it is the parameter is evaluated and put in a temporary location; if it is

not a variable, it is an expression, so the address of this variable is passed, this temporary

variable is passed but, it is not of much use.

But, if we had only one variable as a parameter then the address of that variable itself is

passed to the called procedure. Thus the actual parameter may get changed due to

changes to the parameter in the called procedure, such a mechanism is found in C plus

plus and Java, it is not found in C.

(Refer Slide Time: 33:56)

The third method of passing parameters, we look at an example after we finish call-by-

value result; the third method is called call-by-value result. This is a combination or

hybrid of call-by-value and call-by-reference. So what happens here is that the actual

parameter is calculated by the calling procedure; it is copied to a local location of the

called procedure, the actual parameters value is not affected during execution of the

procedure, so far it is very similar to call-by-value. At return time, the value of the

formal parameter is copied to the actual parameter; if the actual parameter is a variable.

So, if it is an expression- if the actual parameter is an expression, then you know there is

not much that happens, because it would have been evaluated into a temporary and this

final value is also copied to the temporary. So, the original parameter does not change

but, at this point it is different; if it is a single variable, it becomes very similar to call-

by-reference; the original parameter which was passed now, changes and gets the final

value of the parameter that was assigned right now.

But, it is also different from the call-by-reference method when? When global variables

are passed as parameters to the called procedure and the same global variables are also

updated in another procedure invoked by the called procedure. I will give you an

example of this and this mechanism is found in Ada.

(Refer Slide Time: 35:48)

So, here is an example to show how call-by-value result is different. A very simple

program in Pascal style and since we are assuming different types of parameter passing

mechanisms; it is better to use a different programming language construct to write down

this rather than C or C plus plus. So there is a main program statement and a variable

declaration a as integer; inside this is a procedure, which simply increments a and there

is another procedure R which carries a parameter x, which is an integer; in which we

have x equal to x plus 10 and then there is a call to the procedure Q and it ends. So in the

main program, we initialize a to 1, call R with a and finally, print the value of a.

So, let us see the result for various types of parameter passing mechanism as for as, a

procedure R is concerned. Let us take call-by-value first, so we have a equal to 1 here,

we called R with a. So the value of a copied to a local variable that is left side, this is x

itself, so x is incremented by 10, so it becomes 11; then Q is called, so Q increments a

which is actually the global variable a and has nothing to do with x; x is a copy of a, as

for as R is concerned; so a becomes 2, this is a global variable. So when we print a, the

value of 2 gets printed (Refer Slide Time: 37:20).

Let us see what happens in call-by-reference. So again a is 1, the address a is passed to

R, so this x and this a are the same. So, when we increment x by 10, x actually has - a

itself has becomes 11. Even though it says x equal to x plus 1, in effect is a equal a plus

10, so it has become 11, a has become 11. You call Q, a is further incremented by

another 1 and therefore, a now becomes 12 and finally, when we print a, the value of 12

is printed out.

So this is call-by-reference; so the original itself has changed. Let us look at call-by-

value result. Again we have a equal to 1, call R with the parameter a, so a is copied to the

local variable x, so x becomes x plus 10, so that is 11 but, so far we are within the

procedure R. Therefore, this x and this a are different, only the initial value has been

copied to this x. Now we call Q. So Q actually increments the variable a, so a becomes a

plus 1, which is 2; a had 1 here and a became 2 here, this x was corresponding to the

local variable itself but, then once R terminates, the value of x which corresponds to this

parameter is now copied into the actual parameter which is nothing but a. So, a now gets

the value 11, which was the value of x, so when we say print a, it actually prints 11. So

all these three methods of passing parameters actually yielded different results, because

there was a global variable involved and of course, the method of passing parameters

itself is very different.

(Refer Slide Time: 39:22)

Let us look at a very old parameter passing method, which is not very often used any

more in languages such as C and C plus plus but, it is definitely used in function

programming languages, call-by-name mechanism. In some sense a very weird

parameter passing method and let see why.

Use of a call-by-name parameter implies a textual substitution of the formal parameter

name by the actual parameter. So for example, you have a procedure R here; so R has

two parameters X and I, which are integers. Let us assume that these are call-by-name

parameters.

Now, inside the procedure R, we assign I equal to 2, X equal to 5, I equal to 3, X equal to

1 end and this procedure R is called by R, with a parameter of B of J star 2 and J. The

result of this would be effectively changing the body to - this is I equal to 2. So I

corresponds to J here, so textual substitution means J equal to 2, I has been replaced by J

and then X equal to 5, the textual substitution corresponds to B of J star 2 equal to 5

because X is nothing but, B of J star 2.

Now, J had the value 2, so this became B of 4 equal to 5. Now, J equal to 5, so we had I

equal to 3 here, so this J sorry this is J equal to 3, so I equal to 3 here and therefore, we

also have J equal to 3 here this is not 5 and then we have X equal to 1, so X is nothing

but, B of J star 2. This is the textual substitution, so because J has picked up the value 3

from here, J star 2 now has the value 6. So B of 6 gets the value 1, so even though it is

the same parameter B of J star 2, with call-by-name here we assign B of 4 equal to 5 and

then here we have assign B of 6 equal to 1. With call-by-reference parameter passing

method this would not have happened. We would have evaluated J star 2 once and then

taken the address of B J of J star 2 and pass that to this particular procedure. So this x

would have been the same location in the array B irrespective of what the value of J is. In

call-by-name mechanism, it is not so it is very different.

(Refer Slide Time: 42:24)

(Refer Slide Time: 43:17)

The actual parameter corresponding to X changes whenever J changes. Hence, we cannot

evaluate the address of the actual parameter just once and use it; that is what we would

have done in call-by-value and call-by-reference. It must be recomputed every time. We

reference the formal parameter within the procedure, so that is what I mean here, so what

really happens is, we will have to evaluate that particular parameter again and again. So,

a separate routine called thunk is used to evaluate the parameters, whenever they are

really use. So for example, let us go one step before, here is X and this is I, so B of J star

2 is evaluated again and again and the old value is not used anymore. So, it must be

recomputed every time we reference the formal parameter within the procedure.

(Refer Slide Time: 43:31)

So, this evaluation of the parameter again and again whenever we require, it is done by a

separate routine called thunk. So thunk is actually a separate procedure; so this procedure

is to be generated by the compiler and it is called whenever the parameter is supposed to

be accessed. So the thunk evaluates the parameter and then the assignment to that

parameter or use of that parameter happens. So this was found in the old language Algol

and it is still found in some of the functional programming languages, so that is the

reason we studied it here.

(Refer Slide Time: 44:21)

Now, let us look at all the 4 parameter passing methods and see how they compare, so

here is a simple program called swap which says temp equal to x, x equal to y, y equal to

temp. So this is well known to everybody. So here we have I equal to 1 and then we have

a i equal to 10, so that means a of 1 equal to 10 that is what happened and a is an array of

just 5 integers. So then we have print of I comma a i, the routine swap is called with I

comma a i and again, we print I of a comma 1; it is not a of i, it is a of 1 that is what is

being printed.

So, let us see what happens during call-by-value. So I is 1, so 1 is printed, a of 1 is also

10, so it is printed. Swap cannot be done in call-by-value because only copies will get

exchanged here, the originals will not get exchanged. So, 1 comma 10 is printed again in

the second print statement as well because a 1 is still 10.

Let us look at call-by-reference. So print of I comma a i prints 1 comma 10, no problem

so far. Then swap, actually swaps these two values. So I becomes 10 and a of i which is a

1 becomes 1. So, what is printed here is 10 comma 1. When you look at value result it is

the same, it is just that the variables are copied back to locations. So otherwise there is no

difference between call-by-reference and call-by-value result in this particular program,

it prints 1 10 and 10 comma 1.

Call-by-name is different, first time it prints 1 comma 10 but, then the second call after

swap, the swap routine itself issues an error why? Let us look at the inside of the swap

routine by textual substitution. So temp equal to x becomes temp equal to y because x is i

and x equal to y becomes i equal to a i. So now, i equal to 10, since a i equal to 10 and

now when we access a i, i is 10, so we are accessing a of 10 which is an error, the array

is supposed to be only 5 locations long, so index out of bounds error is issued and the

program terminates. So this brings out hopefully the difference between different types

of parameter passing mechanisms.

(Refer Slide Time: 47:09)

Now, let us move on to code and data area in memory. Most programming languages

distinguish between code and data; in other words, the runtime system will understand,

what is code and what is data. The compiler also understands, what is code and what is

data. Code is placed in some part of the memory and within that code, we never place

any data, at least the complier will not do it. So code consists of only machine

instructions and normally does not have any embedded data.

So, the code area does not grow or shrink in size as execution progresses. Thus there is

very little to change the code, there is no data, it cannot expand, it cannot shrink nothing

changes in between but, there are exceptions. For example, if you consider java; java has

this mechanism of loading classes dynamically whenever required; classes contain

basically the code for it contains a lot of code and also has lots of data.

This is an example, where I just said code or the area does not normally shrink or grow

in size is not valid. In java, because of dynamic loading of classes, the code area can

grow and it can also shrink. The class say that classes just abundant once the there is no

use for it. There is something even deeper. Java has this reflection interface and using

that we can actually produce code through our programs and even execute that code

through this reflection interface.

So, in other words not only we have the feature of dynamic loading classes; we have the

feature of producing classes, which were never available anywhere, not to be seen at all

and then, we can also execute this particular code; we can instant produce objects of that

particular class and then, we can execute the methods of that class and so on and so forth.

But, we are not going to consider java further in this particular lecture. We will assume

that memory area can be allocated to code in a static manner it does not change but, data

area of a program may grow or shrink in size during execution.

(Refer Slide Time: 50:06)

There are two types of allocations possible for memory: one is the static allocation the

other is dynamic allocation. During static allocation, the complier makes the decision

regarding a storage allocation by looking only at the program text; there is no execution

of the code; there is no decision to be made at the time of program execution. Whereas,

in dynamic allocation, storage allocation decisions are made only when the program is

running. For example, there could be some stack allocation names local to a procedure

are allocated space on a stack, so this happens in many languages. We will see this

shortly.

There may be heap allocation for example, used for data that may live even after a

procedure call returns. Dynamic data structure such as symbol tables and these require a

memory manager and sometimes, they also require what is known as garbage collection,

because if that dynamic data structure, say the symbol table is not used anymore and the

programmer does not do anything about it the runtime system will have to run a program

called garbage collection and reclaim the storage otherwise, we are going to run out of

storage very soon.

(Refer Slide Time: 51:35)

Static storage allocation an example is here, Fortran IV and Fortran 77 have this type of

static data storage allocation. The compiler allocates space for all variables, see Fortran

has local variables, it has global variables. So for all such variables of all procedures the

storage is allocated at compile time by the compiler itself. So here is an example, there

are main program variables, procedure P1 variables, procedure P2, variables procedure

P4 variables etcetera.

The code area of course, is always static and it is in some other part of the memory, so

that I already mentioned. Here, there is no stack or heap allocation; there are no

overheads which are actually related to stack and heap allocation. Variable access is very

fast, because addresses are known at compile time. There is no need to determine the

address of a variable by adding various pointers and so on and so forth. The pity is such a

scheme cannot support recursion. The reason is recursion requires different locations for

the same variable during its instantiation whereas, in static allocation this does not

happen.

(Refer Slide Time: 53:05)

What is dynamic storage allocation? Compiler allocates space only for global variables

at compile time. These are in a static area but, space for variables of all procedures will

be allocated at runtime. This is exactly what happens in C, C plus plus, Java, Fortran 8 or

Fortran 9. These are all languages were stack or heap allocation necessary for the

variables. Variable access is slow compared to static allocation, since addresses are

accessed through the stack heap pointer. We have to add something to that stack heap

pointer the offset of that variable and then take the contents of that particular location

and get the value of that variable. But, the advantage with this scheme is that recursion

can be implemented. So, since we are going to have different spaces for different

instances of the same procedure, it is possible to implement recursion here.

(Refer Slide Time: 54:10)

The unit of space allocation in dynamic storage allocation and in programming

languages such as C, C plus plus, java etcetera is the activation record. So we are going

to use this information later on. Let us understand the activation record structure. First of

all, let us look at the information that is stored for each procedure, it stores the return

address that is, where should it go once this procedure is completed. It stores, what are

known as static and dynamic links. These are also called access and control links.

Dynamic link is used to control the stack structure and the static link is used for the

access of global variables.

Function result or the address of the function result is also stored on this activation

record. Actual parameters which are passed to this particular procedure call are stored

here. The caller will evaluate the parameters and then depending on the type of

parameter passing, either the value or the address is placed in the actual parameter list.

Local variables of the procedure find a place here, then we require temporaries to

evaluate large expression and so on and so forth. Those are all allocated space here.

The machine status for example, the caller would be using some registers and before

calling this particular procedure, it would have saved its registers but, this procedure

possibly calls some other procedure and then it has to store its register contents in some

place. So saved machine status is the place, where it stores the registers before calling the

next procedure.

Then there is space for local arrays, even though these local variables among themselves

can host these arrays; it do not do that normally, we actually locate these array space at

the end, just for the sake of uniformity and otherwise, there is nothing very special.

Please note that the order in which these have been placed here is not sacrosanct; it is

possible that implementations choose different orders than what is indicated here. For

example, function result could be at the top and then below, it could be the return result

or the static dynamic link etcetera.

With this, we will close this lecture and in the next lecture, we will take up variable

storage offset computation which is one of the very important jobs that a compiler has to

do. It has to find offsets for various variables; where exactly are they going to be placed

inside the stack, etcetera. Thank you.

