
Compiler Design 
Prof. Y. N. Srikant 

Department of computer Science and Automation 
Indian Institute of Science, Bangalore 

 
Module No. # 07 
Lecture No. # 18 

Introduction to Machine-Independent Optimizations-Part 2 
Data-flow Analysis 

(Refer Slide Time: 00:21) 

. 

 (Refer Slide Time: 00:24) 



 

Welcome to part 2 of the lecture on machine independent optimizations. In the last 

lecture, we discussed the purpose of optimization, a couple of illustrations for 

optimizations. Today we will continue with the illustrations, look at a few more 

optimizations. 
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A quick recap. The purpose of machine independent code optimization is to remove the 

inefficiencies which are introduced by intermediate code generation. Improvement could 

be in the time domains, space domain, or power consumption domain. It changes the 

structure of the programs, sometimes beyond recognition, and it is a bunch of heuristics. 



So, there is no guarantee that there will be improvement, but there will be improvement 

whenever there is a possibility of doing so. 

The other important point is all the code optimizations actually are safe. In other words, 

they do not change the character of the program; whatever the program was doing, it will 

continue to do. So, the functionality of program is definitely not changed. 
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We looked at an optimization called unrolling a for loop last time. Let us quickly go 

through it once more, because that is needed for the other types of unrolling as well. 

Here is a for loop, i equal to 0, i less than N, and i plus plus, with two statements - S1 and 

S2, the i inside parenthesis indicates that this is the i th instance of the loop iteration. So, 

in each iteration, it is a different statement as such instantiation of the statement. 

When we want to unroll the loop, let us say three times, S 1 and S 2 will be repeated 

three times; it is indicated as S 1 i ,S 1 i plus 1, and S 1 i plus 2; - similarly, S 2 I, S 2 i 

plus 1, and S2 i plus 2. Why do we want to unroll a loop? The primary purpose of 

unrolling a loop is to make the body of the loop much larger. Perhaps, it is needed to 

reduce the overheads of parallel execution as we will see very soon; so, perhaps for 

instructions scheduling, the body of the loop must be much larger, and so on and so 

forth. 



So, in this case, the loop will again start from 0, but it will not run as many times as the 

old one that is the N part; so, here we always check i plus 3 less than N and we increment 

i by 3; so, it is really approximately N by 3 number of times that the loop really runs. 

Then at the end of it, suppose N minus 1 is not a multiple of 3, suppose N is 6, then N 

minus 1 is 5 and it is not a multiple of 3. So, to begin with i equal to 0, the unroll loop 

runs once, then i is incremented by 3, i becomes 3, and now 3, 4 and 5 are actually few 

more than what is needed, this part of the loop comes into play. 
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Here, we begin with k equal to i that is 3, and then we are going to run 3, 4 etcetera in 

this part of the loop and complete the rest of it; otherwise, some of the iterations may be 

left out, that is the major problem here. Unrolling while and repeat loops is similar, for 

example, we have while C S1 S2; so, two statements in a while loop and repeat S1 S2 

until C is a repeat loop; so, if the while loop is unrolled then again let us say 3 times we 

have three instance of S1 and S2 here, the only problem here is we do not know whether 

that condition C will hold true after one iteration, two or three iterations. 

After every set of statement S1 and S2 we need to introduce a break, conditional break; 

so, if the condition C is false, then you really get out of the loop and stop the loop. You 

should not be executing these two. 



So, if it is true then we come here, S1 and S2 executed again, and you check again. So, 

these two checks are necessary to make sure that these two instances are not executed 

unnecessarily. It is exactly the other way here, repeat until loop executes at least once; 

so, we execute here at least once, does not hold; C is checked here the first time and if it 

is false, we do not execute the loop at all. That is already taken care of by the while 

condition here. 

Here, S1 and S2 will be executed at least once and then you check it. S1, S2 goes on 

executing until this condition C is true, and once it is true, it stops execution of the loop. 

Instead of checking not C as in this previous case, we check whether C is true. If C, then 

break; similarly, S1 S2 and then if C then break, S1 S2 and until C. So, this is rolling the 

while and repeat until loops three times very similar to the for loop, but there are 

conditional breaks in between. 
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The next optimization that we are going to consider is the function inlining. Let us take a 

very simple function, find_greater int A 10 comma int n. This is supposed to traverse the 

entire array a, check whether there is an element A i greater than n, and if so, return that 

index. A very simple function. 

What does inlining this function imply? Inlining function implies that whenever there is 

a call, x equal to find_greater y comma 250, there will be no sub routine jump executed, 



but this particular statement, find_greater function call will be replaced by the body of 

this particular function with some renaming of variables. 

Why should we do this? This is really going to make the execution much faster because 

the overheads of sub routine jump and sub routine return or creation of activation record 

etcetera are all eliminated. 

Let us see how it works. Let us say, the call is x is equal to find_greater (y, 250) array is 

y and n is 250, in the place of i that we have declared a new I, and in the place of this 

array A, we have a new array called new A. We begin with new A equal to y, then you 

iterate - new i equal to 0, new i less than 10, and new i plus plus - this is the replacement 

for the i variable that is here and the check - Y A i greater than n - will be new A with 

new i greater than this n, which is 250 and if so we just assign x equal to new I - that is 

we are executing the return statement now, and then go to exit, jump out of the body. 
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So, there is no question of sub routine jump and sub routine return, but the value that is 

necessary will indeed be returned by this particular statement. The advantage here is, as I 

said, the overheads are much lesser and the disadvantage is in the place of one sub 

routine call, we now have a complete body of the sub routine call that is the code itself. 

So, if there are ten places where the sub routine is the function or procedure is called, 

you would have ten pieces of this code instantiated in those places; so, the code has 



really blown up and if you inline every function in the program, the code size could 

become impossible to manage - unmanageable. 

Therefore, a compilers provide directives to say whether some code should be inlined or 

it should not be inlined, and based on that inlining of the functions and procedures 

happens. The other point is, it is not possible to inline recursive functions and recursive 

procedures. We really do not know how long that procedure will run and that may 

depend on some value which is not known at compile time. So, inlining of recursive 

function is not possible. 
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Now, we come to next optimization, called Tail Recursion Removal. Just now I said, 

recursion cannot be removed, so, I am not contradicting myself when we say it is 

possible to remove tail recursion. Let us understand what is tail recursion first. 

Here, you have a function called sum, a very simple one, which takes an array A as a 

parameter, an integer called n and a pointer to integer called x in *x, the body is, if n 

equal to 0, then *x equal to *x plus A 0, it is actually assuming that *x has been 

initialized to some particular value, now this function is supposed to sum up all the 

elements of the array A, so, if n is 0, the zeroth element is put in to *x, otherwise *x is 

equal to *x plus A n, and then sum is called again with n minus 1 as the parameter and 

the same x. 



As we go on with small and smaller value of n, this will be n minus 1, n minus 2 etcetera. 

Eventually it becomes a zero and recursion terminates here. This is called a tail recursive 

function simply, because you know the recursive function call is last executable 

statement in the body of the function. Please see here, then part has no recursion at all 

and in the else part, there is an assigment statement and then there is a sum call. Such a 

recursive statement, a procedure is called a tail recursive procedure and it is possible to 

convert such a tail recursive function or procedure to a while loop and that is called 

removal of tail recursion. 

Let us see what happens, you have the same function declaration as before, int A, int n, 

and int *x and instead of recursion, we simply have while true and then the first part is 

the same, if n equal to 0 *x equal to *x plus A 0 and then get out of the while loop with a 

break, because this is where the recursion terminates, that is we are doing here. 

Otherwise, we are now looking at this body, *x equal to *x plus A, n remains the same 

instead of calling of function sum with A n minus 1 A x, we do n equal to n minus 1 and 

then say continue, the while loop continues and the execution of the body of the while 

loop also continues, it terminates when n is equal to zero. 

So, this is the translation of the tail recursive procedure to a while loop and this will 

work only if the function or procedure is tail recursive and it will not work in the case of 

general recursion. 
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Vectorization and Concurrentization. This is another optimization which is possible. We 

are going to study this in some detail later on. Let us say, we have a simple for loop, I 

equal 1 to 100, do X I equal to X I plus Y I. It is easy to see that for every value of I, the 

array element which is X X that of X and Y are different, in I equal to 1 it is X I equal to 

X I plus Y I, it is I is equal to 2 it is X 2 plus y 2 and so on and so forth. 

So, it is possible to run every iteration of this particular loop in parallel. In a vector 

computer, it is possible to execute all these statements, let us say hundred of them in a 

This entire array X is accessed once into a vector register. The entire array Y is accessed 

once into the vector register of twice hundred. So, there will be hundred additions, which 

happens at the same time with corresponding elements of X into Y taken, and this 

assignment is also a vector assignment which assigns it back to the variable X, which 

would be in a vector register. 

If it is a parallel multi core type of machine, then every iteration will run in parallel 

mode. That is why, the indication is for all I equal to 1 to 100, so, iteration 1 2 3 etcetera 

will run on let us say, one hundred cores of the multi core machine, each one of them 

executing single assignment, but with a different I. That completes the purpose of for all 

loop, you can execute them in parallel. 
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Let us look at another example of vectorization to see what is not possible. We have 

again a very simple loop, but with a small change, instead of X I equal to X I plus Y I, 



we have X I plus 1 equal to X I plus Y I, this is not a parallelizable loop, the reason is, let 

us expand the loop, take I equal 1 so we get X is equal to X 1 plus Y 1, take Y X I equal 

2 we get X 3 equal 2 X 2 plus Y 2 then X 4 equal to X 3 plus Y 3 etcetera. 

The X 2 which was computed with I equal to 1 is used in I equal to 2, X 3 which was 

computed with I equal to 2 is used in I equal 3, so, every value which is computed in 

iteration I is used in the iteration I plus 1. Because of this, it is not possible to run the 

iterations in vector or parallel mode independently. They have to run in a particular 

sequential order as indicated by the for loop. So, this loop is not parallelizable and it is 

not vectorizable. We are going to study later conditions for vectorization, conditions for 

parallelization, how to actually modify the loops so that these conditions are modified 

and so on and so forth. 
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Then, there is a transformation called loop interchange. Let us look at this particular 

loop, I equal to 1 to N, J equal to 1 to N, A I plus 1 comma J is A I J * B I J plus C L J. 

In this case, the outer loop is not parallelizable. You will have to take my word for this 

particular thing, because it is not possible to demonstrate how it is so. The technical 

machinery that we already know, we need to learn about dependences which we are 

going to do a little later. 

Let us assume that the outer loop is not parallelizable, but the inner loop is definitely 

parallelizable. If you actually parallelize just the inner loop and run the outer loop in 



sequential mode, then each one of the inner loop statements will run in parallel mode, so, 

the work is actually very small for each iteration, so, in a parallelizable loop, the course 

must get as much work as possible for each thread that runs on the court. 

So, what we really do is interchange these two loops, the J loop go outside and I loop 

comes inside. Now, we have J equal to 1 to N and I equal to 1 to N, now the outer loop is 

parallelizable and the inner loop is not. So, we are going to run the inner loop in 

sequential mode and run the outer loop in parallel mode, so, for each iteration, we create 

a thread and that thread actually execute this entire for loop. 

There is a lot more work in this case per thread, because this entire loop is executed for 

each iteration of J, so, this is a much more beneficial case for us. The overheads of 

parallel execution are going to be small, because the work inside the thread is quite large. 

So, we are going to employ such loop interchange whenever necessary during 

parallelization. 
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The last optimization we are going to see, an illustration of which is here, is called loop 

blocking. Here is a small loop i equal to 0, i less than N, i plus plus, and j equal to 0, j 

less than M, and j plus plus, so, the loop is A j i equal to B i plus C i, if this loop is run as 

it is, it may so happen that is because of the large sizes of N and M, the cache misses the 

N and M, may be much larger than the cache size of the machine, so every time we 



execute this, there may be a number of cache misses, so the speed of the loop will 

become very less. 
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What we can try to do is, divide these two loops into smaller loops, so instead of two 

loops, now we have four loops, the outer two loops run with an increment of 64 each, ii 

equal to 0, ii less than N, ii is equal to ii plus 64, and similarly, jj is equal to 0, jj less than 

M, and jj equal to jj plus 64. 

But the original i and j loops now run from 0 to 63, rather ii to 63, so first time it is 0 to 

63, second time it will be 64 to 127 and so on and so forth. Similarly, jj will also run 

from jj to jj plus 64. Now, what happens is, because of the small size 64, this is not a 

magic number, it is just that the 64 will be the size of the cache line in a particular 

processor, it could be vary from processor to processor, so if that happens, then this 

entire inner loop now iterates on j, so we are going to modify C j very quickly, but B i 

will not be modified so quickly. 

So, this entire C j M i fit into a cache line. There will be only hits from then onwards 

similarly, the entire B into a cache line. So, we are going actually keep the B part remain 

in a cache for a very long time, j at this C part every 64 numbers will be effected and in 

the next iteration 64 new numbers will be placed in the cache and so on. So, every time 

we get the 64 numbers, they will be used immediately. Number of caches will be very 

large and therefore, it is a much more efficiency scheme compare to the previous one. 



This is the end of this particular lecture on introduction to optimizations. Now, we are 

going to continue with the next one called data flow analysis. 
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Welcome to a lecture on data flow analysis. What is data flow analysis? We saw many 

examples of optimizations so for, and we are yet to see how exactly these optimizations 

can be performed inside a compiler. We need to actually compute a lot of information 

that is available in the program, take it inside the compiler, and then the information will 

be used by the compiler in order to perform the optimizations. That is how it goes. 



Collection of information by the compiler by analyzing the program, traversing the 

program is called data flow analysis. These are techniques that derive information about 

the flow of data along program execution paths. What is a path in a program? You have a 

beginning for the program and end for the program, let us assume one function or one 

main program. You start from a point p1, an execution path from point p1 to pn is a 

sequence of points p1 e to p2, such that for each i, pi is the point immediately preceding a 

statement and pi plus 1 is the point immediately following the same statement or pi is the 

end of some block and pi plus 1 is the beginning a successor block. In other words, the 

program begins execution, it follows particular sequence, executes particular sequence of 

instructions. Between each of these instructions is a point and if you actually connect all 

these points, we will be able to collect information by traversing these paths p1 to and pn. 
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In general, there is an infinite number of paths through a program and there is no bound 

on the length of a path. So, it is not possible to actually execute all the paths in the 

program and then collect information. It is just not possible to do that, whereas, program 

analyses summarize all possible program states that can occur at a point in the program 

with a finite set of facts. This is a very important point. At any point in the program, we 

are actually going to only store summary information, so there will be large number of 

programs states that are possible at a point, perhaps if the program can run continuously 

without termination there will be in infinite number of states. 



If the program is going to terminate in a certain amount of time, then the number of 

possible states is not infinite, it is finite, but it is still extraordinarily large. Therefore, this 

summarization is a very important point. We will see how it is done. No analysis is 

necessarily a perfect representation of the state, so, it does not matter which analysis we 

are actually doing. Every one of these is in some sense going to create a loss of 

information. Nothing is a perfect representation and this is the conservative nature of the 

analysis. 
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What are the uses of the data flow analysis? Data flow analysis information is used for 

program optimization, of course, I have given you plenty of examples, for constant 

propagation, copy propagation, etcetera and it is also useful for program debugging 

purposes, for example, which are the definitions of variables that may reach a program 

point, there are what are known as reaching definitions, so we may want to compute the 

reaching definitions and then use it in program debugging. 
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Let us see what exactly is a data flow analysis schema. Before that, we need to 

understand, what is a data flow value? Data flow value for a program represents an 

abstraction of the sets of all program states that can be observed for that particular point. 

The set of all possible data flow values is the domain for the application under 

consideration. So, the point is, the data flow value itself is an abstraction and the set of 

all data flow values is the domain. 

Let us take a simple example for the reaching definitions problem. We are going to 

define this as the first data flow analysis problem very soon. The domain of data flow 

values happens to be the set of all subsets of definitions in the program. In other words, if 

there are ten definitions we are going to consider the subsets of all the ten definitions in 

the program there will be 2 to the power 10 subsets possible and each one of these is a 

possible data flow value. So, this is the abstraction that we are looking at. 

Why is this important? We will see very soon. Each data flow value will possibly be an 

estimate of the information that reaches a particular point. Then, we should also know 

what is IN s and OUT s as notation? These are data flow values just before and just after 

the statement s. If we are looking at basic blocks, this becomes IN b and OUT b. So, IN b 

is the data flow value before the basic block is entered and OUT b is the data flow value 

just after the basic block is completed. 
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The data flow problem itself is to find a solution to a set of constraints on IN s and OUT 

s for all the statements s. So, for us it may become the basic block IN b, so, we will be 

looking at constraints on IN b and OUT b. Continuing with the data flow analysis 

schema, we are yet to see what the constraints are? There are two types of constraints 

possible - one those based on the semantics of the statements, how exactly statements in 

the program modified the data flow values, so, these are transfer functions and those 

based on the control flow. 

The control flow may change because of the conditions becoming true or false, thereby 

the data flow will also change that set of constraints. Now, we are ready to define 

informally what a data flow analysis schema is. It consists of a control flow graph, a 

direction of data flow either forward or backward. This will be clear only when we see 

an example, a set of a data flow values is a domain, a confluence operator, normally set 

union or set intersection operation, and then we have transfer function for each of the 

blocks. So, these are the five entities in our data flow analysis schema. 

Another important point is, we always computed what are known as safe estimates of 

data flow values. What is safe about? A decision or estimate is safe or conservative, if it 

never leads to a change in what the program computes after the change. So, these safe 

values may be either subsets or supersets of actual values based on the application. It is 

difficult to say or define the safe estimate without looking at a particular application. The 



only thing we say is, it never leads to a change in what the program computes. Therefore, 

we will see what safety means as we take up each particular example of data flow 

analysis. 
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The first problem is the reaching definitions problem. Before we define what exactly we 

mean by a definition d reaches a point, we need to understand what we mean by killing a 

definition. So, will kill a definition of a variable if between two points along the path, 

that is we have a definition of a variable and then we have a path starting from that 

particular definition and it is going on and on. Along that path, pick up any two points 

and between these two points, there is an assignment to a, so the previous definition is 

not valid anymore, there is a new value assigned to a, so the new value will now be 

available along that path from now on. 

So, this new assignment of a kills the old definitions of the variable a. A definition d 

reaches the point p, if there is a path from the point immediately following the definition 

d to p, the point p, such that d is not killed along that path. So, this is what we mean by a 

reaching definition. For a particular point there may be many definitions which reached 

that point and are not killed along which they reach the point. Let us take a simple 

example and understand what we mean by unambiguous and ambiguous definitions of a 

variable. Here is an example of an assignment called, which is a equal to b plus c, this 



does not involve any pointers, there all ordinary variables, so, this is called as 

unambiguous definition of a. There is definition attached to a. 

Let us say, there is another assignment star p equal to d, this is called ambiguous 

definition of a, because this pointer p may point to a, it may point to other variables also. 

It is not certain during compilation, what exactly p points to, it may be a, it may be a few 

others also, in fact sometimes we may not know what p points at to all unless some kind 

of pointer analysis has been conducted. Assuming that we have done some pointer 

analysis, it is still not going to be possible for us to say precisely what p points to at this 

point during the execution. We can only say, p will possibly point to a b c that is all, 

which one of these we do not know. 

Because we are not certain that this is an assignment to a, it could be assignment, it need 

not be also, we will say this ambiguous definition will not kill the previous unambiguous 

definition, whereas, sometime along the same path from this onwards, we had another 

assignment a equal to k minus m, this assignment has ordinary variables, so this is a new 

definition of a and this will definitely kill the old definition of a. This is how we 

understand killing of definitions and what ambiguous definitions do. 
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So, for the reaching definitions problem we compute supersets of definitions as safe 

values. In other words, it is safe to assume that a definition reaches a point even if does 

not, it is not going to harm the application. If you do not know whether it reaches or not 



then let us not say it reaches. Suppose we said that, then we may be actually harming the 

application. So, that is why the conservative or safe estimate of a data flow value at any 

point will depend on the application. 
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Let us take the following simple example- a equal 2, and a equal to 4, we assume that 

both of them reach the point after the completion or complete if then else statement is 

over, that is you have a equal to b, a equal to 2, else a equal to b, a equal to 4, this is the 

completion point of the if then else statement. So, we are going to assume that a equal to 

2 and a equal to 4 reach this point, both of them. 

If you look at it very closely, suppose a was equal to b then a equal to 2 would have been 

executed and the else part would have been skipped, in that case a equal to 4 would 

never have been executed; suppose a equal to b was false, in that case, we are again 

checking whether a equal to b which is again false, so a equal to 4 is not executed in the 

else class also. 

In other words, a equal to 4, this definition, that is the value of 4 in a will never reach this 

point, but we have no idea of what the values of a and b are. We have not tried to 

actually interpret these values as we go along. So, in case of if then else of this kind, we 

are going to assume a equal to 2, and a equal to 4 both of them reach here, but in reality 

only a equal 2 possibly reaches this point. So, this is the conservative estimate and since 



we do not know the values of a and b, we said both of them will reach even one of them 

reaches. 
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Now, we come to the heart of the problem formulation. All the data flow constraints are 

normally written as equations, here we have two equations, one for IN B, another one for 

OUT B and some initialization. Let us look at the syntax of the equation, it says IN of B, 

B is a basic block, IN of B is the set of values which reach the beginning of a basic block 

is the union of OUT P where P is a predecessor of the basic block B. 
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Let us take this example, here you have a basic block B1, this is the IN point of a basic 

block, this is the OUT point of the basic block, similarly, here is IN of B2 and OUT of 

B2, what it says is IN of B is a union of the outsets of all the predecessor of B. 
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Let us take this B2, this has B1 as one of the predecessors and B4 as the other 

predecessor. When we compute the inset for B2, we are going to take the outsets of these 

two and then make a union out of them. That is what this really says. 
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So, this union operator which is present here is called as the confluence operator and this 

could be intersection. It is possible that this is intersection. The set OUT B, the equation 

is written as GEN of B union with IN B minus KILL B, so here the equation is written as 

OUT B equal to, this GEN B and KILL B are constants they are computed before the 

data flow analysis problem is solved they are not actually computed during the execution 

of the problem, so, they are constants, IN B is a variable, so, OUT B is really a function 

of IN B. 
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In such a case, we first compute this value IN and then we compute the value OUT. So, 

this type of a problem where OUT is a function of IN is called as a forward data flow 

analysis problem. Here, we have a confluence operator union and forward flow analysis 

in this particular example. 

Now, let us understand what GEN B and KILL B are. GEN B is the set all definitions 

inside the basic block B that are visible immediately after the block, that is, downwards 

exposed definitions. Let us understand this with the example. 
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Here is the basic block B1, there are three definitions with d1, d2, d3 in this particular 

basic block. We are looking at this particular point when we compute GEN B. d1 assigns 

a value to i, d2 assigns a value to j and d3 assigns a value to a. At this point, all these 

three definitions are valid because none of them have been super seeded any other 

definitions. 

For example, we had in the same block, suppose we had d4, i equal to some k minus 1. 

In such a case, d1 would have been killed by d4, the value defined by the d1 would not 

have been visible after d4, so the GEN B at this point would not have contained d1, 

whereas in this case, this is not so, all the three definitions are visible at this point, the 

values they compute are all valid at this point, so GEN of B1 is d1 comma d2 comma d3. 

Now, things are very similar in B2. It defines i and j, d4, and d5 and they are still valid at 

the exit point of B2. So, GEN of B2 is d4 and d5. GEN of B3 similarly, is d6. There is 

only one definition and there is no question of super seeding it and GEN of B4 is d7, 

then again only one definition. 
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KILL B, there is a small problem which is interesting. It is the union of the definitions in 

all the basic blocks in the flow graphs that are killed by individual statements in B. Let 

us say this particular block B2 defines i and defines a. We will say that the kill sets for 

B2 consist of all the statements in the other blocks, B1, B3, and B4 which actually define 

i. So, for d5 similarly, we are going to consider all the statements in B1, B3, and B4 

which define j. This i will actually kill d1; it will not allow this particular value to go 

through the basic blocks. That is what we mean by killing. 

Similarly, the value of i defined by d7 will not be allowed to go through this particular 

block, because there is a new definition of i here, B4. It is irrelevant whether control can 

actually reach this point at all; it just does not matter to us, the reason is, we are going to 

compute kill set of a particular basic block as an over approximation. 
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There will be some elements in it which are not relevant, but they are not harmful to us. 

If we want to compute the kill set of a basic block exactly the set of statements which is 

actually killed by that basic block, then we should actually solve the reaching definitions 

problem and then go back and compute the kill set. So, this is like having the chicken 

before the egg. We would like the KILL set to be available for computing the data flow 

values and we cannot say that we will have to solve the problem of reaching definitions 

to compute the value of KILL. 

So, we actually over approximate KILL as the union of the definitions in all the basic 

blocks, whether there is a control flow possible from that basic blocks to B at all is 

irrelevant; we are not even going to check it. We just take all those which are definitions 

which are killed by individual statements B, put them in a set, and that is our KILL set. 
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For example, here is a nice illustration of what I just now said. See d1 defines i and it is 

not possible for the definitions d4 and d7 to enter the basic block B1 at all, because from 

B1 once we go out, we will not be able to come back to B1, but still the KILL set of B1 

will contain d4 and d7 and corresponding to j it will contain d5 and corresponding to a, it 

will contain d6. 

So, all these are in the KILL set. This is the over approximation, i really fine. In reality, 

this would have been really five, nothing at all, these definitions cannot KILL anything. 

So, now for this particular block KILL B2, d4 kills d1, d4 kills d7, and then d5 kills d2. 

That is why the KILL set here. For the basic block B3, the KILL set is just d3 because 

there is only one definition of a that is available here that is in basic block B1 and for B4, 

it is d1 and d4 because these are the only two definitions of i in the other two blocks. 
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Now, this is pass one. We have computed GEN, we have computed KILL, let us 

understand the meaning of these two equations. The outsets says, out of B says whatever 

is computed in the basic block that is GEN the locally generated set of definitions and 

then union it with whatever comes from the top as IN and whatever is killed by the basic 

block, that is removed minus KILL. So, if you look at this, suppose we take the basic 

block B2 and we are computing this outset, whatever is generated by the basic block B2 

will definitely be visible at this point, these are definitely the definitions which reach this 

particular point, the exit point of basic block B2. 
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Then, there will be some definitions which will be reaching this point, that is IN set and 

then these statements which are reaching here, some of them will be killed because of 

these statements here. So, we have to remove the killed part from that and that will give 

us the OUT set. 
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If we do that here, the initialization is IN of B2 equal to five for all basic blocks. Please 

see that IN of B1 is 5, B2 is 5, B3 is 5, and B4 is 5. It is very simple. OUT B1 is d1, d2, 

d3, this is five, so, nothing can be taken out of five, in the first pass, OUT of B2 will be 

just GEN of B2 and OUT of B3 is GEN of B3, OUT of B4 is GEN of B4. 
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Let us look at the second pass. In the first pass, the computation is over. Now, we need to 

compute the inset for the second pass using these values of outsets. So, for this particular 

thing, no special possibility, nothing gets modified. IN B1 remains 5, nothing comes in 

here, but for this, the outset of B1 is d1, d2, d3, outset of B4 is d7, these are the two non-

empty sets which are coming along these two paths. 
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So, we need to take the union of these two, because all the definitions which come here 

along this path also reach this point; all the definitions which come along this path also 



reach this particular point, so for OUT of B2, we are actually going to take this IN of B2, 

we are going to take OUT of B1 which is d1, d2, d3, we are going to take OUT of B4 

that is d7 and put them inside IN of B2, d1 d2 d3 d7. 
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Similarly, if you look at the inset of this, there is only one arc here, so outset of B2 will 

become the inset of B3 in the next pass. That is here. Similarly, there are two arcs 

coming in here, so we are going to take the outset of B3 that is d6, and the outset of B2 

that is d4, d5, take the union of these d4, d5, d6, will be the inset for B4. 



So, this computation actually has to be carried out a number of times. Start with, we 

compute GEN and KILL once for all, we initialize IN B1 to 5, B2 of the 5 and so on. In 

the first iteration, we compute OUT of B1, OUT of B2 etcetera. In the second iteration, 

we compute again IN and OUT. Third iteration, we again compute IN and OUT based on 

the values which we computed before. 
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So, this set of iteration goes on until none of the values change. For example, once we 

reach this set of values, OUT B1 is d1, d2, d3, OUT B2 is d3, d4, d5, d6 etcetera. These 

are the various definitions which we can just verify once. At this point for example, OUT 

B2 says d4, d5, d6. d3 takes this path and it is a, so a is not modified here. So, it reaches 

this point. d4 and d5 of course reach this particular point. How does d6 reach? d6 is here, 

it goes out comes here and travels along the loop edge, enters this point and comes out 

again. So, that is how d4, d5, and d6 reach this particular point. 

If you take this point, it is again d3, d5, d6, d7. d3 takes this part and enters this point. d6 

takes this path and enters this particular block and goes out and then d5 comes here. 

What you should observe is d4 does not come here nor does d1, the reason is, there is a 

new definition of i here, this kills d4 and d1, so this d7 supersedes d4 and d1 and 

therefore, they can actually never come to this particular point. They can never reach this 

point whereas, this is different. There is only one definition, it reaches this point. 



(Refer Slide Time: 55:01) 

 

Once these values are computed, in the next pass, there is no change of values at all. This 

is the final iteration. This is the iterative algorithm for computing reaching definitions. 

This is what I was saying. You have initialization IN B equal to 5, OUT B equal to GEN 

B, then change is set to true and we go on until actually change remains true, so, first 

change, set change equal to false then compute the two equations, IN B equal to and 

OUT B equal to, if the old value of OUT is not the same as a new value of OUT, then 

change equal to true. So, we have to iterate once more. 

Once OUT b equal to old OUT, change is false, so set change equal to true and then we 

come out. Until the blocks keep changing we need to iterate and once none of them 

change, we come out. This is the way the algorithm computes these values. GEN, KILL, 

IN, and OUT sets are all represented as bit vectors with one bit for each of the definitions 

in the flow graph. All these values of operations of union, minus, etcetera become bit 

vector operations. I will explain this again in the next lecture and this is the end of 

today’s lecture. Thank you. 


