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Welcome to part 2 of the lecture on object oriented languages and their implementation. 

(Refer Slide Time: 00:21) 

 
 (Refer Slide Time: 00:27) 

 
Last lecture - covered topics from 1, 2, 3 and 4 that are language requirements, how to 

map names to methods, visibility of variable names and code generation for methods. 



Today, after a very quick review of the code generation we will look at simple 

optimizations. 

(Refer Slide Time: 00:47) 

 
We saw this picture in the last lecture, it just shows example of a class hierarchy with 

complete method tables. So, the idea is to make the method invocation faster, each class 

stores a complete method table. Whenever, an object wants to invoke a method, the 

method table is looked up and the offset of the method is applied and then the method is 

called. So, this works whether the method is inherited or the method is implemented 

right, in the present class. 

(Refer Slide Time: 01:28) 

 



There are no problems in implementing single inheritance. It is very simple but, 

implementing multiple inheritance - that is, a single class inheriting from two other 

classes; for example, class c inheriting from class a, class b creates some difficulties. 

(Refer Slide Time: 01:52) 

 
For example, let us say the object records of class a have just a data members, class b 

have b data members but, class c which inherits both from a and b has space for a data 

members, b data members and c data members. The difficulty is in calling methods and 

how to address this difficulty is what we studied in the last class. Let us review it very 

quickly. 

(Refer Slide Time: 02:15) 

 
Now, the difficulty is when we are actually calling some methods from class c if the 

methods belong to class a, then there is no problem because the members of class a are in 



the right position. If the methods belong to class c, then also there is no problem because 

class a and b have been compiled with class c; the problem starts, when we invoke 

methods of class b from objects of class c. The problem is when we invoke methods of 

class b from objects of type class b, the data members of class b are supposed to be right 

here, in place of a data member but, they are now at an offset. 

We need to actually provide this offset information; this can be done by 2 methods. We 

can store the constant offset in the method table along with the methods and the 

generated code adds this offset to the receiver’s pointer address before invoking the 

method. 

(Refer Slide Time: 03:33) 

 
This is what I was saying, so the data pointer for c dot foe should be here, because it 

belongs to class b if it points to here or here it is wrong (Refer Slide Time: 03:43). 



(Refer Slide Time: 03:45) 

 
The other method is using trampoline function. So, these are functions created for each 

method of class b and they increment this pointer by the required offset and then invoke 

the actual method and of course, there is a corresponding decrement after the return. 

(Refer Slide Time: 04:04) 

 
So, there is nothing much to choose between the 2 methods. It may appear trampolines 

are very expensive but, they are not because they can be inlined and the offsets are all 

constant and so on and so forth. 



(Refer Slide Time: 04:21) 

 
We now look at simple optimizations, which are required in implementing object 

oriented languages. First one is the type inclusion tests must be made very fast, let us see 

why? If class Y is a subclass of class X, let us assume so. Then, suppose we declare an 

object a of class X and initialize it with an object of type Y; so class Y is subclass of 

class X, a happens to be base class pointer and this is a object of type Y and there is 

nothing wrong, this is perfectly ok.  

So, a base class pointer can point to any derived type objects, then we can also say Y b 

equal to a. We are declaring another variable b of type Y and assigning the value a to it 

which is fine. If a holds a value of type Y because of this previous one, a was pointing to 

some object of type Y. The assignments above these two are perfectly valid; there is 

nothing wrong, but the following assignment is not valid. 

Suppose, we declare a variable a of type X and assign it an object of type X but then, we 

declare another variable b of type Y and assign a. Now, this a was holding an object of 

type X and this b is of type Y; Y is a subclass of class X, so you cannot assign b equal to 

a. The other way, when a actually was new Y and it was pointing to some object of Y, 

this assignment would have been perfectly ok; now it is not. 

When we make such assignments either allow them or do not allow them. It is necessary 

to conduct runtime type checking to verify that the above is correct or this assignment is 

needed and so on and so forth, this is the problem. This cannot be done at compile time, 

because there could be conditional code, which cannot be completely evaluated at 

compile time. 



So, Java also has an explicit instance of test that requires runtime type checking. This can 

be only checked at runtime. The type of b is known only at runtime if there is conditional 

code and all that. Type of a will also be known only at runtime; whether this b and a are 

compatible actually is to be checked at runtime. 

(Refer Slide Time: 07:25) 

 
How do we do such tests? Whether you know, a class, an object of a particular class is 

correct in making this type of an assignment is to be checked. So, to do this we need to 

check whether something belongs in the class hierarchy; whether a is a subclass of b or b 

is a subclass of a etc. 

(Refer Slide Time: 08:03) 

 
There are many methods; we will look at one or two of them. We can store the entire 

class hierarchy graph in memory. Here is an example, of how a class hierarchy graph 



looks like; this is for single inheritance, this is for multiple inheritances. A is the root, so 

there is nothing beyond A; A is not going to derive from any other class. B and C derive 

from A, D derives from B, E and F derives from C, and G derives from E. This is our 

class hierarchy graph for single inheritance. 

For multiple inheritance, there are differences. For example, E derives from B and C, F 

derives from C and H, C derives from A and H, G derives from D and E etc. So, this is 

the multiple inheritance part. Now, if you want to check, whether one node is an ancestor 

of the other; that is A is an ancestor of D, C is an ancestor of E, C is an ancestor of G etc; 

B is not an ancestor of F, so these are all to be checked. This is very simple to do, we 

anyway have a pointer to the class record from the object and we have this class 

hierarchy graph.  

There will be a pointer in the class record to this particular node in the class hierarchy 

graph (Refer Slide Time: 9:19). We can go on traverse in the class hierarchy graph till 

the root and check whether one of the ancestors is met the way we wanted it. So, if you 

want to check whether A is a an ancestor of G, start from G and go upwards of course, 

we meet A; when we go to the till the root and we do not find any of these on the way 

then, if we did not find A, A would not be an ancestor of G. For example, we do not find 

B when we traverse from G towards A. This is a fairly straight forward traversal to 

implement only for the single inheritance, if it is multiple inheritance there is too much 

checking and it is not a very profitable issue. 

 For example here (Refer Slide Time: 10:15), suppose we want to check whether A is an 

ancestor of G. You know here, we need to check all paths from G towards A and we do 

not know which one of these go towards A and which one of these do not go towards A. 

So, we will have to check maybe G D B A, we will be very fortunate if we take this path, 

because we hit A right now and we can terminate the search; but if we had taken G E C 

and H we would have wasted a search and then we had to check G E B and A or maybe 

G E C and A and so on and so forth. 

So, with a large inheritance in class hierarchy graph, checking inheritances in a multiple 

inheritance environment is not straight forward. You may actually have to do a large 

number of checks before we know whether it is true or false. 

The execution time both for single inheritance and multiple inheritance increases with 

the depth of class hierarchy, this is clear. If there is very deep hierarchy, then you may 

have to go all the way till the root to determine whether some ((tech)) node is an ancestor 



of some other node and this ancestor relationship determines the class derivation or 

otherwise. 

(Refer Slide Time: 11:34) 

 
It is also possible to use a binary matrix. For example, consider this matrix you have 

class types on one side, class types on the other side - C1 C2 C3 C4 C5 and on the other 

side also. So, BM is a binary matrix of [Ci ,Cj] equal to 1, if and only if Ci is a subclass 

of Cj. If you take this row, C2 is a subclass of C3; that is why it is 1 but, C2 is not a 

subclass of C4, so it is zero. C2 is also a subclass of C5 so it is 1, so there is multiple 

inheritance. So single inheritance, multiple inheritance - all types can be actually shown 

using the binary matrix. 

These tests are quite efficient to check but, matrix will be large in practice. So, if there 

are a large number of classes in the matrix and the hierarchy is large then, this matrix 

will also be very large. The matrix can be compacted but, this increases the access time. 

This is quite fast efficient but, the matrix is large. So, are there other solutions possible? 



(Refer Slide Time: 12:45) 

 
Fortunately yes, that is for single inheritance the solution is very very efficient one. Let 

us consider a class hierarchy of this type (Refer Slide Time: 12:55), so A B etc, etc, etc 

this is a tree. Now let us say, we conduct a post order traversal of the tree. So, what we 

do is we first visit D and then we have to visit B and then you know we actually cannot 

go to A but, we have to come all the way to G, then we go to E, then we go to F, then C, 

then A. In other words, this is 1, this is 2, this is 3, this is 4, this is 5, this is 6 and this is 7 

(Refer Slide Time: 13:21). These post order traversal numbers are all indicated as the 

second component of these pairs, the number pairs, which are indicated on each one of 

the nodes; so these are the labels. 

The labels are (la, ra) for a node A; ra is the ordinal number of the node A in a post order 

traversal of the tree. Let this, solid less than equal to denote subtype of relation. So, all 

the descendants of a node are subtypes of that particular node. This is similar to that class 

hierarchy graph, so single inheritance only. This subtype is of reflexive and transitive 

definitely not symmetric, because the subtype of relation is not symmetric. So, it is 

definitely reflexive because A is a subtype of itself and transitive because if A is a 

subtype of B, B is a subtype of C and then, in this case for example, B is a subtype of A, 

D is a subtype of B so D is a subtype of A, so it is transitive. 

Now, what is the first component? la .So, this is the minimum post order traversal 

number among the descendants of that particular tree. It so happens that in this case, this 

is 1, right; so we start this is 1, and this will get a number 1(Refer Slide Time: 14:51). If 

we had taken this particular node, the minimum number is 3 so that, left component 

becomes 3 and so on and so forth. That is how this is numbered, so la is a minimum of rp 



where p is a descendant of a. You take the entire post order numbering, take the 

minimum of all those descendants post order numberings and give that as the la of that 

particular node. 

Now, the subtype of relationship can be very easily determined using this condition: if a 

is the subtype of b, if and only if lb is less than or equal to ra less than or equal to rb; 

these are numbers and these can be checked in one time very simple, only 2 tests (Refer 

Slide Time: 15:37). 

Let us verify this; say for example, we take A and we take G. So, G is a subtype of A 

that is what we need to determine. So lb is 1 here, ra is 3, so 1 is less than or equal to 3, r 

a is 3 and rb is 7, so ra less than or equal to rb is also satisfied (Refer Slide Time: 15:55). 

If you are trying the other way, whether A is the subtype of 3, it is automatically not 

satisfied because in that case lb is 3 and ra is 7, so 3 less than or equal to 7 is satisfied 

but, 7 less than or equal to 3 is not satisfied. So, this makes the inequality not satisfied 

and violated, so the relationship is not true. 

This test is very fast it is O(1) but, it works only for single inheritance. There are many 

extensions of this using slices of these hierarchy trees and implementing them using what 

are known as PQ trees etc. These are far more complex and beyond the scope of this 

particular lecture. 

(Refer Slide Time: 16:52) 

 
The second simple optimization which we need to do, the first one for single inheritance 

was that Schubert’s numbering or relative numbering that we studied. De-virtualization 

is a very simple optimization but, not so easy to implement very efficiently. If it is 



implemented in a very simplistic manner, it is simple, very efficiently is a difficult task. 

So, using class hierarchy analysis this is we are going to study only one method.  

What is de-virtualization? It reduces the overhead of virtual method invocation, how? 

We try to statically determine which virtual method calls resolve to single methods. So, 

if there is a virtual method, we want to see if that can be replaced by a static call. Then, 

we do not have to really use the virtual table, method table, and call the method at all; we 

can actually replace it by a static call by putting the name of the class and the method 

directly. Such calls are either in-lined or replaced by static calls, so that is whatever 

resolves to single method. I will show you an example of this and we build a class 

hierarchy and a call graph along with it. 

(Refer Slide Time: 18:21) 

 
Take this simple example; object is the Java super class from which all classes actually 

have to derive. So, X is a class deriving from object, Y derives from X and Z derives 

from X. So, X has two functions, methods, here f1 and f2, Y has a method f1 which 

overrides f1of class X, Z also has another method f1 which overrides the method f1 of 

class X. Here is the declaration for class X and class Y; class Z also has the main, let us 

see what this is. So, main declares an object a of type X and assigns an object of type X 

to it. Similarly, b is a method or an object of type Y and is assigned an object of type Y 

and similarly, C is an object of type Z and it gets a new object of type Z. So these are the 

initial assignments. 

Now if some condition is true, then a is assigned c; so this is perfectly valid because X is 

the base pointer and C is the derived class pointer, so a equal to c is perfectly justified. 



Now there are three calls here and let us see, what they mean? So a dot f1, b dot f1 and b 

dot f2. 

So, this is indicated in the form of the calling graph here (Refer Slide Time: 20:02). So Z 

dot main as a dot f1, b dot f1 and b dot f2. So b dot f1 is always y dot f1, there is no other 

function at all and here, there is no question of, b does not point to any other object 

either. b dot f2 is always x dot f2, because you know b is an object of type Y and Y does 

not have f2, so it always resolves to the f2 of class X, but the situation is not simple with 

a dot f1. 

 If this code were to be false (Refer Slide Time: 20:42), then a would be pointing to an 

object of type X. In that case, it would be when a dot f1 is invoked it invokes x dot f1. If 

this condition were to be true, then a gets a pointer to c and therefore, in that case a dot 

f1 will mean Z dot f1, which is actually local to the class Z. So, there are two branches of 

this kind; so this particular call does not resolve to a single method it has2 possibilities; 

whereas, these two calls resolve to single method. We can replace, b dot f1 and b dot f2 

by Y dot f1 and X dot f2 respectively and that actually takes care of de-virtualization 

here; but a dot f1 cannot be de-virtualized. 

There are many more complicated schemes available for de-virtualization but, that will 

be beyond the scope of this lecture. So, we will conclude object oriented language 

implementation at this point, this is the end of this particular lecture and we will continue 

with introduction to optimizations very soon. 

(Refer Slide Time: 21:53) 

 
Welcome to the lecture on Introduction to Machine-Independent Optimizations. So far 

we have seen, code generation runtime organization and then how to implement, register 



allocation, object orient languages and so on. Now, we start looking at machine 

independent intermediate code, look at a large number of optimizations that can be 

implemented on these and then see what information is needed in order to implement 

such optimizations. 

(Refer Slide Time: 22:35) 

 
The outline of the lecture is very simple but, we are going to see a large number of 

examples to begin with and then study the algorithms for such optimizations. We will see 

what is code optimization? What are the different types of code optimizations? Then 

look at illustrations of many of these code optimizations. 

(Refer Slide Time: 22:58) 

 
Many of you may recognize that this slide is from the introductory lecture that I gave. 

So, machine independent code optimization, intermediate code generation process 



introduces much inefficiency. You know it is a very simple strategy that we use for 

intermediate code generation; there are extra copies of variables, using variables instead 

of constants, repeated evaluation of expressions all these happens; everything that you 

think is very inefficient will happen during intermediate code generation. 

Now, the code optimization phase or machine independent code optimization phase is 

supposed to remove such inefficiencies and improve the code. We will see examples of 

how this can be done very soon; this improvement may be time improvement, space 

improvement or power consumption improvement, any one of these can be improved but 

our emphasis in this lecture will be on improving time. 

It changes the structure of the programs sometimes, beyond recognition also. For 

example, the some of the functions may be in-line, so you will not even have a function 

you had written one but, it does not exist anymore. It unrolls loops, so you had written i 

equal to 1 to 100, but now it may be running from i equal to 1to 25 and it maybe unrolled 

4times. It eliminates some of the programmer defined variables; for example, induction 

variable such as loop counters maybe eliminated and some other variable in the loop 

maybe substituting for that particular loop counter variable. 

Code optimization is essentially a heuristic approach. It consists of a bunch of heuristics, 

so the percentage improvement depends on the programs. A certain program, you may 

not be able to improve at all and for a certain type of program you may be able improve 

it by 50 percent; so no guarantee is on how much improvement can be made. 

(Refer Slide Time: 25:22) 

 
These are the various types of optimizations that we are going to see through 

illustrations. It does not mean that, this list is exhaustive. There are many types of 



optimizations which are probably minor and probably some of which can be carried out 

with only at the time of machine code generation. We will limit ourselves to these 

optimizations and see how they work. 

So, first one is global common sub-expression elimination, second is copy propagation 

then constant propagation and constant folding, loop invariant code motion, induction 

variable elimination and strength reduction, partial redundancy elimination, loop 

unrolling, function in lining, tail recursion removal, vectorization and concurrentization, 

loop interchange, and loop blocking. We have seen some of this optimization in different 

flavors before. 

For example, we saw common sub expression elimination, but that was within basic 

blocks. We know how to tackle it; we build a direct the cycle graph using value 

numbering technique and constant propagation etc and constant folding can also be done 

within the basic blocks using the same value numbering technique. So, let us continue 

and see what other types of, how these things work and so on. 

(Refer Slide Time: 26:56) 

 
Code optimization needs information about the program. For example, which 

expressions are being recomputed in a function? Which expressions are partially 

redundant? Which definitions reach a point? partial redundancy will be clear very soon. 

Which definitions reach a point and which copies and constants can be propagated? Such 

information is gathered through data flow analysis, and our discussion of data flow 

analysis will begin after this introductory lecture on optimization. 



(Refer Slide Time: 27:34) 

 
For a few examples, we will consider a standard program of bubble sort which 

everybody understands. Here is a very simple version of that: i equal to 100, i greater 

that 1, i minus minus; so here is the outer loop and there is another inner loop j equal to 

0, j less than i minus 1, j plus plus. So, the array used is of 100 size and it runs from 0 to 

99 and we have not used any special jump out if array is already sorted; we did not used 

any flag and all that. Here, if a j is greater than a j plus1 then, we do a swap operation 

otherwise we just increment j and go to the next one. At the end of this entire procedure 

of this j pass, we would have found the largest element and next during the next i pass 

we find the next largest element and so on and so forth. So, that is really bubble sort. 

(Refer Slide Time: 28:45) 

 



Here is the intermediate code and the control flow graph for bubble sort (Refer Slide 

Time: 28:48). Start with i equal to 100, then i greater than1 is evaluated into t1, so 

instead of saying if t1 go to B3 otherwise exit. We have said if not t1 go to B9 and if that 

is true go to exit, otherwise if it is false you jump you fall through. Then here starts the j 

loop with j equal to 0 and the upper bound of the loop is i minus 1 (Refer Slide Time: 

29:19), it will check the upper bound if it is violated, you jump out; if it is not violated, 

you continue with the rest of the program. 

(Refer Slide Time: 30:21) 

 
You can now see how much code gets generated just for a very simple check. It is not as 

if things are trivial, but just to check whether if t5 greater than t8 etc; then here is aj 

greater than aj plus 1, here is the swap routine (Refer Slide Time: 36:06). So, just for 

doing some simple things like this; we generate a large number of temporaries and then 

there are many opportunities for common sub expression elimination, so this will be 

clear in the next example after we see what GCSE is. 

The global common sub-expression elimination conceptually is very simple. Here you 

have y plus z and it is possible that along all the paths which come to this particular basic 

block (Refer Slide Time: 30:33). There is an evaluation of y plus z and there is no 

modification of either y or z along any of these paths. In such a case, it is very simple to 

see that we do not have to evaluate this y plus z all over again. You store it into the same 

temporary and then for example, u equal to y plus z , u equal to y plus z and u equal to y 

plus z and use that u here. So, this is global common sub expression elimination. It is 

also possible that, because of deep sub expressions a single application of GCSE does 

not give results to the fullest extent possible; so, let us see. Here is a equal to x plus y, 



then b equal to a star z and this has a path to c equal to x plus y and d equal to c star z. 

So, x plus y is a very straight forward common sub-expression which can be eliminated, 

we do that u equal to x plus y a equal to u and c equal to u. So see that, we have used the 

same temporary for both for this assignment and for this assignment (Refer Slide Time: 

31:48). 

Now, this a equal to u is a copy operation (Refer Slide Time: 31:55). Since a has not 

been modified, we can use u in place of a; so this can become u star z and here also c 

equal to u is a copy operation, there is no modification of c between this and this (Refer 

Slide Time: 32:05). We can replace c by u and this becomes u star z. Now see, that 

because of the copy propagation we found another common sub expression, this is u star 

z in both places - so we can eliminate that also, introduce another temporary v equal to u 

tar z and d equal to v. 

In this way, we may actually have to do several optimizations and then come back to 

global common sub-expression elimination. So, the order in which the optimizations 

have to be carried out is not well known. We do them in a particular order which is 

heuristically known to be good again and again until no more improvement is possible. 

(Refer Slide Time: 32:51) 

 
So, coming back to the GCSE on the running example, let us see where the opportunities 

are. Here is i minus 1 for example right, so we have i minus 1 here also; possibly this and 

this are common sub-expressions. Here is 4 star j, here is 4 star j and here is also 4 star j 

(Refer Slide Time: 33:20); then 4 star t6 actually will become a common sub-expression 

only after a round of copy propagation but, for the present let us worry about 4 star j, i 



minus i and j plus 1 also. Here is j plus 1 and here is j plus1 one more instance of j plus 

1. 

(Refer Slide Time: 33:47) 

 
Now, if we look at it, this t2 is equal to i minus 1 is evaluated once and this also reaches 

this point (Refer Slide Time: 33:57). So, we can replace this i minus 1 by a simple t2 

which was the previous evaluation of i minus 1; t4 is equal to 4 star j, so t4 is going to 

replace 4 star j here and 4 star j here also; t6 is j plus 1, so t6 is going to replace j plus 1 

here and also j plus 1 here. This is very simple common sub-expression elimination on 

the running example. 

Even in this simple example because of the inefficiencies in intermediate code 

generation we have got 1 2 and 3, if we apply it once more we will very easily be able to 

do some copy propagation. For example here (Refer Slide Time: 34:50), so this t4; t12 is 

equal to t4, t13 is equal to a plus t12, so t12 can be replaced by t4 and t14 equal to t6 so 

we can replace t14 by t6; so this becomes 4 star t6 again. So, this is another 4 star t6, this 

is one more 4 star t6, here t17 can also be replaced by t6, so this becomes 4 star t6; so 

both these can be replaced by t7. In this manner, common sub-expression elimination can 

be done very effectively even on this small example. 



(Refer Slide Time: 35:25) 

 
That is what we have shown here (Refer Slide Time: 35:28), this becomes copy 

propagation; so we have eliminated the copies that I showed you. Here, this became t6, 

this became t6, this became t4 and this became t4 and so on and so forth (Refer Slide 

Time: 35:36). This is copy propagation on the running example. We did global common 

sub-expression elimination that was on i minus 1, 4 star j and j plus 1.Now, 4 star t6 is a 

common sub-expression that can also be eliminated but, that was obtained only after 

copy propagation. 

(Refer Slide Time: 36:07) 

 
After the second round of common sub expression elimination the code becomes really 

efficient. Please see this (Refer Slide Time: 36:14), so we have replaced t7 here which is 



computed here .So all the common sub-expressions are computed only once and used 

many times here; so now this is a compact program. 

(Refer Slide Time: 36:27) 

 
What about the next optimization, so we have seen two of them - one is common sub-

expression elimination, the other is copy propagation. What about constant propagation 

and constant folding? This is a very illustrative, nice example to show both. We have a 

equal to 10, b equal to 20 and a condition if b equal to 20, then go to b3 otherwise jump 

out; so yes come this side, no go this side. If it is b equal to 20 then a equal to 30, then 

come back d equal to a plus 5 and stop. 

So, just observe that these are all constants which are known to the compiler. a equal to 

10, 10 is known, so this compile time assignment is known; b equal to 20, so we know 

that by value numbering this b can take a value 20 very easy to find. Therefore, by 

checking b equal to 20 at this point, the conditional constant propagation algorithm 

knows that it is true, because b already has a value 20. So, this at compile time will 

evaluate to true (Refer Slide Time: 37:39). This is constant folding; we have evaluated 

this particular condition. Now, as this is true, the no part can never be executed. So this 

edge can be removed like this (Refer Slide Time: 37:53); it is only this part, which gets 

executed; the flow graph gets modified in this fashion. 

Now, a gets a value 30 and again it is a constant; so we can replace this a by 30 (Refer 

Slide Time: 38:08). If we had this flow graph, we did not know whether a would be 10 or 

a would be 30 at this point but, since we know that this condition is always true, this part 

does not get executed only this part gets executed. Therefore, this a can get only the 

value from this particular assignment a equal to 30 (Refer Slide Time: 38:28). This gets 



35 and then stops, so the program modified is like this, all the values have been 

computed; a plus 5 is computed as 35, so that is an example of a constant folding. 

So, b getting a value 20 here, checking b 20 equal to 20 is an example of constant 

propagation. The value of a being replaced by 30, here from this part is another example 

of constant propagation. Later, we are going to study how exactly all this can be done. 

(Refer Slide Time: 39:06) 

 
The next optimization that we are going to study is the loop invariant code motion. Take 

this simple example, t1 equal to 202, i equal to 1, if i greater than 100, if t2 exit. So, we 

are going to execute this particular loop 100 times. Otherwise fall through, decrement t1; 

then compute t3 equal to addr a; addr a is a constant that is the base address of array a 

and t3 equal to t3 minus 4, this is for some alignment. Then we compute 4 star i, add t4 

and t5. Now, we go to the location in the array a- it is a of i, which we want to access; 

start t6 equal to t1 assigns to that particular location, the value t1 and i equal to i plus 1 

and go back to L1, so this the loop that we  go on executing. 

Let us look at some of the assignments here (Refer Slide Time: 40:27). Obviously, the 

value of i varies here, so t2 equal to i greater than 100 varies with the loop; the same is 

true of this because t2 varies this particular condition also varies rather cannot be 

evaluated once for all (Refer Slide Time: 40:40). t1 equal to t1 minus 2 also varies with 

the loop so it cannot be evaluated once for all; whereas, t3 equal to address of a - address 

of a is a constant. The same assignment gets executed 100 times within this particular 

loop but, the value of t3 will always be the same. 

So, it is possible to move this particular quadruple outside the loop, then nothing wrong 

with that and such a computation which does not vary within the loop is called a loop 



invariant computation and moving such a computation outside the loop is loop invariant 

code motion. 

The next one is t4 equal to t3 minus 4, t3 is a constant, so t3 minus 4 is also a constant 

and this can also be moved outside the loop, this is loop invariant code again. Once we 

do this (Refer Slide Time: 41:47), the loop becomes smaller. The idea of all this is if we 

remove many statements from the loop, the loop execution time becomes lesser and 

lesser. We want to make the loop as efficient as possible and that is the reason for loop 

invariant code motion. We try to move statements from within the loop, which do not get 

modified during the execution of the loop to outside the loop. 

(Refer Slide Time: 42:09) 

 
The next example that we consider is optimization example, which is strength reduction. 

So here, this is the code which we had before, we have already done loop invariant code 

motion; so that is why the code is in this fashion and these two are outside the loop. Here 

is a statement t5 equal to 4 star i, so this actually uses a multiplication. 

On very small processors and of course, in the olden days multiplication used to take 

much more time than addition. For example, floating point multiplication takes a long 

time whereas, fixed point multiplication takes much lesser time even today. 

This particular optimization is called strength reduction because an operation which is 

expensive is actually converted to a number of operations which are lesser expensive. 

Let us assume that multiplication is more expensive than addition. So, this statement uses 

multiplication. Let us see what we have done, we have set t7 equal to 4 and we have set 

t7 equal to t7 plus 4 and in t6 which has t4 plus t5, we have set t4 plus t7. How is this 

correct? 



If you observe the values that t5 takes i equal to 1. So, to begin with it takes the value 4 

then i equal to 2, so it takes 8, 12, 16, 20 and so on. In other words, the value of t5 is 

incremented by 4: 4, 8, 12, 16 etc in every iteration of the loop, it is incremented by 4. 

Instead of multiplying i by 4, why don’t we simply take another variable and add 4 to it. 

Thereby the effect is the same, t7 equal to t7 plus 4 the values of t7 they start with 4 just 

like t5 starts with 4, t7 starts with 4 and then it becomes 8, 12, 16, 20 etc just like t5 

becomes 8, 12, 16, 20 etc. There is no difference between the sequence of t5 values and 

the sequence of t7 values; in every sense we can replace t5 by t7 and that is precisely 

what we have done. 

In this process, we have replaced the more costly operation of star by a simpler operation 

and a less costly operation of plus. Even today on very small embedded processes, 

multiplication may still be more expensive than addition, because multiplication may 

typically be done by a subroutine whereas, addition is a hardware instruction. Strength 

reduction and then of course, we also have done a little bit of copy propagation ; instead 

of t5, so we would have actually set t5 equal to t7 here because they are equivalent and 

then t7 value can be replaced for t5 in this particular statement (Refer Slide Time: 

45:43). We have done these two and replaced this t6 equal to t4 plus t5 by t6 equal to t4 

plus t7 and we have removed the statement t5 equal to 4 star i. This is strength reduction, 

it requires a little bit of code for initialization and then perhaps even copy propagation. 

(Refer Slide Time: 46:04) 

 
The next example is that of induction variable elimination, again the previous example 

we carry forward. So, before the induction variable elimination, let us say i is the 

induction variable we want to eliminate. Why is i called an induction variable? You see 



the values of i. For example, if you look at it, they start with 1 and then go on in an 

arithmetic progression 1, 2, 3, 4, 5, 6 etc. 

Therefore, all such variables which progress in arithmetic progression are called 

induction variables. The purpose of i in this particular loop is only to count the number 

of times the loop is executing and then terminate the loop, once it crosses this particular 

loop of 100. 

If you look at the loop a little more carefully, there is another variable t7 which actually 

also progresses in an arithmetic progression. We start with 4 and then go to 8, 12, 16, 20 

etc this is also an arithmetic progression. It is just that it is not the same as i but, it is 4 

times the value of i. So, induction variable elimination tries to replace i with t7 and 

remove i; that is possible in this case, only thing is in that case instead of i we must use 

t7 and once we use t7 the test i greater than 100 should become t7 greater than 400. So, 

with these changes it is possible to remove the induction variable i, change the test to t7 

and then the loop becomes even smaller. This is the loop that we get after induction 

variable elimination (Refer Slide Time: 48:11). 

(Refer Slide Time: 48:18) 

 
Here, is a bigger example of induction variable elimination and strength reduction and 

this is from the dragon book. Here are two loops and a third loop which encompasses 

both of them. This is the outer loop and two inner loops (Refer Slide Time: 48:30). So, it 

is very easy to see that this i is a counter variable here, j is a counter variable here but, it 

so happens that i is a counter variable in the outer loop and also j is a counter variable in 

the outer loop. So i is a basic induction variable and then t2 depends on i, see it is 4 times 

i as in the previous case; so if i goes as 1, 2, 3, 4; t2 goes as 4, 8, 12, 16 etc. Such 



variables t2, which depend on i are derived induction variables. There are conditions to 

be checked for basic and derived condition for induction variables which we learn later. 

But, for the present it suffices to know that i is a basic induction variable both in this 

loop, inner loop and the outer loop, t2 is a derived induction variable both in this loop 

and the next loop. 

The same is true of j, it is not necessary that the values of induction variables only 

increase; they can monotonically decrease also. j starts with n and reduces n minus 1, n 

minus 2 etc and t4 derives from j, so t4 is 4 times j and it reduces in the same proportion. 

So both these are induction variables in the inner loop and also in the outer loop. 

So, both these i and j can be eliminated, it is possible to introduce a new and t2 of course, 

can also be eliminated, t4 can also be eliminated. These are replaced by 2 variables s2 

and s4, there is a suitable initialization which is carried out here; so s2 becomes s2 plus 4 

in the loop, s4 becomes s4 minus 4 in this loop. In the test which as i greater than equal 

to j, this is the only place why i and j have been used, they are used to control the loop, 

we use s2 and s4. Once we do this, it is possible to actually convert this program to this 

program (Refer Slide Time: 50:48); we can replace i greater than equal to j by s2 and s4 

and the variables s2 and s4 can be incremented appropriately by 4 and decremented by 4. 

This is the program in which we have been able to do strength reduction, we have been 

able to do strength reduction here also and then we have eliminated 2 induction variables 

i and j replace them by s2 and s4. 

(Refer Slide Time: 51:19) 

 
Next, optimization is a very important one called the partial redundancy elimination. 

There are actually, you know many optimizations which this particular PRE as it is 



called subsumes. For example, loop invariant code motion gets subsumed in this. If we 

do this properly, then 2 or 3 types of common sub expression elimination can also gets 

subsumed by this; so 2 or 3 optimizations can all be subsumed by this particular 

optimization itself. 

Let us understand this, here is a equal to c and then we have x equal to a plus b. Here we 

have y equal to a plus b and we have b equal to d. There is no computation of a plus b 

here and there is no computation of a plus b here; so if you had a plus b here also for 

example, some z equal to a plus b, then you would have detected that this a plus b is a 

common sub-expression because it is computed here and here. The GCSE algorithm 

would have been applied but, now it is computed only along this path and it is not 

computed along this path were before this particular computation. So, such a 

computation is a partially redundant computation. 

If we take this path, there is no need to do twice; maybe this value can be used directly 

here. If we take this path, then it is necessary to do it; if we are able to detect that such 

partially redundant computations exist, that is a plus b is partially redundant at this point; 

so it can be computed here and then used here (Refer Slide Time: 53:11). This can be 

done provided we introduce h equal to a plus b along this path also, h equal to a plus b is 

introduced here. Now, what happens is, this is fully redundant this particular a plus b 

becomes fully redundant with the introduction of this; that is why a equal to c, h equal to 

a plus b, h is the temporary variable in GCSE and x equal to h; h equal to a plus b again 

here and this becomes y equal to h. We have converted a partially redundant computation 

to a fully redundant computation by breaking this particular edge introducing this 

computation of a plus b. 

The challenge is in detecting that this is a partially redundant computation and then 

taking steps to see, how we can convert this PRE into a fully redundant computation and 

then apply GCSE. This is a very interesting algorithm, which we are going to see later. 



(Refer Slide Time: 54:19) 

 
Let us look at a simple optimization called unrolling a loop. Here is a simple loop, for i 

equal to 0, i less than n, i plus plus and then there are two statements S1 and S2. We have 

put, i in the parenthesis here to indicate that these are instances of the ith iteration. If we 

unroll the loop, we are going to reduce the number of iterations. Let us say, we have 

unrolled it thrice that means, there are going to be three instances of S1 and S2 in the 

body of the loop S1 i; S2 i; S1 i plus one; S2 i plus1; S1 i plus 2 and S2 i plus 2. The 

loop is actually going to run less number of times, it starts with 0 checks whether i plus 3 

less than N and then i is incremented by 3 because we have already included the 

instances of S1 and S2 corresponding to i plus 1 and i plus 2 also. 

At the end, there may be some iterations which may remain because if N minus 1 is not a 

multiple of 3; say for example, you have N equal to 3 then, N minus1 is 2 so it is not a 

multiple of 3. So, this cannot be done because we need only this, then it is going to be 

executed, the rest of the iterations will all be executed by this particular loop which 

remains. 

We start with k equal to I, k less than N, i plus plus and then without any unrolling we 

execute S1 k and S2 k. The advantage of loop unrolling is it enlarges the body the loop. 

Now, this body is much larger than before, this was S1 to S1, S2 here we have many 

instances of S1 and S2 and because of this the other types of machine dependent 

optimizations such as instruction scheduling, software pipelining etc become very 

efficient. We will learn about this much later but, it suffices to say that this is a very 

efficient way of enabling other machine dependent optimizations. 



So, with this we will stop this lecture and in the next lecture, we will continue with other 

examples of optimizations. 


