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Welcome to part II of the lecture on Code Generation. 

(Refer Slide Time: 00:21) 

 

In the last lecture, we learnt about the main issues of code generation and simple code 

generation algorithms. We also learnt about the Sethi-Ullman code generation algorithm, 

which produces optimal code. Today, let us review Sethi-Ullman algorithm, look at 

examples and then continue with the other optimal code generation algorithms. 



(Refer Slide Time: 00:54) 

 

Sethi-Ullman algorithm produces optimal code. It has two phases: the labelling phase 

and the code generation phase. 

(Refer Slide Time: 01:03) 
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The labelling algorithm gives you the minimum number of registers required to evaluate 

the tree without any intermediate stores. For example, the leftmost child, which is a leaf 

is labeled 1 and all other children, which are leaves, are labeled 0. Here, this is 1 and 0. 

For internal nodes, if the 2 children have equal labels, then the node has plus 1 along 

with value of the label of the child plus 1; otherwise, if they are unequal, then the 

maximum of the 2 children values of the 2 children is taken. For example, here it is 1 and 

0. So, this is max and this is 1. Here, it is 1 and 1. So, it is actually 1 plus 1, which is 2. 

(Refer Slide Time: 01:52) 

 



As I said in the last lecture, the algorithm uses two stacks: one is the register stack and 

the other is the temporary stack. 

(Refer Slide Time: 02:03) 

 

There are 5 cases; rather 6 cases – 0, 1, 2, 3, 4, 5 in this algorithm. The first one is the 

left. We just have a leaf node and then for the leaf node, it generates a load statement to 

the register on the top of stack. 

(Refer Slide Time: 02:23) 

 

Case 1: The right child of a node is a leaf node and the left child is a subtree. Then, we 

simply generate code for n1 by calling gencode and then insure an instruction OP N 



comma top of RSTACK to take care of this particular operation and this leaf node. 

(Refer Slide Time: 02:46) 

 

Case 2: Here, the left subtree requires less than r registers and right subtree requires 

greater than the number required by the node n1. So, this is a slightly special case 

because it requires a swap of the two registers on the top of the register stack. This is 

required to make sure that a node is evaluated into the same register as its left child. So, 

here we swap, then we generate code for the subtree headed by n2. This is because, we 

always generate code for the subtree, which requires more number of registers and then 

we generate code for the left subtree. Finally, emit the code as required and push the 

register on to the stack and swap it again. 



(Refer Slide Time: 03:40) 

 

Then, Case 3: Here, it is the other way. The right subtree requires less than r registers 

and left subtree requires greater than what n2 requires. So, here, there is no swap needed; 

we just generate code for n1 followed by generate code for n2, and then finally, the 

instruction for n itself. 

(Refer Slide Time: 04:01) 

 

The last case: Both the subtrees require greater than or equal to r number of registers. 

Here, we require a temporary to store the result because we do not have as many 

registers as necessary. So, we generate the code for n2, then store the result of n2 into a 



temporary, generate code for n1, and finally, generate the instruction for the node n. So, 

this is the summary of how the algorithm works. 

(Refer Slide Time: 04:31) 

 

Let us look at an example. Here, we have the same tree for which we computed the min 

reg values. All are listed here: 1 1 2 3. The number of registers is 2. This requires three 

registers and then we look at the 2 subtrees: n3 and n4; n3 requires two registers and n4 

requires only one register. So, obviously, code for this subtree headed by n3 is generated 

first followed by the code for n4. 

Here, as what it is indicated, start with n5, then you go to n3 Once you go to n3, these 

two are equal. So, you just go to the left; that is, n1, then it goes to a, and finally, a load 

is generated for this particular leaf. So, followed by an op instruction for this; op n1 b 

comma R0. 

After this, it goes to this particular subtree n2 (Refer Slide Time: 05:42) because this 

code cannot be generated without generating code for n2. So, it goes to n2, goes to c, 

loads c into R1, and then generates code for this op n2 d comma R1. Finally, when it 

goes to n3, it generates code for n3 op n3 R1 comma R0 there by the result of this entire 

subtree n3 is held in the register R0, which is the register used by the left subtree of n3. 

Later, it goes to n4, generates code for loading e into R1 because now R1 is free and only 

R0 holds this value. It generates code for op n4 and then finally, op n5 is generated. So, 



this is a very simple strategy – we have two registers and the subtrees require only 2. So, 

everything is fine as far as this is concerned. 

(Refer Slide Time: 06:46) 

 

Now, the number of registers is only 1. So, now we have a small problem. We need a 

temporary. So, we choose the right subtree because LST has to be computed into R0 later 

on; the subtree has to be computed into R0. So, we go to this. So, n5, n4, then e, and 

finally, load e into R0 and op n4 f comma R0. So, this subtree generates code and gets 

evaluated into R0. 

Now, release the register R0, come here: n3, then this subtree is traversed, n2, and then 

load c into R0; op n2. So, this node is also taken care of. Now, load this register into T1. 

So, this is also released. Then, you go to n1 load a comma R0; op n1 b comma R0. So, 

the code for this subtree is now generated. 

Now, the code for this entire thing can be generated. Op n3 T1 comma R0. So, R0 

contains the result of this entre thing and finally, op n5 T0 comma R0 generates code and 

evaluates this entire tree. Here, you see that the number of registers is only 1. So, we 

require temporaries to evaluate the subtrees and this is how it is performed. 



(Refer Slide Time: 08:20) 

 

So far we saw code generation examples based on Sethi-Ullman algorithm, which 

requires a restricted form of machine. If we go to the next type of code generation 

algorithm, which uses dynamic programming, the restrictions on the machines actually 

can be removed to some extent. 

Broader class of register machines can be accommodated here. So, for example, they 

would have r interchangeable registers, R0 to R r minus 1. Then, instructions are of the 

form R i equal to E and if E involves registers, R i must be 1 of them. That is all. That is 

the only restriction that we have. Form of instructions are these – R i equal to M j R i 

equal to R i op R j R i equal to R i op M j. So, now you see R i equal to R j and M i equal 

to R j. So, all types of instructions copy, then store into memory, and then register can 

be… You can add more varieties also. For example, you can add R i equal to M j op R i. 

We have considered only these instructions to make the examples simpler; that is all. 

You can literally add any type of instruction that you have. Each of these will translate to 

actual machine code as this would be for example, load M j comma R i; this would be 

moved R i op of R j comma R i and so on and so forth. So, the exact syntax can be 

different for every machine, but this is the essence of the instruction. There is a very 

important principle known as the principle of contiguous evaluation, which we are going 

to deal with very soon. This entire dynamic programming based code generation strategy 

is based on this principle of contiguous evaluation. 



Dynamic programming is an optimization technique. So, definitely, when this is used, it 

produces optimal code for trees at the basic block level again. So, it can be extended to 

include a different cost for each instruction. Here, all the instructions have a single cost, 

but extension can be made to introduce a different cost for each one of the instructions. 

(Refer Slide Time: 11:10) 

 

Let us see what contiguous evaluation is. You have a tree here – Tree T; that is an op 

here. Then, there is a subtree T1 and another subtree T2. You could actually evaluate this 

entire subtree T1, then evaluate the entire subtree T2, and finally, evaluate the op. Or, 

you could do the entire T2 first, then the T1, and then the op. So, both these are examples 

of contiguous evaluation. 

What is not contiguous evaluation? You generate code to evaluate a part of T1, then the 

code for evaluating a part of T2 appears, then you go back to evaluation of T1, and then 

return to the evaluation of T2, so on and so forth. Finally, once these two are completed, 

you do the evaluation of op. So, this hopping between T1 and T2 doing partial 

evaluations is not contiguous evaluation. 

What is the advantage of contiguous evaluation? Contiguous evaluation is optimal. In 

other words, no higher cost and no more registers than any optimal evaluation. So, 

contiguous evaluation is guaranteed to give you optimal cost compared to any other 

evaluation algorithm. So, if we follow contiguous evaluation and then say – do entire T1 

followed by T2 op, or entire T2 followed by T1 op, that is sufficient to yield optimal 



code. There is no need to jump between these two and then getting into trouble, but of 

course, there are machines for which contiguous evaluation does not yield optimal code. 

So, examples of this are – when two registers or two consecutive registers are required 

for a floating point or integer multiplication, etcetera, for such machines, it is still 

possible to extend this dynamic programming based algorithm and use it. 

(Refer Slide Time: 13:32) 

 

What is algorithm? First step is to compute in a bottom-up manner, for each node n of T, 

an array of costs, C. So, how many elements this array have? You are really going to 

look at the cost of computing a node using 0 number of registers: one register, two 

registers, three registers, etcetera. The number of elements is as many as the number of 

registers available for the evaluation. 

C i is the minimum cost of computing the complete subtree rooted at n, assuming i 

registers to be available. So, the length of the vector or the array is as much as the 

number of registers available to us and of course, plus 1 for 0 number of registers. How 

do we do this? Let us first see how exactly a tree is decorated using such a vector and 

then come back to this algorithm. 



(Refer Slide Time: 14:41) 

 

For example, here is a tree and here are our cost vectors. So, 8 8 7 says the cost of 

evaluating this entire subtree with zero registers is 8, with one register it is still 8, and 

with two registers it is 7. Similarly, if you consider a leaf node here, the cost of 

evaluating this particular leaf node with zero registers is 0 simply because it is already in 

memory. So, there is no need to compute anything, whereas the cost of computing it with 

one register or two registers is still 1 because you need to generate an instruction, which 

moves this particular element from memory to that register. 

(Refer Slide Time: 15:31) 

 



How do we compute this vector? We consider each machine instruction that matches at n 

and then consider all possible contiguous evaluation orders using dynamic programming. 

So, there may be many instructions and there may be many contiguous evaluation orders. 

We must consider all these, use dynamic programming, and then compute the vector. 

Finally, add the cost of the instruction to that matched at node n. The instruction that 

matches at node n also has to be taken care of. So, what we are trying to do here is – 

using dynamic programming, we are going to retain the cost at the lower levels of the 

tree and then use them as we go on to the higher levels of the tree. We will see in the 

example how this is done. 

(Refer Slide Time: 16:28) 

 

Let us look at that example and come back. The maximum number of registers available 

to us is 2. Node 2 is what we are going to consider. So, we are going to consider node 2 

and see how to compute this factor. For the leaves, it is always going to be 0 1 1. Look at 

all the leaves: a, b, c, d and e. The cost vector is always 0 1 1 because there are only two 

registers. The cost of computing something into memory is 0 because it is already in 

memory, whereas moving something into a register is always 1. That is why, these are all 

0 1 1. 

What are the instructions that match at this particular node; that is, node number 2? With 

our instruction set, we have instructions of the form Ri equal to Ri minus M; we do not 

have any instructions of the form Ri equal to M minus Ri. So, we are forced to put the 



left subtree into a register and possibly let the right subtree in memory. This holds for i 

equal to 0 comma 1. In other words, we have R0 equal to R0 minus M and R1 equal to 

R1 minus M. So, these are the 2 instructions, which match. Then, we have the pattern Ri 

equal to Ri minus Rj. So, both can be in registers. Again, we have R0 equal to R0 minus 

R1 and then we have R1equal to R1 minus R0. So, all these possibilities exist. 

Let us see what happens. Let us compute the cost of this particular node with just one 

register. So, this C2 indicates cost of node 2 with one register. If you use one register, 

then the cost of computing C4, the child with one register; then no more registers are left; 

C5 with zero registers and then the cost of this node itself; that is, plus 1. So, from the 

vector here, we easily see that C4 of 1 is 1; this is 0 and this is 1. Then, C5 of 0 is 0 and 

then plus 1 that (( )) 2. 

What about two registers? Now, there are many possibilities. So, we take the minimum 

of these; (Refer Slide Time: 19:01) C4 with two registers, then one of the registers 

retains the result, and other is released. So, C5 with one register and then plus 1 for this 

node; C4 with two registers, C5 with zero registers plus 1. So, this can be in memory. C4 

with one register, C5 with two registers; exactly the other way plus 1. C4 with one 

register, C5 with one register plus 1, and then C4 with one register, C5 with zero 

registers plus 1. Just because we are given two registers, it does not mean we must use 

both of them. We may possibly use only one. 

If you look at these, using these vectors here (Refer Slide Time: 19:49), we get 1 plus 1 

plus 1 comma 1 plus 0 plus 1 etcetera for all these values. Then, the minimum of all 

these is 2. So, the cost of computing node 2 with two registers; the minimum value is 2. 

Now, the cost of computing node 2 with zero registers is always 1 plus the cost of 

computing it with two registers because use all the registers, then store the value 

computed into memory, and then release all the registers. That is our principle. So, 1 plus 

C2 of 2 will be 1 plus 2 equal to 3. 

Our vector is really going to be – the first component is 3 with zero registers, second 

component is 2 with one register, and third component is 2 again with two registers. So, 

we can compute the vectors in a similar manner. 



(Refer Slide Time: 20:49) 

 

Let me show you one more example; very simple. For node number 3; that is, (Refer 

Slide Time: 20:54) this particular node, we consider many possibilities again; 6 – the left 

child with two registers, right child with 0, left child with 2, right child with 1, then left 

child with 1, right child with 0, left child with 1, right child with 1, and then left child 

with 1 and right child with 2. These are the various possibilities that we have. So, 

minimum of all these is 4. 

Cost of computing with one register is this particular row (Refer Slide Time: 21:23), 

which is marked in red. That is because we have 1 for the left child and 0 for the right 

child. So, we are using only one register here. So, that would be 5. Cost of computing 

into memory is this particular cost (Refer Slide Time: 21:37) with two registers plus 1; 

that is 5. So, triple is 5 for zero registers, 5 for one register, and 4 for two registers. 



(Refer Slide Time: 21:49) 

 

Using the cost vector, we determine the subtrees that must be computed into memory. 

So, that is based on the cost. Just look at the vector of cost and find out which is the 

cheapest. So, those particular nodes where computation into memory is cheapest are 

segregated. 

Now, traverse T and emit code. Here, you must actually emit code for the memory 

computations first. So, for those nodes, which will be computed into memory, we must 

emit code first. So, those subtrees must be evaluated first and then the others. So, in the 

order needed to obtain the optimal cost. The algorithm is simple – you look at the tree, 

label it with these vectors, then consider all those subtrees, which have low cost when 

computed into memory, generate the code for such subtrees, and finally, generate code 

for other parts of the tree. 



(Refer Slide Time: 23:11) 

 

Let us look at a simple example. Before that, maybe we can look at the picture itself. 

Look at this – we have decorated all these with vectors. Now, the cost of computing the 

root with two registers is the minimum; that is, 7. We also need… As it is quite obvious 

that in order to generate code, we also need to keep track of the patterns or the 

instructions, which were used at these 2 children, and finally, the instruction, which is 

used at this particular node in order to yield this cost. 

(Refer Slide Time: 23:54) 

 

At every node, we go down from here (Refer Slide Time: 23:47). This gives me 7. So, 



look at the possibilities, which yielded to give this 7. That is what I was showing here. 

Minimum cost for node 1 is 7. The instruction, which yielded this cost was R0 equal to 

R1 plus R0. If you trace it back, then it says compute the right subtree; node 3 with two 

registers into R0 and compute the left subtree; that is, node 2 into R1. So, this actually 

yielded the cost as 7. We must go down further, look at node number 3 and see what 

happens. 

The instruction, which matched at that point and gave us the right cost was R0 equal to 

R0 star R1. Now, 3 has 2 children 7 and 6. So, 7 must be computed with two registers 

into R1 and 6 must be computed into R0. So, go down for node number 2. The 

instruction, which gave us this cost was R1 equal to R1 minus b; we keep going further. 

This RST was computed into memory; that was the optimal cost, but it is already in 

memory. This is a leaf node; this b. There is nothing to do and we must compute the left 

subtree into R1. If we keep 4, the computation, which makes 4 get into R1 is R1 equal to 

a. So, this instruction is emitted. For node 7, the instruction is R1 equal to R1 slash e. So, 

this can be broken down into 2 more steps: 9 into memory and 8 into R1. So, for 8, the 

instruction is R1 equal to d and for 6, the instruction is R0 equal to c. 

(Refer Slide Time: 25:34) 

 

In other words, what we really did was – take this 7, find out who is responsible for 

giving this cost 7, and similarly go down further. Finally, you would have decorated all 

the nodes in the tree with appropriate instructions. Now, if you simply emit this code in a 



particular order, it will give you the code itself. 

For example, R0 equal to c, R1 equal to d, and then R1 equal to R1 slash e. So, you 

cannot really do a preorder traversal and come back, but we have to actually generate the 

code in the order dictated by this particular cost (Refer Slide Time: 26:14). So, this first, 

then this, and so on; that is what it says. We have to do RST 3 first and then 2. If you do 

not do this (Refer Slide Time: 26:23), the code cannot be generated in an optimal 

fashion. 

That is about code generation by dynamic programming. The dynamic programming 

based algorithms is very good, but it still has some restrictions on the type of instructions 

and so on and so forth. 

(Refer Slide Time: 26:27) 

 

The next strategy is to use tree rewriting in order to do code generation. Using tree 

rewriting, it caters to complex instruction sets and very general machine models. There is 

no problem about any restriction on the type of instructions and so on and so forth. 

It can definitely produce locally optimal code like the others because they are still using 

dynamic programming here as well. This is a combination of dynamic programming and 

tree rewriting. Non-contiguous evaluation orders are possible without sacrificing 

optimality. Here, there is no problem about evaluation order. Tree pattern matching will 

give us the order as we will see very soon. It is easily retargetable to different machines. 



So, we can use a tree grammar in order to specify the machine and then use a generator 

for tree grammars to give us the code generator. Automatic generation from 

specifications is possible. 

(Refer Slide Time: 27:54) 

 

Let us look at an example of how tree pattern matching is used or tree rewriting is used 

to generate code. As is obvious to perform tree rewriting, we need a tree intermediate 

code. Let us take the example of the tree intermediate code for the high level statement a 

i equal to b plus 1. Here, the variables a and i are local to the procedure and b is a global 

variable. So, the root node, of course is the assignment operator, the right subtree of the 

assignment corresponds to b plus 1. 

There is a plus, memb is the offset of the variable b; it is a global variable; so, it has a 

static allocation, and then const 1 shows that it is a constant 1. The left subtree 

corresponds to a i, rather the address of a i. Let us look at it. First of all, we need i, then 

we need to dig into the array a, look at the ith location and take the address of that. These 

are local variables. So, they are all stored on the activation record. There is a base 

address for a, rather the offset of the array a in the activation record is some constant a; 

const a. Then, there is a stack pointer, which is in the stack pointer register. 

If we add these two (Refer Slide Time: 29:26), we get to the beginning of the array a in 

the activation record. So, that is what this plus does. Then, take the offset of the variable 

i, add s p, and then you get to the location of i inside the activation record. Then, one 



more level of ind gives you the content of that particular location i. Now, value of i is 

obtained. This is added (Refer Slide Time: 29:56) to this particular a and this ind, which 

is always on the left side of assignment will yield us the address. This ind end and this 

ind end are different. When it is on the left side, this ind (Refer Slide Time: 30:09) will 

give us the address. So, what we get is the address of a i. Address of a i here (Refer Slide 

Time: 30:08), the b plus 1 here, and this assignment operator shows that this value is 

loaded into this particular address (Refer Slide Time: 30:26). So, this is the tree 

intermediate code for our example. 

(Refer Slide Time: 30:32) 

 

Let us see how tree pattern matching happens here. The pattern – tree pattern is indicated 

as similar to a context free grammar production. It is just that the arrow is in the reverse 

direction. This pattern says – whenever there is a constant, it can be replaced by or 

rewritten by a register and when this is done it is necessary to generate the code, load the 

constant value a into R0. This is quite logical. 

Here, we have const. Let us see what happens if we use this particular pattern at this 

point. So, this will be (Refer Slide Time: 31:15) replaced by a node called register. 



(Refer Slide Time: 31:20) 

 

Here, we have register. Now, the rest of it - the tree has been rewritten at this point and 

the pattern considered is this particular one. So, the pattern is plus, left child is reg i and 

right child is reg j; reg i corresponds to register 0 and reg j corresponds to register s p; 

stack pointer. When we match this particular pattern, then the code add SP to R0 must be 

generated; that means, this is addition. So far, if you match this pattern and the previous 

one, the code that would have been generated is load constant a into R0, add SP to R0. 

(Refer Slide Time: 32:08) 

 

Let us see what happens now. At this point, we have two possibilities; 2 patterns match – 



first pattern is regi is ind of plus const c comma regj; that is, this particular subtree (Refer 

Slide Time: 32:26); ind plus const reg. Or, it is the bigger tree. So, we have plus, reg, 

then ind, plus, const, and reg. Whether we match the smaller pattern or the larger pattern, 

correct code can still be generated. 

Normally, we use a bigger subtree, which is matched because shorter code sequence can 

be generated. If we assume that the second pattern matches, then the code that is 

generated for the second pattern - when this (Refer Slide Time: 33:05) matches, it is add 

constant i SP comma R0. This is indexed mode of addressing. So, i is added to SP, then 

the contents of SP are now treated as an address. So, you go to that address, fetch its 

value, and then that is added to R0. So, that computes this entire thing and that gives you 

the address of a of i. 

The code generated so far is this (Refer Slide Time: 33:37). Now, remember - this has 

been computed (Refer Slide Time: 33:45), this is already in R0. That is why, all these are 

possible. So, these three instructions have been generated so far. 

(Refer Slide Time: 33:53) 

 

Now, we cannot do much with this particular part until we finish this. So, we come here. 

This is non-contiguous evaluation. Already we did one part here, we came here, and then 

we possibly go back. So, memb indicates that it is a memory location and there is a 

pattern possibly matching memb and changing it to a register. 



If we do that, then the code that must be generated is load b comma R1 thereby 

transferring b into the register R1. So, then this will change to reg node with 1. So, the 

code so far is load constant a to R0, add SP to R0, add constant i SP to R0, and then load 

b to R1. 

(Refer Slide Time: 34:47) 

 

Finally, this particular entire thing can be taken care of. The pattern, which matches is 

plus reg and const and the code generated is increment R1 because this constant is just 1. 

Now, we add this increment R1 to this particular code. 

(Refer Slide Time: 35:04) 

 



Finally, this entire thing is matched by the pattern – assign ind reg comma reg. So, this is 

the address; whatever is given in reg0 is taken as an address and the code corresponding 

to it is load R1 to star of R0. So, whatever is here is transferred to this particular address. 

That is the last instruction that is generated. As you can see, the tree pattern matching 

process is definitely something that takes a part of the left side, then the right side, then 

the left side, and so on. So, it is non-contiguous, but it gives you more flexibility. 

(Refer Slide Time: 36:04) 

 

Now, the challenge is how to use this along with dynamic programming and generate the 

optimal code. The reason is – we saw in just one example here that there are two 

alternatives for pattern matching. With large intermediate code, there may be many 

alternatives and there are const implications of each alternative. So, how to choose the 

best? This is carried out by using dynamic programming. 
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Now, let us see Code Generator Generators, which are based on tree pattern matching 

and dynamic programming. So, these are based on tree pattern matching and dynamic 

programming. They accept tree patterns, associated costs, and semantic actions just like 

yak for register allocation and object code emission. So, we already saw object code 

emission and semantic action; for each pattern, there was an action. A similar action is 

possible for register allocation also. These are all written in yak style. These CGGs 

produce tree pattern matchers that produce a cover of minimum cost; cover is covering 

the tree with instructions and finally, generating code. So, cover is the cover of 

instructions and patterns. 

The code generator makes two passes. First pass is a bottom-up pass and finds a set of 

patterns that cover the tree with minimum cost. So, this is very obvious. We must find 

the alternatives, which give us the best cost and then at the root, there must be some 

pattern, which matches the minimum cost. That minimum cost leads to other costs 

downwards, patterns are matched, and thereby you get a cover of minimum cost. Second 

pass executes the semantic actions associated with the minimum cost patterns at the 

nodes they matched. So, these actions will do register allocation and they also do code 

generation. There are many tools of this kind: BEG, Twig, BURG, and IBURG are such 

Code Generator Generators. In our examples, we will use IBURG. 
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Let us look at some specialties of each of these CGGs. BEG and IBURG both produce 

similar matchers. They are actually hard coded matchers. In other words, the generators 

produce actual C code; it is not table-driven, but it is actually hard coded matcher. They 

use dynamic programming at compile time. As I said, to choose various alternatives, it 

uses dynamic programming. Costs can involve arbitrary computations because we permit 

ordinary C code to be associated with the rule numbers. 

TWIG is a top-down table-driven tree pattern matching machine. It uses the Aho-

Corasick string pattern matcher. String pattern matching is used to do tree pattern 

matching here. So, this is a fairly nice elegant example, but we are not going to cover it 

here. This has very high overheads and it could take up to O n square amount of time; n 

being the number of nodes in the subject tree. It uses dynamic programming at compile 

time like IBURG, but costs can involve arbitrary computations like here (Refer Slide 

Time: 39:42), but it is not hard coded, it is table driven. 

BURG is special. This is (Refer Slide Time: 39:48) top-down tree pattern matching, 

whereas BURG uses bottom-up tree rewriting system. It uses dynamic programming at 

compile-compile time; that is, when the automatic generation of the pattern matcher 

happens, at that time itself you compute all the costs. This is also table-driven, much 

more complex than IBURG, but generates optimal code in just O n time. So, these 

require (Refer Slide Time: 40:17) more time, whereas this requires much lesser time. So, 



IBURG can also take O n square time. Costs must be constants. This is a problem here. 

You cannot have arbitrary computations, you cannot call routines to do register 

allocation, cost computation on the fly, etcetera. So, the flexibility is little less, but it is 

more efficient time-wise. 

(Refer Slide Time: 40:40) 

 

Let us look at the grammar for specifying IBURG specifications. This is the specification 

of the tree grammar itself; how are tree grammar specified. Maybe we can look at an 

example and come back to this. 

(Refer Slide Time: 40:57) 

 



Here is a specification, which you can see for a very simple set of instructions. There are 

terminal symbols: ADDI, ADDRLP, ASGNI, CNSTI, CVCI, IOI, and INDIRC. Each of 

these has been given a code just like the tokens. These all are terminal symbols; tokens 

are given code in yak. Then, here are the rules; are the tree patterns. 

First one says statement is ASGNI disp comma reg. So, here is an ASGNI node and then 

2: left subtree is disp and the right subtree is reg. So, that will be the tree corresponding 

to statement and this has given a rule number of 4. So, this 4 and this 4 (Refer Slide 

Time: 41:54) are identical, but this is only coincidental. You could give any number 

here; it could be 104 also. The reason for this number is – this is used in order to call the 

appropriate semantic action once the matching process is over. The cost when this 

particular rule matches is indicated in parenthesis here (Refer Slide Time: 42:16). So, the 

cost is 1 here. 

A statement going to reg, rather reg going to statement; the number is 5 and the cost is 0. 

No cost is mentioned. So, it is 0. reg colon ADDI reg comma rc has a cost 1 and its 

number is 6. Similarly, all these (Refer Slide Time: 42:39). So, there may be many of 

these nonterminals; these are all terminal symbols and these lower cases are all 

nonterminal symbols. There may be many productions corresponding to each 

nonterminal statement as to: reg has 4, disp has 2, rc has 2, con has 2. Some of these 

have costs attached (Refer Slide Time: 43:02) to them like this and some others do not 

have. 



(Refer Slide Time: 43:09) 

 

Let us see this particular grammar; I have already explained it - every declaration has a 

START nonterminal and declares a set of terminals, which we already saw. Each rule 

has nonterminal colon tree, then there is a rule number, and then a cost. So, that is what it 

is (Refer Slide Time: 43:26). 

(Refer Slide Time: 43:28) 

 

How does the IBURG tree matcher work? It produces two functions called label and 

reduce. The user is responsible for calling these routines. What does label do? label p 

takes p, which is the root of that particular tree. It makes a bottom-up, left-to-right pass 



over the subject tree headed by p, and then computes the minimum cost cover, if there is 

one. We will see how this is done with an example. 

Each node is labeled with (M,C) or [M,C] for chain rules; chain rules are unit 

productions, for example (Refer Slide Time: 44:16), statement colon reg, statement colon 

IOI, reg colon disp; these are all unit productions or chain rules. So, each node is labeled 

with a cost pair (M,C) to indicate that tree pattern associated with rule M matches the 

node with cost C. Here (Refer Slide Time: 44:38) is the rule number and here is the cost; 

that is appropriate for this particular node. 

The nodes are annotated with (M,C) or [M,C] only if C is minimum cost for nonterminal 

of rule M. So, you must consider all the rules that match, take the nonterminals on the 

left side and whenever the nonterminals are the same, take the rule with the minimum 

cost that matches here and annotate that here (Refer Slide Time: 45:11). 

(Refer Slide Time: 45:16) 

 

I will give you an example. Let us see how this works. Here is a small tree. The labeling 

starts in a bottom-up fashion. Let us take this particular node it says ADDRLP I; it says 

the rule, which matches is disp going to ADDRLP. So, let us make sure that such a thing 

exists here (Refer Slide Time: 45:40); disp going to ADDRLP is here; that is, rule 

number 11; it has a cost 0. So, rule number 11 and its cost is 0. It is not a unit production 

or chain rule. A chain rule involves to nonterminals only, but once disp colon ADDRLP 

matches, all the rules with only disp on the right side will match. So, the only rule that is 



applicable here is reg colon disp; this is rule number 9. So, that must be added to this 

particular set of matches. This is rule number 9, the cost of matching disp colon 

ADDRLP is 0, and the cost of matching reg colon disp is 1. Let us make sure of that 

first. reg colon disp is 1; see (Refer Slide Time: 46:37). The cost is here; it is 1. So, 0 

plus 1; that is, 1. 

Now, you will look at all those productions with the reg on the right hand side. There is 

one with statement colon reg; the rule number is 5; its cost is 1 plus the cost for this 

particular (Refer Slide Time: 47:00) statement colon reg, which is 0. Let us make sure of 

that; that is, statement colon reg (Refer Slide Time: 47:14). This has a cost of 0. Now, 

look at another alternative with reg on the right side; this is rc colon reg. Similarly, this 

rule is number 13, the cost of this disp (Refer Slide Time: 47:32) would be 1; that is, this 

cost is 1 here and then rc colon reg itself has a cost of 0. So, the total cost is 1. If we do 

one of these reductions (Refer Slide Time: 47:50), we may be able to do this reduction 

and then either this reduction or this reduction; one of these two. So, these are all the 

matches, which happen at this particular ADDRLP. 

Similarly, let us look at this now (Refer Slide Time: 48:05); CVCI, or rather let us look 

at this (Refer Slide Time: 48:08) constant and then come back to this, and finally, this. 

Const – there only there is only one. This rc; con is either CNSTI and then con on the 

right side; that is, rc colon con. con const is 14 comma 0; cost is 0 and rule number is 14. 

We are using a chain production with con on the right side rc colon con; that is, rule 

number is 12 and costs are both 0. So, the total cost is 0. 

When you look at ADDRLP c (Refer Slide Time: 48:39) here, this is exactly the same as 

this. So, there is no difference at all. So, let us skip discussion of this. Look at this – 

CVCI (Refer Slide Time: 48:46). reg colon CVCI INDIRC disp; this is the entire match. 

There is no match for this; there is no rule with INDIRC on the right hand side as a 

single nonterminal, but there is one with CVCI INDIRC and disp. That means, ADDRLP 

has to be in disp. If we do that, this is rule number 7 (Refer Slide Time: 49:07), the cost 

of this disp is 0, and then the cost of this reg would be 1. So, this entire cost is 1. Then, 

there are similar unit productions or chain rules, which happen and we have noted them 

here (Refer Slide Time: 49:22). 

Finally, we come to ADDI and then ASGNI. In the case of ADDI, there is an ADDI on 



the right hand side with a reg and rc. So, this must be (Refer Slide Time: 49:34) reg and 

this must be in rc. The corresponding cost is here; 1 and the corresponding cost here; that 

is, 0. You have rule number 6 for this match, then the 1 plus 0 plus its own cost; this cost 

is 1; that is 2. Then, there are other alternatives, which follow here; reg on the right side 

(Refer Slide Time: 49:57), reg on the right side, and then the other alternative with ADDI 

is reg comma con; the rule number is 10. That means, this left side (Refer Slide Time: 

50:09) must be in reg and the right side must be in con. So, the cost of that would be – 

this is 1, this rule matches here; that is 0, and finally, this cost is also 0. So, the total cost 

is 1. 

When you look at ASGNI, the only rule, which matches is ASGNI disp comma reg. That 

forces this entire thing (Refer Slide Time: 50:31) to be in disp and this entire thing to be 

in reg. So, whatever is indicated in red are the final matched rules, which give you a 

cover for this entire tree. So, this here (Refer Slide Time: 50:45), this here, this here, this 

here, this here, and this here. With that, the total cost would be 0 for this (Refer Slide 

Time: 50:55), then 2 for this, and finally, 1 for this itself. So, total cost would be 3. This 

is how the cost is computed for a small tree. 

Once we know this particular (Refer Slide Time: 51:14); this is the cover for this entire 

tree, it is easy to… Once we know the rule number, we can execute the action 

corresponding to each of these rule numbers, which have matched and then we actually 

generate code. So, rule for here and so on and so forth. So, execute semantic actions and 

generate code. 



(Refer Slide Time: 51:37) 

 

This is the summery of how the IBURG tree pattern matcher works. Once labeled, the 

reducer traverses the subject tree, in a top-down manner. During a visit to each node, 

user-supplied code that implements semantic side effects such as register allocation and 

emission of code, is executed and finally, the machine code gets generated. 

(Refer Slide Time: 52:00) 

 

That was a brief discussion of how code is generated using tree pattern matching. Now, 

let us do a little bit of discussion on how to generate code from Directed Acyclic Graphs. 



(Refer Slide Time: 52:21) 

 

We have; let us say DAGs. DAGs look like this. These are all DAGs. 8 is shared by 4 

and 5, whereas in a tree, such sharing is not permitted. 5 is shared between 2 and 3 and 

so on and so forth. 

(Refer Slide Time: 52:32) 

 

This general problem of code generation from DAGs is an NP-Complete problem; not 

much can be done about it. How does it become NP-complete? This will become clearer 

as we go on. So, we will see little later. Let us assume that it is NP-complete. In other 

words, when this code generation problem is NP-complete, the implication is – unless 



you look at all possible code generation orders on this DAG, which is made up of several 

trees, you really cannot say which takes the minimum amount of time. So, heuristics are 

the only way to handle this situation. There are many heuristics. Let us look at two of 

them – DAGs are divided into trees and then processed. 

(Refer Slide Time: 53:29) 

 

Here for example, this is a DAG, which has many shared trees. What we do is – 

whenever a node is shared between the parents, we create copies/duplicate. For example, 

4 and 5 share 8. So, 4 has its own copy of 8 followed by its subtree; 5 has its own copy 

of 8 followed by its subtree. 

5 itself is shared between 2 and 3 (Refer Slide Time: 54:06. So, 2 would have its own 

copy of 5 and its associated subtrees; 3 would have its own copy of 5 and the associated 

subtrees, but we already replicated 8 between 4 and 5. So, there were two copies: one for 

4, one for 5. Now, 5 itself is being made into a copy. So, this entire tree is also copied. 

This 2 (Refer Slide Time: 54:32) has a copy of 5 and 8, 10, and 11. This 3 (Refer Slide 

Time: 54:36) also have a copy of 5 and 8, 10, and 11. So, this small subtree 8, 10, 11 has 

been replicated three times. Probably now, you realize the difficulty. 



(Refer Slide Time: 54:48) 

 

We may replicate shared trees, but then the code size increases drastically. So, once we 

have this tree (Refer Slide Time: 54:58), you can apply dynamic programming, or Sethi-

Ullman algorithm, or tree pattern matching in order to generate very good code on this 

particular tree. 

What is the other strategy? One may store the result of a tree; that is, the root into 

memory and then use it in all places where the tree is used. So, shared trees are cut off, 

prune from the mother tree, and then it is stored into memory and finally, that result is 

used. Let us see how it works. 



(Refer Slide Time: 55:31) 

 

This is our original tree. 8 10 11 is a shared tree. So, 8 10 11 is separated into a small 

tree. Then, 5, 8, and 9 is another shared tree. So, 5, 8 and 9 is separated into another 

small tree. Remember that 8 10 11 has already been removed. So, what we would have 

had is just 5, 8, and 9. Now, the rest of it would be just a tree because 1 2 3, then you 

have 4 and 5. 5 8 9 is separate tree. So, there is nothing here. Then 8 10 11 is separate 

tree; so, 4 7 8 is here. 

Now, what we really do is – evaluate this particular tree (Refer Slide Time: 56:19) and 

generate code for it, generate an instruction to store this entire result into memory. So, 

that is what this 8 would be; a memory location. The same is done for 5 8 9. We have 

done this first. So, 8 is now a leaf node, which is actually a memory location. Then, 5 8 9 

code generation is performed. An instruction is generated to store 5 into memory. Then, 

this would also become a (Refer Slide Time: 56:50) memory location. Then, we can 

generate code for this particular tree because these are now just memory locations, there 

is no problem, we can load them whenever we require, and evaluate the tree. Code 

generation for this subtree happens. 

The problem is the order in which all these (Refer Slide Time: 57:11) must be done; 

there are many orders and unless we test each one of these orders, we cannot say that the 

code is optimal. This is what makes the code generation problem from DAGs NP-

complete. So, we will stop at this point and in the next lecture, we will look at Peephole 



Optimizations. 

Thank you 


