
Compiler Design
Prof. Y. N. Srikant

Department of Computer Science and Automation
Indian Institute of Science, Bangalore

Module No. # 01
Lecture No. # 01

An Overview of a Compiler

This is a lecture about an Overview of a Compiler.

(Refer Slide Time: 00:30)

In this lecture, we will go through a block diagram of a complier and look at the various

phases of a compiler. For example, there is a lexical analysis phase, there is a parsing

phase, there is semantic analysis, there is intermediate code generation, code

optimization, and also machine code generation. We look at each phase with some

example, minor description of what is happening, and so on and so forth.

(Refer Slide Time: 00:54)

Let us begin with a block diagram of what is known as a language processing system. In

a language processing system, the source program, for example, goes through a

preprocessor. For example, in a C program, you have a number of a macros such as hash

define, hash include and so on and so forth. These are passed through the preprocessor.

The preprocessor expands these macros and takes appropriate action at the compiler

level itself and there is no code generated for such macros. Such modified source

program is then fed to a compiler. The compiler generates machine code. The machine

code could be in the form of an assembly code or it could be directly binary of the

machine, etcetera.

In the case that it is an assembly language program, it is fed to an assembler, which

converts it into the machine language of target machine, and then such modules are

produced probably individually. Therefore, a linker or loader is needed in order to

combine such modules. Finally, the loader gives out a complete relocatable… All these

combined together will be the task image of the machine. This can be run on a machine.

(Refer Slide Time: 02:28)

For example, if you look at the compiler itself, which is a block in the previous diagram,

it has these phases. This is our main stay for the entire lecture. There is a lexical

analyzer, there is a syntax analyzer, semantic analyzer, intermediate code generator,

machine independent code optimizer, code generator and then machine dependent code

optimizer. These are the phases of a complete compiler. You can say –in some way,

these are parts of the machine; the machine itself being the compiler.

What does each one of these phases in a compiler rule? That is what we are going to be

looking at in the rest of the lecture. For example, the lexical analyzer – it takes the

program, which is given in the form of characters. The characters are all read from a file

and then the lexical analyzer divides it into what is known as a token stream. Why are

these needed? We will see very shortly. The token stream is then fed to a syntax

analyzer, which checks whether the syntax of the program according to the programming

language rules are all satisfied.

If they are satisfied, it produces a syntax tree; otherwise, it gives number of error saying

that look there is no… Then, corresponding to the ‘if then’ statement, there is no

assignment symbol in an assignment statement, the plus is missing in an expression, and

so on and so forth. The syntax tree itself is not the end. The syntax tree for example, does

not tell us that the program is valid.

To give you an instance, if we are trying to assign some value to an entire array; this is

not permitted in C. With such construct, the syntax analyzer will not able to point out the

error and says this is wrong. So, what does the syntax analyzer do in such a case? The

syntax analyzer in such a case says – sorry I cannot help, I will pass on this information

to the semantic analyzer and that takes care of it. The semantic analyzer checks such

mistakes, and then if everything is right, it produces what is known as annotated syntax

tree.

The annotations are nothing but the semantic information of the program such as what

are the symbol names, what are the various constant values, and so on and so forth.

These are all fed to the intermediate code generator, which produces an intermediate

representation. Why this is required, etcetera will be seen in the rest of the lecture. Then,

the intermediate representation itself is improved by the machine independent code

optimizer. There are many chances for such improvement as we shall see. Then, the

optimized intermediate representation is fed to the code generator. The code generator

actually is specific to every machine and then it converts the intermediate representation

into machine code. Finally, there is some more improvement possible on the machine

code itself; that is done by the machine dependent code optimizer. Finally, we get a very

compact optimized target machine code.

 (Refer Slide Time: 06:10)

Now, let us look at each one these phases in some detail. Here is an example of what

lexical analysis task is. Let us take a very simple assignment statement – fahrenheit equal

to centigrade into 1.8 plus 32. There are characters in this particular assignment

statement F, A, H, R, E, N, etcetera. There are symbols such as equal to, star, plus and so

on. There are numbers such as 1.2 and 32.

The lexical analyzer converts such stream of characters into slightly more meaningful;

what are known as tokens. For example, fahrenheit and centigrade are names. They are

traditionally called as identifiers. What exactly is the identifier? That value will be stored

in a symbol table. id,1 and id,2 will denote the two identifiers: fahrenheit and centigrade;

1 and 2 being the indices of the symbol table in which the names are stored. Similarly,

the equal to itself is called as an assignment operator and it given a token as assign.

Similarly, the multop and the addop; the constants are given the tokens fconst and iconst

with the appropriate values. What exactly are these tokens? Inside the compiler, the

token itself is represented very compactly as an integer. Because of this, the space

required for storing the entire assignment statement will be very small compared to the

storage, which is required by the character stream.

(Refer Slide Time: 08:09)

Lexical analysis is very cumbersome if you try to write it by hand. Lexical analyzers are

typically generated automatically from regular expression specifications. So, there are

two tools, which are very well known for this purpose: one of them is called LEX, which

is available on every unix machines and Flex is the counter part of LEX, which is

available from GNU. The tokens of the lexical analyzer will actually become the

terminal symbols of the context-free grammar, which is passed by the parser. We will

see this a little later. Lexical analysis is usually called as a function to deliver a token

whenever the parser needs. It is not as if the entire stream of characters is converted to a

stream of tokens and then the parser starts its work. It is actually called only when it is

required to deliver a token.

Why is the lexical analysis separate from parsing? Theoretically speaking, there is no

reason to separate lexical analysis from parsing. In fact, as we shall see very soon, the

lexical analyzers are specified using regular expressions. So, regular expressions can in

fact be written as regular grammars, which are nothing but a special form of context-free

grammars. Therefore, a parser, typically its specification for example, can be written

inclusive of the lexical analyzer itself, but there are reasons why we make the lexical

analyzer separate.

First of the reasons is the simplification of design. This is a software engineering

decision. The compiler is a huge piece of software. Therefore, making the entire software

into modules, actually enables good software engineering practices. One of them is to

make the lexical analyzer separate. Similarly, the parser and so on and so forth. Then, the

input output issues are all limited to lexical analysis alone. For example, (Refer Slide

Time: 10:31) this is one of the modules of a compiler, which does intensive I/O. The

program is in a file and it is in the form of characters. So, each character has to be read

and then fed to the parser. So, the lexical analyzer might as well do this entire part and it

is possible to design the software very efficiently for such I/O. There is no need to bother

the rest of the compiler once the input output is taken care of by the lexical analyzer.

Lexical analysis is based on finite state machines; finite automata as they are called.

Such finite automata are far more efficient to implement than pushdown automata, which

is used for parsing. Why? It is well known that to parse a context free language sentence,

it is necessary to have a pushdown automaton and the pushdown automaton uses a stack.

If we actually convert the entire lexical analyzer specification into a context-free

grammar, then there would be a huge number of pushes and pops corresponding to the

character stream of the source program. So, this is very inefficient. We might as well do

the pushes and pops on larger pieces of the source program, which are logical entities

called tokens. So, this makes the parser much more efficient. These are some of the

reasons why lexical analysis is separated from parse.

(Refer Slide Time: 12:15)

Let us now look at LEX in order to understand how it does lexical analysis. This is a

very trivial simple example of a LEX program. What it does is – it simple recognizes

capital letters A to Z in the whole program. Now, let us look at some of the details of

such LEX programs. Whatever we have written here is called… A to Z plus is called a

rule and what we have written below it, the yywrap, the main, etcetera are the program

segments.

(Refer Slide Time: 13:02)

Let us look at some details of LEX. What is the form of a LEX file? a LEX specification;

LEX has a language for describing regular expressions. I mentioned this already. It

generates a pattern matcher for the regular expressions described. How does it do it? It

actually converts each of these regular expressions to finite state machines and then

arranges this in the form of a pattern matcher. We will look at some of these details very

soon.

The general structure of a LEX program is simple. There are some definitions, which are

nothing but short hand and then we have a marker in the form of two percent symbols.

Then, we have the rules, the patterns, or the regular expressions. Finally, there is another

marker in the form of two percent symbols, and then we have some of the user

subroutines, which are supplied by the user. A LEX compiler generates a C program

called a LEX dot y y dot c as its output. This can be either used by a parser or used on its

own.

We will look at two examples, where it is used as a function by the parser and another

example, where it is used as a standalone program.

(Refer Slide Time: 14:26)

Now, the Definitions Section. The Definitions Section contains definitions and it also

includes code that is supplied by the user. For example, the definitions are like macros.

They are not regular expression on their own, but they are used in writing regular

expression specifications. For example, digit; 0 to 9 and what is a number? Number is a

single digit followed by 0 or more digits. Digit star implies 0 or more digits as it is usual

in the regular expression notation.

Included code is all code, which is included between the two markers: percent flower

bracket and percent flower bracket. For example, float number int count 0 is a piece of

code, which is supplied by the user for some initialization purposes.

(Refer Slide Time: 15:28)

What does the Rules Section have? This is the heart of a LEX specification. It contains

patterns and it contains C-code. A line starting with white space or material, which is

enclosed in the markers: percent flower bracket and percent flower bracket; is all C-code.

This is very similar to the C-code, which is included in the Definitions Section as well.

Then, anything else; if a line begins with anything else, it is a pattern.

Pattern lines contain a pattern and then some C-code. Pattern, action in C code. We will

see examples of this; that is how it is written. The C code lines are not processed by the

LEX compiler at all. There are just taken and copied to the output. The patterns are

regular expressions. So, they are translated into Nondeterministic Finite Automat, NFA.

These are then converted to Deterministic Finite Automata because it is difficult to

implement NFA’s. These DFA’s can be optimized. Why? There is a very famous

theorem, which says – all forms of the same DFA can be converted to the minimal form.

The state minimization theorem enables this and these DFA‘s are all stored in the form

of a table and a driver routine.

The action associated with the pattern is executed when the DFA recognizes a string

corresponding to that pattern and then reaches final state. This is very similar to what

happens in a finite state machine – you start off from the initial state, then you feed

characters through the various states, then the transition happens, each transition leads

you to a new state, and finally, you reach a final state. When you reach a final state, you

have really recognized that particular pattern and then you can actually do some action.

(Refer Slide Time: 17:52)

Here is a nice simple example of a LEX program, which is used as part of an expression

parser later on.

There are actually many of these tokens, which are recognized by this particular LEX

specification. There is a Definition Section, which shows two definitions: There is

number definition and then there is a name definition. The number definition simply

defines a number; the first part is 0 dash 9 plus back slash dot question mark; looks

difficult, but it trivially says – the number is any number of digits followed by a dot

which is an option. Then, there is a bar. The bar says – either this or that. So, number

could also be 0 to 9 star followed by dot and then followed by 0 to 9 plus. In other

words, the meaning of that is any number of digits followed by a dot followed by any

number of digits again. Only thing is, it makes compulsory to have a digit after the dot, if

the dot is present. Similarly, the name itself could be A to Z capitals a to z small

followed by any of the letter A to Z small a to z, or any of the letter and numeral 0 to 9

any number of times; that is the star. So, we are really looking at letter followed by letter

or the digit star.

Once the regular expression number is recognized, it has a small action following it,

which is the scanf. What does an scanf do? The scanf really takes the text of that

particular token; that is, the numerals, which make that number, but it is still not in

binary form. So, it reads it into a variable called yylval. yylval is a variable, which is

generated by LEX. It is already known to us and it is understood by LEX as well.

This yylval is principally used to transfer the values from the lexical analyzer to the

parser. For example, here we are reading a number and later, in the parser, for

expressions, we will use the value of this particular number. How do we communicate

the value from the lexical analyzer to the parser? That is through the variable yylval. The

return NUMBER says – the token, which is generated is number and that is returned by

this particular function; piece of action code. Whatever is written in capitals, for

example, number, name, postplus and postminus; these are actually tokens. As we will

see very soon, these tokens are really defined in the parser and the lexical analyzer is

supposed to recognize and pass them to the parser.

The second one, the name; there is little more processing, which is done here. Once

name is recognized, the symbol table is looked up; symlook actually with yytext. yytext

is the text of the name itself; the characters corresponding to the name. symlook is the

symbol table routine. It looks up the symbol table routine and then if it is already present,

it actually gives you a pointer to it. If it is not present, it will insert the name into the

symbol table and spread on its pointer. What is yylval? In this case, (Refer Slide Time:

22:12) yylval is actually the pointer value itself. yylval dot symp is nothing but the

pointer value, which is a pointer into the symbol table for that particular name. What is

the token? Token is the integer code name, which is returned by this action code.

Similarly, for double plus, it returns POSTPLUS; for double minus, it returns

POSTMINUS, for the end of file dollar, it returns a 0, and any other character including

new line, it simply returns the character itself.

(Refer Slide Time: 22:47)

Here is a second example, which is slightly more complicated. The previous example

was called as a function by the parser, whereas this is a program on its own. What does

this particular program do? I will skip to the next slide and then get back to this in a

minute.

(Refer Slide Time: 23:07)

Look at the bottom of this slide. It gives you examples of C declarations: int a comma b

10 c comma d 25; float k 20 l 10 m comma n. Now, it may be clear. It actually

recognizes such declarations. So, you must understand that not everything in a LEX

specification needs to be … Let me take that back.

(Refer Slide Time: 23:31)

Whatever we described in the syntax of a programming language as a context-free

grammar, is not necessarily always context free, it can even be specified in the form of

regular expressions. That is what I want to show here.

For example, we have blanks, which are nothing but a blank or tab any number of times,

a letter, digit, then identifier, number; these are all the usual tokens that are recognized

by a LEX specification. Here comes the next one. You are still in the definitions part.

Array declaration part is actually an identifier followed by right bracket followed by a

number, which is nothing but the number of dimensions of the array followed by the

right square bracket; whereas, a declaration part is array declaration part or just a simple

name.

A declaration list is a list of such declaration parts and a complete declaration says –

integer or float followed by blanks followed by a declaration list followed by blanks

again.

(Refer Slide Time: 24:55)

This is the declaration, which actually is parsed by the lexical analyzer; LEX

specifications that we have written here. These are all legal specifications. So, once

declaration is found, it writes it into the text file and then ignores all the others. So, it

writes it into a text file called declaration file and ignores all others.

The rest of the LEX specification is simply… In the main program, you open a file and

call yylex. In the yywrap, you just do the wrapping routine, close the file, and get out.

This is an example to show that it is possible to use LEX to parse even sizable parts of a

programming language specification such as declaration, but I must hasten to add that

not every declaration is so easy to parse within a LEX specification; some of these can

be. I hope it conveys the essence of a LEX tool.

(Refer Slide Time: 26:04)

Let us move on and let us talk about syntax analysis. The lexical analyzer returns these

tokens. The same assignment statement that we considered before – id assign id multop

fconst addop iconst; these are all our tokens. fconst is the floating point constant and

iconst is the integer constant. These are fed to the syntax analyzer. The syntax analyzer

make sure that the assignment statement is indeed correct in syntax. In other words, there

is an identifier on the left side of an assignment, there is an identifier on the right side of

an assignment followed by an expression or whatever operator, and so on and so forth.

In general, the programming language constructs are complex. There is if then else, there

is fall loop and so on and so forth. The lexical analyzer does not worry about such

constructs. It simply returns tokens for most of these constructs. For example, if it is if

then else, it is then safe. Then, for the entire expression, it returns a number of tokens

followed by then and followed by the number of tokens for statement, and so on and so

forth.

The syntax analyzer would look at the stream of tokens that is coming into it. It uses a

context-free grammar to check whether the rules are all appropriately satisfied and then it

constructs what is known as a syntax tree. Here is a syntax tree (Refer Slide Time: 27:41)

for the assignment statement. The assignment has left child as an identifier, the right

child as a plus operator. The plus operator has left child as a star and its right child is the

constant. The star operator has identifier on the left-hand side and then the constant 1.8

on the right-hand side. So, such syntax trees are produced and fed to the semantic

analyzer.

(Refer Slide Time: 28:15)

Syntax analyzers can be generated automatically from context-free grammar

specifications. As I said, context-free grammar is the basis of parsing. A pushdown

automaton is constructed from such a context-free grammar specification and then it is

fed a sequence of tokens and it containers

There are many tools, which can do this. For example, ANTLR is a tool which takes LL

1 context-free grammar and produces a top-down parser. YACC and Bison; YACC is a

tool with unix and bison is the corresponding tool available from GNU. These take

LALR 1 form of context-free grammar and produces a parser for such grammars. These

parsers are all deterministic pushdown automaton, but the main problem with these

parsers are – they cannot handle any semantic features of programming languages, which

are known as context sensitivity features of a programming language.

For example: If you have variables in the program, obviously you would have number of

them; to check whether your variables have been declared before they are used in the

program is a context sensitive feature. You really cannot check whether it is possible or

such a declaration exists. Secondly, whether the left and right sides of an assignment

match; it is something that we really cannot check in a context-free grammar and using a

pushdown automaton. The reason is – for a context-free grammar and a pushdown

automaton, which is produced by it, whether the left hand side is an array name or

whether it is a simple integer name is not known. That information cannot be captured in

a context-free grammar. Therefore, checking whether the right-hand side also happens to

be an array of values or whether it is simple arithmetic expression producing an integer

value, cannot be checked by the same context-free grammar. For doing this, we need

special types of grammars called attribute grammar and we will see a simple example

very soon.

Third example of a context sensitivity feature is regarding parameter. You would have a

number parameters in a function and you would actually putdown the declaration of the

function and its parameters and then call the function with the actual parameter list.

Whether the types of parameters in the usage match the types of parameters in the

declaration is a context sensitive feature. This cannot be captured in a context-free

grammar and therefore, we need the next phase of compiler called the semantic analyzer

phase.

A syntax tree as I said, will be produced as the output from a syntax analyzer, but I must

add that this does not always happen. In some cases, if the entire compiler is a one-pass

compiler; in other words, it produces even the machine code in one-pass, it is not

necessary to produce the syntax tree explicitly. However, if there are language constructs

such as in C plus plus, which says – you can use the variables and put the declaration

elsewhere, perhaps much later; that is possible in the class in C plus plus; such constructs

cannot be validated semantically in a single pass.

We need to produce the syntax tree decorated with some of the semantic information

available from the program and pass this entire thing to the semantic analyzer for

validation. So, that is really what is we need to see next.

(Refer Slide Time: 33:05)

Before that, let us see how a parser specification is written for a very simple expression

parser. Let us use YACC for this. Yet Another Compiler-Compiler is the expansion of

the acronym YACC. YACC has a language for describing context-free grammars. The

productions are all going to be described by this particular language. It generates an

LALR 1 parser for the context-free grammar that we describe. Its description is very

similar. There are declarations very similar to that of LEX. There are declarations, which

are optional, then the rules are context-free grammar productions, which are compulsory,

and then some programs.

What is important is that YACC uses the lexical analyzer generated by LEX with great

ease. The terminal symbols of the context-free grammar, which are specified by YACC

should actually be produced as tokens by the lexical analyzer. Finally, YACC generates a

file called y dot tab dot c.

(Refer Slide Time: 34:25)

This is a LEX specification for the expression parser that we already saw. It has

NUMBER, it has NAME, then POSTPLUS, POSTMINUS as its tokens.

(Refer Slide Time: 34:40)

Here is the YACC specification. To begin with, there are some declarations of a symbol

table, then a routine called symlook, and then there are some include statements. These

are all part of the user code, which is supplied.

(Refer Slide Time: 34:56)

Now, we start declaring tokens. We will be come to this union a little later. There are

tokens called NAME, NUMBER, POSTPLUS and POSTMINUS. Then, we have this

equal to, plus, minus, star, slash, then unary minus, then POSTPLUS, POSTMINUS, so

many of them. We have also talked about the left associativity and right associativity of

some of these operators.

Tokens are NAME, NUMBER, POSTPLUS, POSTMINUS, equal to, plus, minus, star

and slash. It says that equal to, plus, minus, star and slash are left associative and it says

that UMINUS is right associative, POSTPLUS and POSTMINUS are left associative.

Then, it is possible to attach some semantic information to non-terminals and terminals.

For terminals such as NAME and NUMBER, there is a dval field, which is described in

the union statement above (Refer Slide Time: 36:10); it is a double field. This symp field

is a pointer into the symbol table. So, for NUMBERs, double is the declaration of the

value of the token and for NAMEs, a pointer into the symbol table is the value of the

token. For non-terminals such as expression, again dval, which is double is the semantic

information associated with it.

(Refer Slide Time: 36:37)

Here is the specification. Let us look at expression to begin with. NAME equal to

expression; that is the assignment statement, expression plus expression, expression

minus expression, expression star expression and expression slash expression. These are

all the right-hand sides of the various rules and then of course, parentheses expression

parentheses, minus expression.

(Refer Slide Time: 37:09)

There are some more – NUMBER, NUMBER POSTPLUS, NUMBER POSTPLUS;

these are the various right-hand sides of the productions.

(Refer Slide Time: 37:16)

The left-hand side is common; that is expression. So, expression going to NAME equal

to expression, expression going to NAME; this is the way to read this particular grammar

specification. What is happening here? lines is nothing but a couple of productions added

to make sure that the calculator does not stop prematurely. It will actually be going into

an infinite cycle until you press some strange characters. The YACC specification also

has an action part here. For example, NAME is equal to expression; it says that dollar 1

pointer value is dollar 3 and dollar dollar is dollar 3. So, dollar dollar is the value of the

left-hand side symbol expression, dollar 1 pointer value is the value of the token name,

and dollar 3 is the value of the expression in the right-hand side of the production,

NAME equal to expression. So, this simple says – the value of the left-hand side non-

terminal expression is nothing but the value produced by the expression on the right-

hand side, which is fine with us; that is the way it should be. Similarly, expression plus

expression says - the value of the left-hand side is dollar dollar equal to dollar 1 plus

dollar 3, which is the sum of the two values produced by the two expressions. So, this is

the way it continues. This is just to give you a sample of how YACCs specifications are

returned.

I am going to skip the symbol table routines because they are not really important for our

discussion.

(Refer Slide Time: 39:16)

After the syntax analysis part of the translation, we move on to what is known as the

semantic analysis. In the case of semantic analysis, the input to the semantic analyzer is

the syntax tree and which has information from the program. Finally, it validates this

particular syntax tree along with the information available from the program and then

produces what is known as a semantically validated syntax tree, which is the input to the

next phase of the compiler namely, the intermediate code generator.

(Refer Slide Time: 40:03)

What is semantic analysis? Semantic analysis handles actually the features of a program,

which cannot be handled at the syntax level. As I mentioned, type checking - whether the

left-hand side of an assignment is the same as right-hand side of an assignment. The type

(()) whether I am wrongly assigning an array some value, which is not an array or am I

assigning a character value to an integer variable. These are all the kind of checks that I

want to do in semantic analysis.

During semantic analysis, we also need a huge table called the symbol table, which

stores the names of the variables and their types, parameters of functions and their types,

dimensions of an array, and so on and so forth. This particular symbol table is useful not

only during compilation, but also for other purposes such as debugging. For example,

when you turn on the debugger in GCC, the compiler actually includes the entire symbol

table in the assembly code, which is produced by it. That is how actually the debugger

can know – what is a variable, which variable is it, what is its type and so on and so

forth. Otherwise, it is impossible for the binary code to find out the types of such

variables.

The specifications, which can be used in semantic analysis can be provided by what are

known as attribute grammars. Attribute grammars can specify what are known as static

semantics of programming languages, but not dynamic semantics. Dynamic semantics

are – what happens at run time; that cannot be specified by attribute grammar and there

are no suitable specifications for these either. We will have to actually generate code to

check such violations in the code itself.

It is possible to generate semantic analyzers automatically from attributed translation

grammars and we will very soon see an example of how this can be done. If declarations

need not appear before use as in c plus plus, semantic analysis actually needs more than

one phase. It may not be possible to do this semantic analysis in just one phase, we may

need more than one phase.

(Refer Slide Time: 42:52)

Here is an example of an attribute grammar. To begin with, we have a context-free

grammar; S going to E, E going to E plus T, or T, or it is a let expression; so let id is

equal to expression in expression, etcetera. Then, we have a non-terminal T going T star

F or F and finally, F goes to parentheses expression parentheses or number or id. What

are the specialties of this language.

This language actually permits expressions to be nested inside another expression. So,

we have nested expressions possible and we can also have scopes for the names inside

these expressions. Here is an example - Let A equal to 5 in let A equal to 6 in A star 7.

So, the inner A has this restricted scope of let A equal to 6 in A star 7 and the outer A

actually cannot interfere with the expression A star 7. So, the inner A rules there and the

outer A rules only in the outer level of the expression; that is, the entire expression 5 in

let A equal to 6 in A star 7 minus A. The second A is actually 5. This evaluates correctly

to 41 provided the scopes of the two instances of A are treated as different. So, if the

inner A retains the value 6 and A star 7 is evaluated with that 6 and if the outer A retains

the value 5 and it is used for the outer A, then the value of the expression is 41.

Such a programming language of expression requires a scope symbol table for

implementation. Let us see how an abstract attribute grammar is used to specify such a

language and then see how this works. Abstract attribute grammars use what are known

as inherited attributes and synthesized attributes, whereas YACC permits only

synthesized attributes and its specifications.

(Refer Slide Time: 45:41)

Here is an attribute grammar. The first production is S to E. The attribute grammar

format is simple; the context-free grammar rule is written followed by the attribute

competition rules.

The attributes with down arrow in front of them are inherited attributes. The attributes

with up arrow in front of them are synthesized attributes. For example, in the first

production, E dot symtab is inherited and S dot val E dot val are both synthesized. So,

the rule corresponding to the production S going to E is very simple. It initializes the

symbol table to a null symbol table and it says – whatever expression is produced by E,

is the value produced by S as well; S dot val equal to E dot val.

Let us directly go to the next production, E 1 going to E 2 plus T. E 1 and E 2 are the two

instances of the non-terminal E. Here whatever is inherited from E 1; for example, here

this is E 1, (Refer Slide Time: 47:06) it has a symbol table coming in and that is given to

E 2 as a symbol table with which it should operate and that is also given to T as the

symbol table with which it should operate. That is why, there are two statements: E 2 dot

symtab equal to E 1 dot symtab and then T dot symtab equal to E 1 dot symtab. By the

way, I should also mention that the order in which these statements are all written does

not correspond to a sequence of statements. The order of executing these statements is

actually found out later by an attribute evaluator.

What is the value of E 1? E 1 dot val is the value, which is nothing but E 2 dot val and T

dot val; added together. Similarly, let us take the most complicated expression E 1 going

to let id equal to E 2 in E 3. The value of E 1 is the value of E 3. That is why, E 1 dot val

is E 3 dot val. The symbol table for E 2, which has all the names including ones from

outside is nothing but E 1 dot symtab. However, the symbol table for E 3 is very

different. The symbol table for E 3 is the symbol table of E 1 with the name E 2 dot val

pair overriding any similar name within E 1 dot symtab.

This operator (Refer Slide Time: 48:47), back slash is nothing but the overriding

operator that we are going to define. So, if there is a name inside E 1 dot symtab, which

is same as id dot name, that name is temporarily overridden by this particular new id dot

name. The new id dot name will have the value E 2 dot val associated with it. So, this is

the structure of the symbol table (Refer Slide Time: 49:15).

(Refer Slide Time: 49:22)

Let us now look at a simple example to see how exactly the attributes flow. The

productions, which are used here are two of them: S to E and E going let id equal to E in

E.

Here is a complete syntax tree for this particular sentence – let a equal to 4 in a plus 3; a

simple sentence. The productions are S to E and then E going to this entire thing (Refer

Slide Time: 49:50). So, that happens in several steps; E going to… It actually says – let

id equal to E in again E. This is the first level. Then, this E expands further to T and then

F and then number. This E expands to E plus T and then finally, to T, F and a. On this

side, it expands to F and 3. So, this is the syntax tree.

We begin with a null symbol table. The null symbol table is handed over to E and it is

also handed over to this side E (Refer Slide Time: 50:36). This side, the symbol table

continues to be null or empty and when we get 4, the value is actually handed over to F,

which in turn goes to T, which in turn goes to E. This side, the value which is handed

over as phi; the symbol value, which is handed over as phi, actually now gets updated.

Let see how?

Here is a (Refer Slide Time: 51:06). Once we say this is 4, which is actually synthesized

from E to T to F to 4 and this identifier a, which is already available are combined into

an association a to 4. This is the overriding operator. So, phi overridden with a to 4 is the

new symbol table, which is given to E. That symbol table continues to be handed over to

its successors. So, a to 4 is the new symbol table, which goes down. As a to 4 goes down,

it meets another a. So, E to T to F to a. During F to a, there is a symbol, which is

produced here (Refer Slide Time: 51:51), a; this a produces the value 4, when it is looked

up in this particular symbol table and the value of 4 goes up. Number 3 goes up without

any difficulty; it does not need a symbol table. These two numbers are combined into the

value 7 because of the production E going E plus T. So, the values of these two are

added, 7 is produced here (Refer Slide Time: 52:15). This 7 is passed on to the root as

the value produced by this start symbol.

(Refer Slide Time: 52:23)

Now, we can go through this little more. For example, we saw that F to number; the

value of F is nothing but the number itself. So, the number value is passed on. What is

the semantics of F to id? F dot val is the value produced by looking up this particular

name inside the symbol table F dot symtab.

What is the value of T to F? Whatever value produced by F is passed on to T. What is the

value of T 2 star F? We take the value of T 2 dot val, we take the value of F dot val, and

then we add up these two values and that is the value which is produced as the value of T

1.

(Refer Slide Time: 53:21)

This is the way the attributes are computed and then they are passed on to the start

symbol.

(Refer Slide Time: 53:27)

How are these translation grammars implemented? Let us say – we consider YACC. In

YACC, how do we implement such translation grammars?

The most important thing to observe is – these are all very simple and these can be read

and understood very easily because they are very similar to what we had before. The

symbol table is going to be a global structure here. The other important thing that we

need to do is to make sure that we understand this production, which breaks the single

production E going to let id equal to E in E into these three productions: E to L B, L to

let id equal to E and B going to in E. In these two productions everything else happens.

In this production (Refer Slide Time: 54:15), there is a new scope, which is generated

and the name is inserted with the new scope. Once we complete this entire production,

the entries of the previous scope are deleted, the scope number is reduced and we return.

In other words, this breakage of productions is essential because YACC permits addition

of rules only at the end of a context-free grammar production. Further, it allows only

synthesized attribute. In the inherited attribute, the symbol table is implemented in the

form of a global variable. Similarly, in order to make sure that it is available wherever it

is used, we have to make it a global variable. These are the two reasons why we need to

make this symbol table into a global variable.

(Refer Slide Time: 55:25)

We will stop the lecture at this point with a picture saying that in the next class, we will

be looking at conversion of the semantically validated syntax tree into intermediate code

and then look at what happens to intermediate code when it goes through the machine

code generation phase and optimization phase, etcetera.

Thank you.

