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In this lecture, we will go through a block diagram of a complier and look at the various 

phases of a compiler. For example, there is a lexical analysis phase, there is a parsing 

phase, there is semantic analysis, there is intermediate code generation, code 

optimization, and also machine code generation. We look at each phase with some 

example, minor description of what is happening, and so on and so forth. 
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Let us begin with a block diagram of what is known as a language processing system. In 

a language processing system, the source program, for example, goes through a 

preprocessor. For example, in a C program, you have a number of a macros such as hash 

define, hash include and so on and so forth. These are passed through the preprocessor. 

The preprocessor expands these macros and takes appropriate action at the compiler 

level itself and there is no code generated for such macros. Such modified source 

program is then fed to a compiler. The compiler generates machine code. The machine 

code could be in the form of an assembly code or it could be directly binary of the 

machine, etcetera. 

In the case that it is an assembly language program, it is fed to an assembler, which 

converts it into the machine language of target machine, and then such modules are 

produced probably individually. Therefore, a linker or loader is needed in order to 

combine such modules. Finally, the loader gives out a complete relocatable… All these 

combined together will be the task image of the machine. This can be run on a machine. 
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For example, if you look at the compiler itself, which is a block in the previous diagram, 

it has these phases. This is our main stay for the entire lecture. There is a lexical 

analyzer, there is a syntax analyzer, semantic analyzer, intermediate code generator, 

machine independent code optimizer, code generator and then machine dependent code 

optimizer. These are the phases of a complete compiler. You can say –in some way, 

these are parts of the machine; the machine itself being the compiler. 

What does each one of these phases in a compiler rule? That is what we are going to be 

looking at in the rest of the lecture. For example, the lexical analyzer – it takes the 

program, which is given in the form of characters. The characters are all read from a file 

and then the lexical analyzer divides it into what is known as a token stream. Why are 

these needed? We will see very shortly. The token stream is then fed to a syntax 

analyzer, which checks whether the syntax of the program according to the programming 

language rules are all satisfied. 

If they are satisfied, it produces a syntax tree; otherwise, it gives number of error saying 

that look there is no… Then, corresponding to the ‘if then’ statement, there is no 

assignment symbol in an assignment statement, the plus is missing in an expression, and 

so on and so forth. The syntax tree itself is not the end. The syntax tree for example, does 

not tell us that the program is valid. 



To give you an instance, if we are trying to assign some value to an entire array; this is 

not permitted in C. With such construct, the syntax analyzer will not able to point out the 

error and says this is wrong. So, what does the syntax analyzer do in such a case? The 

syntax analyzer in such a case says – sorry I cannot help, I will pass on this information 

to the semantic analyzer and that takes care of it. The semantic analyzer checks such 

mistakes, and then if everything is right, it produces what is known as annotated syntax 

tree. 

The annotations are nothing but the semantic information of the program such as what 

are the symbol names, what are the various constant values, and so on and so forth. 

These are all fed to the intermediate code generator, which produces an intermediate 

representation. Why this is required, etcetera will be seen in the rest of the lecture. Then, 

the intermediate representation itself is improved by the machine independent code 

optimizer. There are many chances for such improvement as we shall see. Then, the 

optimized intermediate representation is fed to the code generator. The code generator 

actually is specific to every machine and then it converts the intermediate representation 

into machine code. Finally, there is some more improvement possible on the machine 

code itself; that is done by the machine dependent code optimizer. Finally, we get a very 

compact optimized target machine code. 
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Now, let us look at each one these phases in some detail. Here is an example of what 

lexical analysis task is. Let us take a very simple assignment statement – fahrenheit equal 

to centigrade into 1.8 plus 32. There are characters in this particular assignment 

statement F, A, H, R, E, N, etcetera. There are symbols such as equal to, star, plus and so 

on. There are numbers such as 1.2 and 32. 

The lexical analyzer converts such stream of characters into slightly more meaningful; 

what are known as tokens. For example, fahrenheit and centigrade are names. They are 

traditionally called as identifiers. What exactly is the identifier? That value will be stored 

in a symbol table. id,1 and id,2 will denote the two identifiers: fahrenheit and centigrade; 

1 and 2 being the indices of the symbol table in which the names are stored. Similarly, 

the equal to itself is called as an assignment operator and it given a token as assign. 

Similarly, the multop and the addop; the constants are given the tokens fconst and iconst 

with the appropriate values. What exactly are these tokens? Inside the compiler, the 

token itself is represented very compactly as an integer. Because of this, the space 

required for storing the entire assignment statement will be very small compared to the 

storage, which is required by the character stream. 
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Lexical analysis is very cumbersome if you try to write it by hand. Lexical analyzers are 

typically generated automatically from regular expression specifications. So, there are 

two tools, which are very well known for this purpose: one of them is called LEX, which 



is available on every unix machines and Flex is the counter part of LEX, which is 

available from GNU. The tokens of the lexical analyzer will actually become the 

terminal symbols of the context-free grammar, which is passed by the parser. We will 

see this a little later. Lexical analysis is usually called as a function to deliver a token 

whenever the parser needs. It is not as if the entire stream of characters is converted to a 

stream of tokens and then the parser starts its work. It is actually called only when it is 

required to deliver a token. 

Why is the lexical analysis separate from parsing? Theoretically speaking, there is no 

reason to separate lexical analysis from parsing. In fact, as we shall see very soon, the 

lexical analyzers are specified using regular expressions. So, regular expressions can in 

fact be written as regular grammars, which are nothing but a special form of context-free 

grammars. Therefore, a parser, typically its specification for example, can be written 

inclusive of the lexical analyzer itself, but there are reasons why we make the lexical 

analyzer separate. 

First of the reasons is the simplification of design. This is a software engineering 

decision. The compiler is a huge piece of software. Therefore, making the entire software 

into modules, actually enables good software engineering practices. One of them is to 

make the lexical analyzer separate. Similarly, the parser and so on and so forth. Then, the 

input output issues are all limited to lexical analysis alone. For example, (Refer Slide 

Time: 10:31) this is one of the modules of a compiler, which does intensive I/O. The 

program is in a file and it is in the form of characters. So, each character has to be read 

and then fed to the parser. So, the lexical analyzer might as well do this entire part and it 

is possible to design the software very efficiently for such I/O. There is no need to bother 

the rest of the compiler once the input output is taken care of by the lexical analyzer. 

Lexical analysis is based on finite state machines; finite automata as they are called. 

Such finite automata are far more efficient to implement than pushdown automata, which 

is used for parsing. Why? It is well known that to parse a context free language sentence, 

it is necessary to have a pushdown automaton and the pushdown automaton uses a stack. 

If we actually convert the entire lexical analyzer specification into a context-free 

grammar, then there would be a huge number of pushes and pops corresponding to the 

character stream of the source program. So, this is very inefficient. We might as well do 

the pushes and pops on larger pieces of the source program, which are logical entities 



called tokens. So, this makes the parser much more efficient. These are some of the 

reasons why lexical analysis is separated from parse. 
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Let us now look at LEX in order to understand how it does lexical analysis. This is a 

very trivial simple example of a LEX program. What it does is – it simple recognizes 

capital letters A to Z in the whole program. Now, let us look at some of the details of 

such LEX programs. Whatever we have written here is called… A to Z plus is called a 

rule and what we have written below it, the yywrap, the main, etcetera are the program 

segments. 
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Let us look at some details of LEX. What is the form of a LEX file? a LEX specification; 

LEX has a language for describing regular expressions. I mentioned this already. It 

generates a pattern matcher for the regular expressions described. How does it do it? It 

actually converts each of these regular expressions to finite state machines and then 

arranges this in the form of a pattern matcher. We will look at some of these details very 

soon. 

The general structure of a LEX program is simple. There are some definitions, which are 

nothing but short hand and then we have a marker in the form of two percent symbols. 

Then, we have the rules, the patterns, or the regular expressions. Finally, there is another 

marker in the form of two percent symbols, and then we have some of the user 

subroutines, which are supplied by the user. A LEX compiler generates a C program 

called a LEX dot y y dot c as its output. This can be either used by a parser or used on its 

own. 

We will look at two examples, where it is used as a function by the parser and another 

example, where it is used as a standalone program. 
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Now, the Definitions Section. The Definitions Section contains definitions and it also 

includes code that is supplied by the user. For example, the definitions are like macros. 

They are not regular expression on their own, but they are used in writing regular 

expression specifications. For example, digit; 0 to 9 and what is a number? Number is a 

single digit followed by 0 or more digits. Digit star implies 0 or more digits as it is usual 

in the regular expression notation. 

Included code is all code, which is included between the two markers: percent flower 

bracket and percent flower bracket. For example, float number int count 0 is a piece of 

code, which is supplied by the user for some initialization purposes. 
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What does the Rules Section have? This is the heart of a LEX specification. It contains 

patterns and it contains C-code. A line starting with white space or material, which is 

enclosed in the markers: percent flower bracket and percent flower bracket; is all C-code. 

This is very similar to the C-code, which is included in the Definitions Section as well. 

Then, anything else; if a line begins with anything else, it is a pattern. 

Pattern lines contain a pattern and then some C-code. Pattern, action in C code. We will 

see examples of this; that is how it is written. The C code lines are not processed by the 

LEX compiler at all. There are just taken and copied to the output. The patterns are 

regular expressions. So, they are translated into Nondeterministic Finite Automat, NFA. 

These are then converted to Deterministic Finite Automata because it is difficult to 

implement NFA’s. These DFA’s can be optimized. Why? There is a very famous 

theorem, which says – all forms of the same DFA can be converted to the minimal form. 

The state minimization theorem enables this and these DFA‘s are all stored in the form 

of a table and a driver routine. 

The action associated with the pattern is executed when the DFA recognizes a string 

corresponding to that pattern and then reaches final state. This is very similar to what 

happens in a finite state machine – you start off from the initial state, then you feed 

characters through the various states, then the transition happens, each transition leads 



you to a new state, and finally, you reach a final state. When you reach a final state, you 

have really recognized that particular pattern and then you can actually do some action. 
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Here is a nice simple example of a LEX program, which is used as part of an expression 

parser later on. 

There are actually many of these tokens, which are recognized by this particular LEX 

specification. There is a Definition Section, which shows two definitions: There is 

number definition and then there is a name definition. The number definition simply 

defines a number; the first part is 0 dash 9 plus back slash dot question mark; looks 

difficult, but it trivially says – the number is any number of digits followed by a dot 

which is an option. Then, there is a bar. The bar says – either this or that. So, number 

could also be 0 to 9 star followed by dot and then followed by 0 to 9 plus. In other 

words, the meaning of that is any number of digits followed by a dot followed by any 

number of digits again. Only thing is, it makes compulsory to have a digit after the dot, if 

the dot is present. Similarly, the name itself could be A to Z capitals a to z small 

followed by any of the letter A to Z small a to z, or any of the letter and numeral 0 to 9 

any number of times; that is the star. So, we are really looking at letter followed by letter 

or the digit star. 

Once the regular expression number is recognized, it has a small action following it, 

which is the scanf. What does an scanf do? The scanf really takes the text of that 



particular token; that is, the numerals, which make that number, but it is still not in 

binary form. So, it reads it into a variable called yylval. yylval is a variable, which is 

generated by LEX. It is already known to us and it is understood by LEX as well. 

This yylval is principally used to transfer the values from the lexical analyzer to the 

parser. For example, here we are reading a number and later, in the parser, for 

expressions, we will use the value of this particular number. How do we communicate 

the value from the lexical analyzer to the parser? That is through the variable yylval. The 

return NUMBER says – the token, which is generated is number and that is returned by 

this particular function; piece of action code. Whatever is written in capitals, for 

example, number, name, postplus and postminus; these are actually tokens. As we will 

see very soon, these tokens are really defined in the parser and the lexical analyzer is 

supposed to recognize and pass them to the parser. 

The second one, the name; there is little more processing, which is done here. Once 

name is recognized, the symbol table is looked up; symlook actually with yytext. yytext 

is the text of the name itself; the characters corresponding to the name. symlook is the 

symbol table routine. It looks up the symbol table routine and then if it is already present, 

it actually gives you a pointer to it. If it is not present, it will insert the name into the 

symbol table and spread on its pointer. What is yylval? In this case, (Refer Slide Time: 

22:12) yylval is actually the pointer value itself. yylval dot symp is nothing but the 

pointer value, which is a pointer into the symbol table for that particular name. What is 

the token? Token is the integer code name, which is returned by this action code. 

Similarly, for double plus, it returns POSTPLUS; for double minus, it returns 

POSTMINUS, for the end of file dollar, it returns a 0, and any other character including 

new line, it simply returns the character itself. 
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Here is a second example, which is slightly more complicated. The previous example 

was called as a function by the parser, whereas this is a program on its own. What does 

this particular program do? I will skip to the next slide and then get back to this in a 

minute. 
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Look at the bottom of this slide. It gives you examples of C declarations: int a comma b 

10 c comma d 25; float k 20 l 10 m comma n. Now, it may be clear. It actually 



recognizes such declarations. So, you must understand that not everything in a LEX 

specification needs to be … Let me take that back. 
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Whatever we described in the syntax of a programming language as a context-free 

grammar, is not necessarily always context free, it can even be specified in the form of 

regular expressions. That is what I want to show here. 

For example, we have blanks, which are nothing but a blank or tab any number of times, 

a letter, digit, then identifier, number; these are all the usual tokens that are recognized 

by a LEX specification. Here comes the next one. You are still in the definitions part. 

Array declaration part is actually an identifier followed by right bracket followed by a 

number, which is nothing but the number of dimensions of the array followed by the 

right square bracket; whereas, a declaration part is array declaration part or just a simple 

name. 

A declaration list is a list of such declaration parts and a complete declaration says – 

integer or float followed by blanks followed by a declaration list followed by blanks 

again. 
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This is the declaration, which actually is parsed by the lexical analyzer; LEX 

specifications that we have written here. These are all legal specifications. So, once 

declaration is found, it writes it into the text file and then ignores all the others. So, it 

writes it into a text file called declaration file and ignores all others. 

The rest of the LEX specification is simply… In the main program, you open a file and 

call yylex. In the yywrap, you just do the wrapping routine, close the file, and get out. 

This is an example to show that it is possible to use LEX to parse even sizable parts of a 

programming language specification such as declaration, but I must hasten to add that 

not every declaration is so easy to parse within a LEX specification; some of these can 

be. I hope it conveys the essence of a LEX tool. 
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Let us move on and let us talk about syntax analysis. The lexical analyzer returns these 

tokens. The same assignment statement that we considered before – id assign id multop 

fconst addop iconst; these are all our tokens. fconst is the floating point constant and 

iconst is the integer constant. These are fed to the syntax analyzer. The syntax analyzer 

make sure that the assignment statement is indeed correct in syntax. In other words, there 

is an identifier on the left side of an assignment, there is an identifier on the right side of 

an assignment followed by an expression or whatever operator, and so on and so forth. 

In general, the programming language constructs are complex. There is if then else, there 

is fall loop and so on and so forth. The lexical analyzer does not worry about such 

constructs. It simply returns tokens for most of these constructs. For example, if it is if 

then else, it is then safe. Then, for the entire expression, it returns a number of tokens 

followed by then and followed by the number of tokens for statement, and so on and so 

forth. 

The syntax analyzer would look at the stream of tokens that is coming into it. It uses a 

context-free grammar to check whether the rules are all appropriately satisfied and then it 

constructs what is known as a syntax tree. Here is a syntax tree (Refer Slide Time: 27:41) 

for the assignment statement. The assignment has left child as an identifier, the right 

child as a plus operator. The plus operator has left child as a star and its right child is the 

constant. The star operator has identifier on the left-hand side and then the constant 1.8 



on the right-hand side. So, such syntax trees are produced and fed to the semantic 

analyzer. 
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Syntax analyzers can be generated automatically from context-free grammar 

specifications. As I said, context-free grammar is the basis of parsing. A pushdown 

automaton is constructed from such a context-free grammar specification and then it is 

fed a sequence of tokens and it containers 

There are many tools, which can do this. For example, ANTLR is a tool which takes LL 

1 context-free grammar and produces a top-down parser. YACC and Bison; YACC is a 

tool with unix and bison is the corresponding tool available from GNU. These take 

LALR 1 form of context-free grammar and produces a parser for such grammars. These 

parsers are all deterministic pushdown automaton, but the main problem with these 

parsers are – they cannot handle any semantic features of programming languages, which 

are known as context sensitivity features of a programming language. 

For example: If you have variables in the program, obviously you would have number of 

them; to check whether your variables have been declared before they are used in the 

program is a context sensitive feature. You really cannot check whether it is possible or 

such a declaration exists. Secondly, whether the left and right sides of an assignment 

match; it is something that we really cannot check in a context-free grammar and using a 

pushdown automaton. The reason is – for a context-free grammar and a pushdown 



automaton, which is produced by it, whether the left hand side is an array name or 

whether it is a simple integer name is not known. That information cannot be captured in 

a context-free grammar. Therefore, checking whether the right-hand side also happens to 

be an array of values or whether it is simple arithmetic expression producing an integer 

value, cannot be checked by the same context-free grammar. For doing this, we need 

special types of grammars called attribute grammar and we will see a simple example 

very soon. 

Third example of a context sensitivity feature is regarding parameter. You would have a 

number parameters in a function and you would actually putdown the declaration of the 

function and its parameters and then call the function with the actual parameter list. 

Whether the types of parameters in the usage match the types of parameters in the 

declaration is a context sensitive feature. This cannot be captured in a context-free 

grammar and therefore, we need the next phase of compiler called the semantic analyzer 

phase. 

A syntax tree as I said, will be produced as the output from a syntax analyzer, but I must 

add that this does not always happen. In some cases, if the entire compiler is a one-pass 

compiler; in other words, it produces even the machine code in one-pass, it is not 

necessary to produce the syntax tree explicitly. However, if there are language constructs 

such as in C plus plus, which says – you can use the variables and put the declaration 

elsewhere, perhaps much later; that is possible in the class in C plus plus; such constructs 

cannot be validated semantically in a single pass. 

We need to produce the syntax tree decorated with some of the semantic information 

available from the program and pass this entire thing to the semantic analyzer for 

validation. So, that is really what is we need to see next. 
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Before that, let us see how a parser specification is written for a very simple expression 

parser. Let us use YACC for this. Yet Another Compiler-Compiler is the expansion of 

the acronym YACC. YACC has a language for describing context-free grammars. The 

productions are all going to be described by this particular language. It generates an 

LALR 1 parser for the context-free grammar that we describe. Its description is very 

similar. There are declarations very similar to that of LEX. There are declarations, which 

are optional, then the rules are context-free grammar productions, which are compulsory, 

and then some programs. 

What is important is that YACC uses the lexical analyzer generated by LEX with great 

ease. The terminal symbols of the context-free grammar, which are specified by YACC 

should actually be produced as tokens by the lexical analyzer. Finally, YACC generates a 

file called y dot tab dot c. 
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This is a LEX specification for the expression parser that we already saw. It has 

NUMBER, it has NAME, then POSTPLUS, POSTMINUS as its tokens. 
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Here is the YACC specification. To begin with, there are some declarations of a symbol 

table, then a routine called symlook, and then there are some include statements. These 

are all part of the user code, which is supplied. 
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Now, we start declaring tokens. We will be come to this union a little later. There are 

tokens called NAME, NUMBER, POSTPLUS and POSTMINUS. Then, we have this 

equal to, plus, minus, star, slash, then unary minus, then POSTPLUS, POSTMINUS, so 

many of them. We have also talked about the left associativity and right associativity of 

some of these operators. 

Tokens are NAME, NUMBER, POSTPLUS, POSTMINUS, equal to, plus, minus, star 

and slash. It says that equal to, plus, minus, star and slash are left associative and it says 

that UMINUS is right associative, POSTPLUS and POSTMINUS are left associative. 

Then, it is possible to attach some semantic information to non-terminals and terminals. 

For terminals such as NAME and NUMBER, there is a dval field, which is described in 

the union statement above (Refer Slide Time: 36:10); it is a double field. This symp field 

is a pointer into the symbol table. So, for NUMBERs, double is the declaration of the 

value of the token and for NAMEs, a pointer into the symbol table is the value of the 

token. For non-terminals such as expression, again dval, which is double is the semantic 

information associated with it. 
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Here is the specification. Let us look at expression to begin with. NAME equal to 

expression; that is the assignment statement, expression plus expression, expression 

minus expression, expression star expression and expression slash expression. These are 

all the right-hand sides of the various rules and then of course, parentheses expression 

parentheses, minus expression. 
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There are some more – NUMBER, NUMBER POSTPLUS, NUMBER POSTPLUS; 

these are the various right-hand sides of the productions. 
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The left-hand side is common; that is expression. So, expression going to NAME equal 

to expression, expression going to NAME; this is the way to read this particular grammar 

specification. What is happening here? lines is nothing but a couple of productions added 

to make sure that the calculator does not stop prematurely. It will actually be going into 

an infinite cycle until you press some strange characters. The YACC specification also 

has an action part here. For example, NAME is equal to expression; it says that dollar 1 

pointer value is dollar 3 and dollar dollar is dollar 3. So, dollar dollar is the value of the 

left-hand side symbol expression, dollar 1 pointer value is the value of the token name, 

and dollar 3 is the value of the expression in the right-hand side of the production, 

NAME equal to expression. So, this simple says – the value of the left-hand side non-

terminal expression is nothing but the value produced by the expression on the right-

hand side, which is fine with us; that is the way it should be. Similarly, expression plus 

expression says - the value of the left-hand side is dollar dollar equal to dollar 1 plus 

dollar 3, which is the sum of the two values produced by the two expressions. So, this is 

the way it continues. This is just to give you a sample of how YACCs specifications are 

returned. 

I am going to skip the symbol table routines because they are not really important for our 

discussion. 
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After the syntax analysis part of the translation, we move on to what is known as the 

semantic analysis. In the case of semantic analysis, the input to the semantic analyzer is 

the syntax tree and which has information from the program. Finally, it validates this 

particular syntax tree along with the information available from the program and then 

produces what is known as a semantically validated syntax tree, which is the input to the 

next phase of the compiler namely, the intermediate code generator. 
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What is semantic analysis? Semantic analysis handles actually the features of a program, 

which cannot be handled at the syntax level. As I mentioned, type checking - whether the 

left-hand side of an assignment is the same as right-hand side of an assignment. The type 

(( )) whether I am wrongly assigning an array some value, which is not an array or am I 

assigning a character value to an integer variable. These are all the kind of checks that I 

want to do in semantic analysis. 

During semantic analysis, we also need a huge table called the symbol table, which 

stores the names of the variables and their types, parameters of functions and their types, 

dimensions of an array, and so on and so forth. This particular symbol table is useful not 

only during compilation, but also for other purposes such as debugging. For example, 

when you turn on the debugger in GCC, the compiler actually includes the entire symbol 

table in the assembly code, which is produced by it. That is how actually the debugger 

can know – what is a variable, which variable is it, what is its type and so on and so 

forth. Otherwise, it is impossible for the binary code to find out the types of such 

variables. 

The specifications, which can be used in semantic analysis can be provided by what are 

known as attribute grammars. Attribute grammars can specify what are known as static 

semantics of programming languages, but not dynamic semantics. Dynamic semantics 

are – what happens at run time; that cannot be specified by attribute grammar and there 

are no suitable specifications for these either. We will have to actually generate code to 

check such violations in the code itself. 

It is possible to generate semantic analyzers automatically from attributed translation 

grammars and we will very soon see an example of how this can be done. If declarations 

need not appear before use as in c plus plus, semantic analysis actually needs more than 

one phase. It may not be possible to do this semantic analysis in just one phase, we may 

need more than one phase. 
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Here is an example of an attribute grammar. To begin with, we have a context-free 

grammar; S going to E, E going to E plus T, or T, or it is a let expression; so let id is 

equal to expression in expression, etcetera. Then, we have a non-terminal T going T star 

F or F and finally, F goes to parentheses expression parentheses or number or id. What 

are the specialties of this language. 

This language actually permits expressions to be nested inside another expression. So, 

we have nested expressions possible and we can also have scopes for the names inside 

these expressions. Here is an example - Let A equal to 5 in let A equal to 6 in A star 7. 

So, the inner A has this restricted scope of let A equal to 6 in A star 7 and the outer A 

actually cannot interfere with the expression A star 7. So, the inner A rules there and the 

outer A rules only in the outer level of the expression; that is, the entire expression 5 in 

let A equal to 6 in A star 7 minus A. The second A is actually 5. This evaluates correctly 

to 41 provided the scopes of the two instances of A are treated as different. So, if the 

inner A retains the value 6 and A star 7 is evaluated with that 6 and if the outer A retains 

the value 5 and it is used for the outer A, then the value of the expression is 41. 

Such a programming language of expression requires a scope symbol table for 

implementation. Let us see how an abstract attribute grammar is used to specify such a 

language and then see how this works. Abstract attribute grammars use what are known 



as inherited attributes and synthesized attributes, whereas YACC permits only 

synthesized attributes and its specifications. 

(Refer Slide Time: 45:41) 

 

Here is an attribute grammar. The first production is S to E. The attribute grammar 

format is simple; the context-free grammar rule is written followed by the attribute 

competition rules. 

The attributes with down arrow in front of them are inherited attributes. The attributes 

with up arrow in front of them are synthesized attributes. For example, in the first 

production, E dot symtab is inherited and S dot val E dot val are both synthesized. So, 

the rule corresponding to the production S going to E is very simple. It initializes the 

symbol table to a null symbol table and it says – whatever expression is produced by E, 

is the value produced by S as well; S dot val equal to E dot val. 

Let us directly go to the next production, E 1 going to E 2 plus T. E 1 and E 2 are the two 

instances of the non-terminal E. Here whatever is inherited from E 1; for example, here 

this is E 1, (Refer Slide Time: 47:06) it has a symbol table coming in and that is given to 

E 2 as a symbol table with which it should operate and that is also given to T as the 

symbol table with which it should operate. That is why, there are two statements: E 2 dot 

symtab equal to E 1 dot symtab and then T dot symtab equal to E 1 dot symtab. By the 

way, I should also mention that the order in which these statements are all written does 



not correspond to a sequence of statements. The order of executing these statements is 

actually found out later by an attribute evaluator. 

What is the value of E 1? E 1 dot val is the value, which is nothing but E 2 dot val and T 

dot val; added together. Similarly, let us take the most complicated expression E 1 going 

to let id equal to E 2 in E 3. The value of E 1 is the value of E 3. That is why, E 1 dot val 

is E 3 dot val. The symbol table for E 2, which has all the names including ones from 

outside is nothing but E 1 dot symtab. However, the symbol table for E 3 is very 

different. The symbol table for E 3 is the symbol table of E 1 with the name E 2 dot val 

pair overriding any similar name within E 1 dot symtab. 

This operator (Refer Slide Time: 48:47), back slash is nothing but the overriding 

operator that we are going to define. So, if there is a name inside E 1 dot symtab, which 

is same as id dot name, that name is temporarily overridden by this particular new id dot 

name. The new id dot name will have the value E 2 dot val associated with it. So, this is 

the structure of the symbol table (Refer Slide Time: 49:15). 

(Refer Slide Time: 49:22) 

 

Let us now look at a simple example to see how exactly the attributes flow. The 

productions, which are used here are two of them: S to E and E going let id equal to E in 

E. 



Here is a complete syntax tree for this particular sentence – let a equal to 4 in a plus 3; a 

simple sentence. The productions are S to E and then E going to this entire thing (Refer 

Slide Time: 49:50). So, that happens in several steps; E going to… It actually says – let 

id equal to E in again E. This is the first level. Then, this E expands further to T and then 

F and then number. This E expands to E plus T and then finally, to T, F and a. On this 

side, it expands to F and 3. So, this is the syntax tree. 

We begin with a null symbol table. The null symbol table is handed over to E and it is 

also handed over to this side E (Refer Slide Time: 50:36). This side, the symbol table 

continues to be null or empty and when we get 4, the value is actually handed over to F, 

which in turn goes to T, which in turn goes to E. This side, the value which is handed 

over as phi; the symbol value, which is handed over as phi, actually now gets updated. 

Let see how? 

Here is a (Refer Slide Time: 51:06). Once we say this is 4, which is actually synthesized 

from E to T to F to 4 and this identifier a, which is already available are combined into 

an association a to 4. This is the overriding operator. So, phi overridden with a to 4 is the 

new symbol table, which is given to E. That symbol table continues to be handed over to 

its successors. So, a to 4 is the new symbol table, which goes down. As a to 4 goes down, 

it meets another a. So, E to T to F to a. During F to a, there is a symbol, which is 

produced here (Refer Slide Time: 51:51), a; this a produces the value 4, when it is looked 

up in this particular symbol table and the value of 4 goes up. Number 3 goes up without 

any difficulty; it does not need a symbol table. These two numbers are combined into the 

value 7 because of the production E going E plus T. So, the values of these two are 

added, 7 is produced here (Refer Slide Time: 52:15). This 7 is passed on to the root as 

the value produced by this start symbol. 
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Now, we can go through this little more. For example, we saw that F to number; the 

value of F is nothing but the number itself. So, the number value is passed on. What is 

the semantics of F to id? F dot val is the value produced by looking up this particular 

name inside the symbol table F dot symtab. 

What is the value of T to F? Whatever value produced by F is passed on to T. What is the 

value of T 2 star F? We take the value of T 2 dot val, we take the value of F dot val, and 

then we add up these two values and that is the value which is produced as the value of T 

1. 
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This is the way the attributes are computed and then they are passed on to the start 

symbol. 

(Refer Slide Time: 53:27) 

 

How are these translation grammars implemented? Let us say – we consider YACC. In 

YACC, how do we implement such translation grammars? 

The most important thing to observe is – these are all very simple and these can be read 

and understood very easily because they are very similar to what we had before. The 

symbol table is going to be a global structure here. The other important thing that we 



need to do is to make sure that we understand this production, which breaks the single 

production E going to let id equal to E in E into these three productions: E to L B, L to 

let id equal to E and B going to in E. In these two productions everything else happens. 

In this production (Refer Slide Time: 54:15), there is a new scope, which is generated 

and the name is inserted with the new scope. Once we complete this entire production, 

the entries of the previous scope are deleted, the scope number is reduced and we return. 

In other words, this breakage of productions is essential because YACC permits addition 

of rules only at the end of a context-free grammar production. Further, it allows only 

synthesized attribute. In the inherited attribute, the symbol table is implemented in the 

form of a global variable. Similarly, in order to make sure that it is available wherever it 

is used, we have to make it a global variable. These are the two reasons why we need to 

make this symbol table into a global variable. 

(Refer Slide Time: 55:25) 

 

We will stop the lecture at this point with a picture saying that in the next class, we will 

be looking at conversion of the semantically validated syntax tree into intermediate code 

and then look at what happens to intermediate code when it goes through the machine 

code generation phase and optimization phase, etcetera. 

Thank you. 

 


