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Welcome to the 34th lecture of combinatorics. So, in the last class, we discussed about 

partition numbers p of n. It counts the number of partitions for a given positive integer n; 

number of partitions means, how many ways we can express it as a sum of positive 

integers, where the order does not matter. It does not care about, how we order the 

summands. So then after figuring out the generating function for the sequence p of 0, p 

of 1, p of 2, etcetera. So, we went ahead to study some special kind of partitions; special 

kind of partitions in the sense that we impose some extra conditions, we are talking about 

partitions of a second type. The first special type of partition we studied was where the 

number of summands was equal to k, exactly equal to k. 

So, definitely if you want to get p of n we just have to add up the number of partitions 

where the number of summands is equal to 1, number of summands equal to 2, number 

of summands equal to 3, number of summands equal to n. Therefore, it makes sense to 

study this partition; of course this special type of partition and then we saw some 

recurrence relation which is valid for those partition numbers p k of n, right. We see 

involving, right, considering this as a family of sequences p k of n for each k there is one 

sequence and then using this p k can be expressed in terms of smaller and smaller k, 

right; that is what we discussed in the last class. Now we will just get some crude 

estimates for p k of n in terms of n and k. So, this is the next one. 
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So, we are going to show now a lower bound and upper bound, right. So, first we will 

look at the lower bond; p k of n is at least 1 by k factorial into n minus 1 choose k minus 

1. 
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Greater than equal to1 by k factorial n minus 1 choose k minus 1. So, this we can always 

write like k factorial into p k of n is greater than equal to n minus 1 choose k minus 1. 

This comes from the fact that p k of n is the number of solutions for this equation namely 

x 1 plus x 2 plus x 3 plus x k equal to n, where the order does not matter. That means we 



have to make sure that the order does not, by changing the order, we will get a different 

solution. We also put the condition that this is greater than equal to x k and everything 

has to be at least one that is important because we want exactly k parts because if you put 

one of them 0, then we will get less than k parts only. 

But on the other hand, we told that there was this old equation we studied y 1 plus y 2 

plus y k is equal to n and without this condition we just have y i. So, the only condition 

we have is each y i greater than equal to 1 not 0, 1, right. So, what is the difference 

between this two? So, the only difference is that here we have to have x 1 strictly bigger 

than x 2 strictly greater than. So, what we can notice is if we get one solution for x 1, x 2, 

x k, etcetera, then we can try to permute that solution; for instance if x 1 is assigned a 

value a and x 2 is assigned a value b and so on. So, we can try to give a to here, b to here, 

right. So, permute the values assigned to x 1 x 2 x 3 x k to all possible ways; definitely it 

can be done in k factorial ways, right. So, what is assigned to x 1 can as well be assigned 

to x 2 or x 3 or x k and what is assign to x 2 can be assigned to their many of the 

remaining k minus 1 possibilities and so, on right. 

So, actually there are k factorial maximum possible numbers of permutation set we can 

get; each of them may give a solution for the second problem, right, because there the 

order is not important second problem, right but you note that see when you permute. So, 

if they were repetition here x 1 x 2 x 3, etcetera where all equal. So, then there would not 

be k factorial permutations. There will be k factorial divided by some other something; 

that something will be, say, for instance if a certain value is repeating k 1 times then k 1 

factorial will come in the denominator, we have seen it several times. But the maximum 

possible is when they are all distinct and that is k factorial. So, that means from a 

solution for the first equality satisfying this condition, we can get utmost k factorial 

possibilities for the second one; that covers all the possible solutions for the second one.  

In other words if you get a solution for the second one, we can in fact see it as coming 

from a solution for the first one by some permutation of it, because what you do is we 

will rearrange the solution such that y 1 get the maximum, y 2 get the second maximum 

and so on, right. So, that will be a solution for the first equation, right, but then one 

solution for the first equation give raise to many solution for the second one but 

maximum k factorial; that is why k factorial in the p k of n is greater than equal to the 



number of solutions for the second one. We claim that the number of solutions for the 

second one is n minus 1 choose k minus 1, why is it so? 
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Because the second one is y 1 plus y k equal to n, but here we have the condition that y i 

is greater than equal to 1. So, now we can convert it to another system z 1 plus z k equal 

to n minus k by defining z i equal to y i minus 1. We just reduce one from each of them, 

because each y i is greater than equal to 1. Now z i will be greater than equal to 0, is it 

not, because that is what will happen by doing like that, because each y i was greater 

than equal to 0; you reduce one from each y i and get z z i. So, z I will remain greater 

than equal to 0. So, these are very familiar one. We know the solution for this thing is n 

minus k plus k minus 1 choose n minus k or maybe we can also set k minus 1 here, that 

is all same, right, so this cancels. 
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So, that is n minus 1 choose k minus 1. So, here I am saying that you see earlier we used 

to write n minus k here, but that does not make any difference because of the symmetry 

property of the combinatorial coefficients, right, whether we write n minus k here or k 

minus 1 here it is the same thing, right, because n minus 1 minus n minus k is actually k 

minus 1, right. So, this is where this is coming from, right. So, we get this thing. And 

now for the upper bond; the upper bond is 1 by k factorial into n plus k into k minus 1 by 

2 minus 1 choose k minus 1, right. How do you do this? 
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So, you want to show that p k of n is less than equal to 1 by k factorial into n plus k into 

k minus 1 by 2 minus 1 choose k minus 1, or in other words we can say we want to prove 

that k factorial into p k of n is less than equal to this. Now we will use the same argument 

as before; you remember this p k of n correspond to the solutions of this one x 1 plus x 2 

plus x k equal to n, with this x 1 greater than equal to x k greater than equal to 1; this was 

the condition for this thing. Now given any solution for this thing, we can generate 

utmost k factorial solutions from this thing, right; for rotating solution for n but the only 

problem is there can be some. See suppose they were actually k factorial into p k of n 

solutions for this term. Then we can say that the number of solutions for this one when 

we drop this condition x k is great. 

So, all these x I greater than equal to 1; this condition I have written, but the other 

condition that x 1 has to be the biggest, x 2 has to be the next biggest, that condition we 

dropped; that means we can have different orders, the values can be assigned to different. 

For instance whatever is assigned to the x 1 x 1 first can be assigned to x 2 later and so 

on and get a different solution. If that is the situation then we could have written, say, the 

number of solutions for these things namely n minus 1 choose k minus 1 in the upper 

bound. We cannot do it because actually we may not get k factorial into p k minus 1 

different solution; that may not be there because many times the solutions for the 

corresponding to p k of n may have repetitions. So, k factorial may not occur. So, one 

thing we can try is to make these values distinct, how do we do it, right. So, this is the 

way we will do a transformation; we will define y 1 plus y 2 plus y k equal to something 

here n plus something here. How do I do it? 
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So, what I do is y i will be defined as x i plus k minus i. So, for instance y 1 will be equal 

to x 1 plus k, right; y 2 will be x 2 plus, sorry k minus 1, y 2 will be x 2 plus k minus 2 

and so on, and y k will be equal to x k plus k minus k namely k x itself, right. So, we can 

try this conversion, right. So, convert each x i into y i by defining like this x i plus k 

minus i. Now see the total we are adding to the, so x 1 we are adding k minus 1, x 2 we 

are adding k minus 2; finally, y k minus 1 we are adding 1 and here we are adding only 

0. So, how much we are adding? So, this is k into k minus 1 by 2 because there are the 

first term 1, last term k minus 1 and the number of terms k minus 1. So, k into k minus 1 

by 2 is the total we are adding here. So, we just write like this. So, this is a conversion.  

So, we still have y 1 greater than equal to y 2 greater than equal to this thing but then any 

solution for this thing, this first equation will give a solution to this equation where each 

value is distinct. Now each of the solutions gives k factorial permutations of the 

solutions, right. We can reassign these values; keeping the values same we can assign to 

y 1 y 2 y k in all possible ways. There are k factorial permutations possible coming from 

each such solution, right. So therefore, from this thing see of course the claim is that we 

get y 1 y 2 y k all distinct after doing this transformation. So, if they really happens to be 

distinct then this k factorial into p k into n will be the total number of solutions for this 

equation, right, for the original one. Total number of solutions with distinct values, right, 

because these are all distinct, sorry, what we say that corresponding to each solution of 



this thing we will actually get a distinct solution for this thing and that can be permuted 

in all possible ways that all corresponds to the solution for the equation of this sort. 
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So, y 1 plus y 2 plus y k is equal to n plus k into k into k minus 1 by 2 where each y i has 

to be greater than equal to 1; the condition that y 1 has to be the biggest, y 2 has to be the 

second biggest, that is removed, right. Once again I am saying that you find a solution 

for this thing. Now make this transformation; now you get the solution for this equation 

where y 1 is biggest, y 2 is second biggest, y k is last and so on, and here they are adding 

up to n plus k into k minus 1 by 2, but now all the values for y 1 y 2 y k are distinct now 

you drop. Suppose you drop the restriction that y 1 has to be the biggest, y 2 has to be 

second biggest and all, then we will get k factorial times this number of solutions which 

are the solutions for the resulting equation namely this equation, right. 

See here there can be more solutions because there is no restriction that their solution has 

to be distinct or something, but then this are all solution for this thing namely this k 

factorial into p k of n possible solutions are all solution for this last equality and we 

know this number actually has to be les8s than equal to total number of solutions for this 

thing which is actually n plus k into k minus 1 by 2 minus 1 choose k minus 1, right, 

because there k things; this takes all of the n here, right. So, n minus 1 choose k minus 1, 

right, because we have this extra conditions, y a is greater than equal to 1; that was 

always n minus 1 choose k minus 1, but n is replaced by n plus k into k minus 1 by 2 



here minus 1. So, this will come; the only thing we have to now establish is that these are 

all distinct, right, why are they distinct? 
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Because we defined y i is equal to x i plus k minus i. Suppose this was equal to some y j 

namely x j plus k minus j. So, without loss of generality we can assume that this x i this i 

was smaller than j; that means this x i is bigger that x j. Now when you take x i plus k 

minus i suppose this is equal x j plus k minus j. So, that is x i minus x j equal to i minus j, 

but i is smaller than j. So, this is a negative number, but the x i is bigger than x j, this is a 

positive number, alright positive number. Now positive or 0 does not matter, but this is 

strictly a negative number. So, therefore, this is wrong contradiction here. So therefore, y 

i and y j can never be equal, they are distinct. So, from this thing whatever we are trying 

to prove follows, right. 
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So, what we have got now is p k of n is less than equal to n plus k into k minus 1 by 2 

minus 1 choose k minus 1 and the lower bound was, sorry k factorial into, lower bond 

was n minus 1 choose k minus 1, right. Now we can probably try to see how much is 

this? So, this n minus 1 k minus 1 will look like n minus 1 into n minus 2 into. So, k 

minus 1 terms n minus 1 minus k minus 1 plus 1, right, divided by k minus 1 factorial, 

and this k factorial I can take out, this is less than equal to p k of n. 

So, now see suppose n is a very big number compared to k; that means you fix k and as n 

tends to infinity and fixed k, right, then what will happen? See we can say that these are 

all n minus 1 n minus 2 n minus 1 minus k minus 1 plus 1 and all which is n minus k plus 

1. So, these are all about n, right, those small difference is there. We can say 

approximately this is n to the power k minus 1 because there are k minus 1 terms in the 

numerator; see this is approximate. We are assuming that n is very very big compared to 

k and as tending to infinity k is fixed. So, it is approximately n to the power k here below 

its k minus 1 factorial k factorial. 
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So, this lower bound is like approximately n raise to k minus 1 by k factorial into n 

minus k factorial. Similarly the upper bond, upper bond p k of n is less than equal to 1 by 

k factorial into, right, n plus k into k minus 1 by 2 minus 1 choose k minus 1, right. So, 

here you can see starting from n plus k minus k into k minus 1 by 2, we have k minus 1 

term written downward; that is a following factorial starting from that n plus k. So, 

because k is considered to be much smaller than n we can just approximately each of 

them are n. So, this is again 1 by k factorial into approximately n raise to k minus 1 

above and k minus 1 factorial below right. So, we again get that. So, approximately both 

lower bound and upper bound seems to be this. 
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So, we can write p k of n is approximately n raise to k minus 1 by k factorial into k 

minus 1 factorial when n tends to infinity and fixed k. This is because we are assuming 

that n is too large compared to k, right; k will not much effect on these extra terms. 
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So, up to now we were discussing one special kind of partitions namely the partitions 

where the number of parts number of summands is equal to k fixed k, right, for a fixed k. 

now will consider a different kind of partition namely when all parts are distinct, what do 

I mean by that what, all parts are distinct. 
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See for instance we can take 10. So, 10 equal to 10, this is a one summand partition; 

anyway there is nothing to discuss there, because all parts are distinct. Then for instance 

10 can be written as 9 plus 1; here all parts are distinct 9 and 1. It can be written as 8 plus 

2; all parts are distinct here. It can be written as 7 plus 3; all parts are distinct here. It can 

be written as 6 plus 4; all parts are distinct here. It can be written as 5 plus 5, but the 

parts are not distinct here 5 and 5, right. So, this is not a distinct partition where all parts 

are distinct. 

So, for instance if you consider three summand partitions for 10. So, 10 equal to, say, 8 

plus 1 plus 1, but this is not allowed for us, because all parts are not distinct here because 

this 1 and 1; 1 appears 2 times here, right. So therefore, this is not, but on the other hand 

7 plus 2 plus 1 is allowed, parts are distinct here. Now we are interested in what is p D of 

10 namely the number of partitions of 10 where all parts are distinct, p D of n in general, 

right. So, we want estimate the value, but we would rather see what is the generating 

function for that.  
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That is what our aim as of now p D of n, right. So, we have to worry what is p D of 0. As 

usual we will assume that it is 1 because yeah when we write down the generating 

function it has to be 1 because we are taking it as the co-efficient of x raise to 0 and that 

has to come as 1. So, p D of 1, p D of 2, this sequence; so, let us consider generating 

function for this sequence, right, so that means i equal to 0 to infinity p D of i into x raise 

to i. This is generating function; this generating function is actually if you gives some 

thought is equal to pi of 1 plus x raise to i i equal to 1 to infinity, why is it so? 
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Because the first term will allow us to select the number of one’s, but see now this is 1 

plus x; earlier we used to write 1 plus x plus x square plus x cube plus like this an infinite 

series power series here, but that only meant that we are allowing to take 1 one or 2 one’s 

or 3 one’s or whatever number of one’s we want, but now we say we will not allow 2 

one’s or 3 one’s or more one’s, right. So, we will just allow just 1 one or 0 one, that is it, 

right. So, 1 plus x is there. Similarly the next term will be 1 plus x square, what does it 

mean? We are allowing either 0 2 or 1 2, not more than that. 

Earlier we used to write there this one, right, x raise to 4, x raise to 6 and so on; that 

means in general when you want to select k two’s we would just picking up this x raise 

to 2 k from that, right. But then we are not allowing all those things now, because we are 

allowing only 1 2 or no 2, right, because we are talking about distinct part, no part should 

repeat, right. Similarly 1 plus x 3, 1 plus x 4, 1 3 will be allowed, 1 4 will be allowed, not 

more than that, right. So, this is why this generating function is like this, okay. Yes, p D 

of i into x raise to i. 

Now the next thing next type of partition we want to consider is this one, the p o of n 

what is this? If the partitions of n where all the parts are odd numbers; for instance again 

10 if you take 10 equal to 10, this is not a valid partition, why? Because 10 is not an odd 

number, but 10 equal to 9 plus 1 is a valid partition because both 9 and 1 are odd 

numbers, 8 plus 2 is not valid. Because these are not odd numbers, 7 plus 2 plus 1 is not 

a valid partition valid because 2 is an even number here, right. But on the other hand 7 

plus 1 plus 1 plus 1 is valid, because these are all odd numbers, right, and similarly 5 

plus 5 is allowed because both are odd numbers and so on, right. 
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And similarly 10 equal to 1 plus 1 plus 1 plus 1; 10 one’s, right, is a valid one because 

they are all odd numbers and the number of such partitions are called p D of 10, right, 

the number of odd partitions are p o of n, right, number of odd partitions of 10, right. So, 

we are in general interested p o of n.  
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So, an interesting observation that can be made if you work with small examples; for 

instance try with some number 1, 2, 3, 4, like that up to 10 we try and count. Make a list 

of this values p D of n and p o of n make a table, right, for each n you just list down what 



is this value, what is this value. We will see that both are same interestingly. We will 

design p o of 0 is equal to 1 as usual, right. So, there also it will be equal. So, everywhere 

it will be equal is what we will see, but why is it so? We will give a proof of that, right. 
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But before that we will see how I will write a generating function for the sequence p o of 

0, p o of 1, p o of 2 this sequence, right. So, why am I writing the generating function 

because if I write down the generating function and somehow manipulate the generating 

function and show that this generating function is the same as the generating function I 

obtained for the other sequence namely p D of 0, p D of this sequence, right, what does it 

mean? It would mean that both sequences are same; for instance p D of n will be equal to 

p o of n; this is what we can infer from that, right, in particular this is what will come. 

So, now that is what our aim now. 
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But then it is easy to find the generating function for this p of n sequence, because you 

know you are only allowed to take odd numbers, right. So, we should allow one. So, this 

is okay, this is the first one; that means 1 is allowed, right, but two is not allowed to take. 

So therefore, we would not add this stuff because how many two’s are being selected; 

this was what this was determined, anyway we are not allowing this at all. So, you would 

not add it, but then three is allowed. Next term is there, right, 1 plus x cube plus x raise 

to 6 plus x raise to 9 plus so on. And now this term 1 plus x raise to 4 plus x raise to 8 

plus x raise to 12. This was counting how many four’s are being selected, but four’s are 

not allowed to be selected at all. 

So, we would not add that, but then next 5; yes, that is okay, 1 plus x raise to 5 plus x 

raise to 10 plus x raise to 15 plus, this is okay; like that we can write one term for each 

term. The intermediate terms which are missing namely the ones corresponding to the 

even terms that because you remember this is exactly the same generating function for 

the p of nm but only thing us that we are skipping the alternate one’s because the one’s 

written for two one’s, terms written for 2, terms written for 4, terms written for 6, like 

that. But then you know this is what; this is 1 by 1 minus x, this is 1 by x cube and 1 by x 

raise to 5 and so on only odd numbers. This will be the generating function, say, p o of x 

will be like this. Now we will show that this generating function is the same as the 

generating function for p D of n. 
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So, you remember the generating function for p D was this 1 plus x into 1 plus x square 

into 1 plus x cube into so on, right, but this 1 plus x is what? 1 plus x can be written as 1 

minus x square by 1 minus x. Similarly 1 plus x square, the second term, this can be 

written as 1 minus x raise to 4 by 1 minus x square, right. If you multiply this and this 

you will get this 1 plus x square into 1 minus x square is 1 minus x raise to 4. Similarly, 

1 plus x cube can be written as 1 minus x raise to 6 by 1 minus x cube and so on. Now 

you substitute here for this may be this 1 plus x I will take this and substitute. 

So, that is 1 minus x square by 1 minus x into, for this one will substitute this, right. So, 

1 minus x raise to 4 by 1 minus x square and this will come here 1 minus x raise to 6 by 

1 minus x cube and so on. Now you know in the upper part we have 1 minus x square 1 

minus x raise to 4 1 minus x raise to 6, all 1 minus x to the power and all even number. 

Below we have everything 1 minus x 1 minus x square 1 minus x cube 1 minus x raise to 

4 and so on. So, all those things which appeared in the numerator we will cancel off from 

here like this, right. Now what will remain in the numerator will be 1 and bellow you 

will have 1 minus x because even things will go away 1 minus x cube 1 minus x raise to 

5 and so on; if you remember this is exactly this, right, and that is p o of x. 
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So, what we have seen now is just by manipulating the generating function while we 

have got p D of x is equal to p o of x, right, which means that the generating function for 

the sequence corresponding to the number partitions with distinct parts is the same as the 

generating function for the number of partitions with all odd parts. So, it follows that p D 

of n is equal to p o of n; it is a very cute proof using generating functions, alright. So, 

what one should notice is that even to make this observation it is a little difficult, because 

you have to play around with these partitions and then get a feel of these numbers then 

only we can numbers such a conjecture even, proof is different. So, one should try to 

come up with an accounting proof straight proof without using generating function. So, 

then this cute simple technique is in generating function, one may able to appreciate 

better. 
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Now we will look at this. See because now that we have talked about proving it in a 

different way without using generating functions, what are the other techniques 

available? So, there is one technique by using a special type of diagrams called Ferrer’s 

diagrams, right, what are this Ferrer’s diagrams? In the partition literature this is very 

much used and given a partition we can pictorially represent the partition like this. 
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For instance let look at this partition of 10, 6 plus 2 plus 1 plus 1, right. So, what we do is 

to represent 6 in the first row we add 6 dots and and now the second part two, we just 



add two dots in the second and, then we add just one dot, and then we add just one dot. 

This is a representation of this partition of 10. If you count the total number of dots that 

is equal to 10 and the parts appear in the rows. So, there are this many rows; therefore, 

that is the first part. And you should know biggest part should not come in the first row, 

second biggest should come in the second row, third biggest should come in the third 

row and so on, right; this is the way. 

We can take another example; for instance, say, 8 equal to 5 plus 3 plus or may be 9 

equal to 4 plus 3 plus 2, right, maybe again I will write 10 equal to 4 plus 3 plus 2 plus 1 

adjust to get 4 rows. So, the picture will be like this. So, I will put four rows, four dots in 

the first row; it correspond to this four and then I put 3 rows in the next on just below 

them correct in the upper way will starting from the left most and then two dots in the 

third row to match this and the one dot this thing; total number of dots is 10 and the parts 

of the partition appear in each rows. So, this is called Ferrer’s diagram. So, each possible 

partition of 10 we get a Ferrer’s diagram. 

Now what is the conjugate of a Ferrer’s diagram? So, you could have for instance given 

this Ferrer’s diagram you could have, say, this Ferrer’s diagram let us say, you could 

have read it like this as the first row, this is the second row, this as the third row, this is 

the fourth row, fifth row, sixth row. This will correspond to for instance if I rearrange it 

will look like four dots here, two dots here this one, right, this column will come here 

and this third column and then fourth, fifth, sixth. So, this is actually 4 plus 2 plus 1 plus 

1 plus 1 plus 1 is equal to 10; it is a different partition of 10, right, this is the conjugate of 

this partition, right. 

So, that means instead of reading the rows reading row-wise we read column-wise, that 

is all, right. So, it is obvious we will get a partition because the first column will be the 

longest possible, second column is next longest and so on, right. So, we can use this idea 

that by reading the columns we will get another partition of the same number and 

actually a Ferrer’s diagram for another partition of the same number we can prove 

something. 
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So, for instance look at this statement. The number of partitions of an integer into m 

summands is equal to the number of partitions of n into summands where m is the largest 

summands. So, again we were telling that we are considering different type of partitions, 

we still consider this thing. 
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For instance first is familiar given n we are talking of p m of n; that means a number of 

partitions of n into m summands. Now we are saying this number is going to be equal to 

the number of partitions of n into summands where the largest summand equals m, why 



is it so? Because if you consider a partition of n into m summands it will look like this 

some row, first row, then another second row, and then third row, then fourth row. So, 

there will be m rows, right. This will be m rows because m summands are there; always 

such a partition will have m rows. Now we consider the conjugate partition, and now the 

first row will correspond to the first column, right. 

This will be always exactly equal to m and obviously, this is the largest summand in it. 

So, consider the set of partitions of n where there are exactly m summands, and consider 

the set of partitions of n where the biggest summand is equal to m. There is a one-to-one 

correspondence between the two because take a Ferrer’s diagram for one from these 

partitions set of partitions, take a partitions from the set of partitions where the number 

of parts are equal to m and then take the conjugate of that; that will be a partition of n 

where the biggest part equals m, because the column the first column will have m things 

in it, that becomes the first row; that is the biggest part. 

And conversely see if you take a partition way of n where the biggest part is equal to m 

and consider the conjugate of that. It will become a partition of m where the number of 

parts is exactly equal to m, right, because the row becomes a column here, right. So, you 

can see that that is a one-to-one map; it is almost obvious from the picture, let us not 

waste too much on that. So, you should verify the bisection carefully, right. So, this is 

like from using the conjugate idea, right; the fact that given the Ferrer’s diagram of 

partition of n and if you consider the conjugate of that partition, we will end up with 

another partition of n and the first look this is one theorem we can write now, right. 
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Now let us look at another one. The number of partitions of n plus k into k parts equals 

the number of partitions of n into at most k parts. 
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So, it is like p k of n plus k number of partitions of n plus k into exactly k parts; this is 

equal to number of partitions of n into at most k parts, how do we do that? So, we 

consider the set of partitions of n pus k first; we will show bisection to the set of 

partitions of n into at most k parts. So, if you have a partition of n plus k, say something 

like this, right, and it is exactly k parts; that means the number of rows are equal to k. 



Now what we can do is we remove one from here, one from here, one from here, one 

from here, one from here, one from here. The last from each row will be there; not that 

some other rows may contain just on the other, the lowest rows may contain only one. 

So, will just remove them like this, right. So, k things are gone. So, the remaining is a 

Ferrer’s diagram; this is a Ferrer’s diagram for n a partition of n, and how many parts 

will be there? It will never be more than k, it will at most k, right. So, given a partition of 

n plus k into exactly k parts by this transformation, we can get a partition of n into at 

most k parts. Conversely if you get a partition of n into at most k parts, considering 

Ferrer’s diagram, say, something like this, right. For instance we can consider this 

particular partition. 

Now what you can do is you add one; see add one, say, here at the end of every row. So, 

clearly it will be a new Ferrer’s diagram which corresponds to see for instance what I do 

is suppose see I know that number of rows here is at most k less than equal to k. So, we 

will add one at each of them, but if this was strictly less than k; suppose this many more 

rows are required to make it k. So, then I will add one, one, one here; that means what I 

am doing is I am adding exactly k new dots to the Ferrer’s diagram. 

If there are not enough rows I will have to introduce this single dot rows in the lowest 

parts, right. So, total k things will be added; that means we will get a Ferrer’s diagram 

for a n plus k by this operation, right, and it will have exactly k rows in it; it will have 

exactly k rows in it, and you can see that there is a bisection because if this got mapped 

into this by the reverse operation will get back this, right. So therefore, the number of 

partitions of n plus k into exactly k parts is equal to the number of partitions of n into at 

most k parts. 



(Refer Slide Time: 50:35) 

 

Now the next one is a little more nontrivial, let us look at it. So, this again we have to 

introduce what this about. The number of partitions of n into even number of unequal 

parts distinct parts; that is equal to number of partitions of n into an odd number of 

unequal part, unless n has some special form; this is what it says. So, let me introduce 

what we are looking for now. 
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So, for instance, again take the example of 10 see 10. This is a partition of 10 into just 

one summand, and they all distinct of course one summand has to be distinct. So, this is 



an odd number of parts; there are two properties for this partition, odd number of parts 

and distinct summands, right. On the other hand if you consider 10 equal to 9 plus 1; this 

is again the summands are distinct, but the number of parts is even. So, that goes to the 

other kind, right. So, 10 equal to 7 plus 1 plus 1 plus 1; this is not even distinct. So, here 

1 1 1, these are all same. So, this we do not even consider, right. 

We are not interested in it. 10 equal to 8 plus 2, this is fine. There are two distinct 

summands, and this will be even number of summands, right. So, you remember when 

we counted p D of n we were looking at the partitions of n where the summands are all 

different. Now we are grouping them into two categories where the number of. So, we 

are only interested in the partitions which will contribute to this, but then we can put 

them into two categories, namely those which of an odd number of summands, those 

which have an even number of summands. We are saying that they happen to be equal 

for most m. 
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But it need not be equal in some cases; if n is of the form 3 m square minus m by 2, then 

it would not be equal. One of them will be bigger; that means the number of odd parts. 

So, the number of partitions distinct with distinct parts and odd number of summands can 

be more than the other type; that means the partitions with distinct summands are having 

an even number of summands, or the other way may be the number of partitions with 

distinct parts and even number of summands may be more. 



But whichever is more it will be more only by one; the difference between the two 

numbers will be only one, that is what it is, and another type of number for instance here 

also this is true n equal to 3 m square plus m by 2. In this case also we can say that it 

would not be equal but whichever is bigger that will be only bigger by one. So, we can 

take small examples and see for instance. 
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See for 1, n equal to 1. So, it is very difficult to try out big examples. So, n equal to 1, the 

number of partitions itself for instance it is only 1, right, just 1, but this is distinct 

summand, but then only odd number of summands. So, the first category the P D and O 

let us say P D and O, right; that is equal to 1. What about p D and E that is equal to 0? 

This is 1 more than 0. Now I will say that this n equal to 1 is of the type 3 m square 

minus m by 2, why? If you put m equal to 1 we will get that is 3 minus 1 by 2 is equal to 

1; that is why it is happening. 

Now we can take n equal to 2, what is happening? Distinct summands the odd number of 

sum, so the other partition is just 1 plus 1, right; here this is not even distinct. So, this is 

not useful; there is only one of them, but then this is again P D O equal to 1 and P D E 

equal to 0, but I am telling that n is again of the form 3 m square plus m by 2 this time, 

why? Because if we put m equal to 1 we get 3 plus 1 by 2 that is 4 by 2 is 2, see, but the 

difference between P D O and P D E is only one 1 here 0 here; here also its 1 and 0 right.  
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But on the other hand if you go to n equal to 3, now what are the parts? 2 plus 1 and 1 

plus 1 plus 1 three summands, but then this is not distinct. So we do not have to consider 

this. So, here this distinct summand, this is distinct summand, but this contribute to our P 

D O, because even number of summands just one. Here this is odd number of summands 

the P D E equal to 1, 1 and 1 equal. So, you can see that n equal to 3 will not be of the 

form 3 m square minus m by 2 or 3 m square plus m by 2; it is not of the form. 

We can try for instance when I put 1 here I got 1, when I put 1 here I got 2. If I get 2 here 

that will be 12 minus 2 that is 10 by 2, that is only 5, right; sorry 4 into 3 12 minus 2 that 

is 10 by 2 - 5. Here if I put 12 plus 2 by 2 7, right. So, n equal to 3 is not of that form, 

right, but then in that case, they are equal. Now we can try with 4, 5, 6, 7, etcetera and 

check whether what we are claiming is correct or not, right; that I will leave it to you. In 

the next class I will continue with proof of this statement using Ferrer’s diagram. So, this 

is bit more nontrivial than the kind the proofs we have done earlier. I will continue in the 

next class. 


