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Welcome to the twenty seventh lecture of combinatronics. 

(Refer Slide Time: 00:20) 

 

In this class, we will look at non-homogenous recurrence relations and propose some 

methods to solve it. It is not that these methods will work always, but this is the way one 

can try to solve it. 



(Refer Slide Time: 00:42) 

 

In the last class, we had discussed this tower of hanoi puzzle. And, we show that, we can 

formulate. So, the puzzle will give rise to a recurrence relation – h n equal to 2 into h n 

minus 1 plus 1. So, the question was how to solve this recurrence relation. We show how 

to unroll this recurrence relation; that means h n equal to 2 into h n minus 1; that is equal 

to two times – 2 of h n minus 2 plus 1. Like that we got a sequence of numbers, which 

we added in the end. And, it was like 1 plus 2 plus 2 square plus 2 cube plus like that. 

And we got in the end, the answer 2 to the power n minus 1. So, now, the intension here 

is to look at a different procedure, which probably can be called a little more general; 

that we can try to apply whenever we have a situation like this. 



(Refer Slide Time: 01:59) 

 

There are three steps. First step – we find the general solution of the corresponding 

homogenous relation. What do we mean by that? 

(Refer Slide Time: 02:14) 

 

For instance, in this tower of hanoi case, we have h n equal 2 into h n minus 1 plus 1. So, 

what is the homogenous part here? We know that, the homogenous part is this, because 

this is that b n, remember – b n when we formulated the k-th order recurrence relation as 

h n equal to a 1 into h n minus 1 plus a 2 into h n minus 2 plus finally a k into h n minus 

k plus b n. This is what we wrote. And we told this when this b n is 0; then it is a 



homogenous recurrence relation of order k and linear off case – linear homogenous 

recurrence relation of order k; that is what it is. But then, suppose b n is not equal to 0; 

then, we say that it is non-homogenous. Here this is a non-homogenous recurrence 

relation, because here h n equal to 2 into h n minus 1; here a 1 is equal to 2 and h n 

minus 1. And, there is nothing more, because k is equal to 1 here. This is the first order 

recurrence relation; and then, this plus 1; plus 1 corresponds to this b n here. 

(Refer Slide Time: 03:53) 

 

Now, there are two parts to it. There is a homogenous part to it. The homogenous part is 

h n equal to 2 into h n minus 1; which means we just discarded the other part; this plus b 

n part plus b n; in which case, here it is 1; this – we just remove; and, this is called the 

homogenous part of the recurrence relation. This we can easily solve, because this is h n 

minus 2 h n minus 1 is equal to 0. And, the characteristic equation is x minus 2 is equal 

to 0. And, that implies x equal to 2, is the solution of the characteristic equation. 



(Refer Slide Time: 04:36) 

 

And then, the general solution for the homogenous part is h n equal to some constant c 

times 2 to the power n. Remember – 2 was the solution of the characteristic equation. 

This we remember. Now, what we do is remember – we have the initial conditions h 0 

equal to 0 and h 1 equal to 1 for the tower of hanoi. There are zero d’s; there is zero 

moves required. There is just one disc on the first peg; we just need one move. These are 

the initial conditions. We have to fit this thing. And, not only that; this only fits the 

homogenous part; the actual recurrence relation is not h n equal to 2 into h n minus 1, but 

rather h n equal to 2 h n minus 1 plus 1. So what we do is; we find the particular solution 

of this thing. We will go back to the steps (Refer Slide Time: 05:33) – the first part was 

find the general solution of the corresponding homogenous relation.  

Then, we find a particular solution of the non-homogenous relation; non-homogenous 

relation means this full relation. What is this particular solution? What we do is; we will 

find the solution, which will work for some initial condition – some particular value of h 

0. For instance, what I do is I will substitute. So, I will see whether if I take some 

constant, it will work or not. For instance, take a number say d or we can say a number k, 

let us say; k being a constant. So, some solution like h n equal to k is what I am saying; 

that means for some number k, can this sequence k, k, k, k, k – the sequence satisfies h n 

equal to 2 times h n minus 1 plus 1? This is the question. 



(Refer Slide Time: 06:51) 

 

Let us try it. h n has to be equal to k; that is, 2 into h n minus 1. That is again has to be k, 

because h n minus 1 and h n – both are k. All of these h i’s are k’s – plus 1. So, is it 

possible to get some solution for this thing? This off case if we cancel k here, we get zero 

here. And, this becomes 1 k; that means k is equal to minus 1. So, if we take k is equal to 

minus 1, it will indeed be true. And, this sequence – consider a sequence minus 1, minus 

1, minus 1, minus 1, minus 1, so on. So, it is true that, if you add two times minus 1 plus 

1, that is indeed another minus 1. 2 into minus 1 plus 1 is minus 1. So, it is satisfying the 

recurrence relation h n equal to 2 times h n minus 1 plus 1. So, this is a particular 

solution. We could find this particular solution. 

The good thing now is what, why did we find a particular solution like this? See this 

particular solution will not be a valid solution for us, why? Because this indeed satisfies 

the recurrence relation, but it does not satisfy the initial condition namely, h 0 equal to 0, 

h 1 equal to 1. These things are not satisfied. So, we need only one initial condition. So, 

h 0 is equal to… We can start with say h 1 is equal to 1 for instance. That is more clearer 

that, this is what we are talking about, because when one disc is there, we need one 

move, because these are all minus 1s. Then, h 1 is not equal to 1 here. So, this is not a 

correct solution for us. But, then we can use this particular solution (Refer Slide Time: 

08:43) and the general solution to create a lot more solutions. How? Combine the general 

solution and the particular solution and (( )) and the values of the constants arising in the 



general solution, so that the combined solution satisfies the initial conditions. This is 

what we should do. This is the third step. 
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Again, I am saying, if h n equal to c times 2 raised to n will satisfy what? This will 

satisfy this relation – h n equal to 2 times h n minus 1. Now, this sequence – minus 1 – h 

n equal to minus 1 will satisfy this entire relation h n equal to 2 into h n minus 1 plus 1. 

So, what is not satisfied is the initial condition; that means h 1 equal to 1. This is what is 

not satisfied. So, to satisfy this also, what we should do is; we should create another 

solution; namely, we will add up these two. For instance, h n equal to c times 2 raise to n 

plus 1 – will this be a valid solution for the recurrence solution? It is indeed, because if 

you substitute see h n equal to c into 2 raise to  n minus 1 – this h n minus 1. So, what I 

did is; I added these two things together. Then, what happens is; if we consider this part 

h n minus 2 h n minus 1 minus 1 equal to 0; this is the way we write the recurrence 

relation. 

And, if we substitute this to here; c 2 raise to n minus 2 times c 2 raise to n minus 1 – 

that will become 0, because this is homogenous part of the recurrence relation; that 

means h n equal to 2 h n minus 1 or h n minus 2 times h n minus 1 is (( )) equal to 0 is 

satisfied by c times 2 raise to n for any c. So, it does not have any effect; that is what. 

This part does not have any effect on it; it simply disappears from this itself. But, the rest 

is minus 1. If you put minus 1 for h n and here also minus 1, we will get minus 1, minus 



2, another minus 1. So, what happens is, this minus 1 and minus 1; that is, it will become 

minus 2; here minus 2 times minus 1 will become plus 2. So, that is, indeed becomes x 0. 

That is clear, because when I put h n equal to minus 1, this entire thing is anyways 

satisfied. The extra c times 2 raise to n has no effect on this, because h n minus 2 h n 

minus 1 itself will nullify the effect of them, because if we substitute c 2 raise to n here 

and 2 into c 2 raise to n minus 1 here; that becomes 0. That is what the meaning of this; h 

n equal to c times 2 raise to n is the solution of h n equal to 2 into h n minus 1. So, we 

understand that, since h n equal to c times 2 raise to n is a solution of the homogenous 

part – that h n equal to 2 into h n minus 1; and, h n equal minus 1 is a particular solution 

for this one – h n equal to 2 times h n minus 1 plus 1. So, indeed h n equal to c times 2 

raise to n minus 1 is a solution for this recurrence relation – this part. 

(Refer Slide Time: 12:57) 

 

Now, we have a c there; that is a constant here; which we can decide the way we want; 

that means c times 2 raise to n minus 1. Suppose if you put n equal to 1; that is… Then, 

what will happen? This will become c times 2 minus 1. But, when n equal to 1, we need 

the answer to be h 1 equal to 1. So, what is this? c times 2 equal to 2; that means c equal 

to 1. c equal to 1 will satisfy our initial condition; which means c times 2 raise to n minus 

1 is a solution is what we told. Put c equal to 1; that means 2 raise to n minus 1 is indeed 

the solution for the recurrence relation, which satisfy the initial condition. So, this is 

exactly what we got in the other (( )) 



We elaborately described it to explain the methodology. There are three steps in it. First, 

we consider only the homogenous part and solve the homogenous part first by the 

techniques we have already learnt for solving the homogenous linear recurrence relation 

with the constant coefficients. Then, we get a particular solution for the entire non-

homogenous recurrence relation. It will just work. It will work for some initial values, 

but not for every possible initial values. In particular, the initial values given to the 

problem may not be satisfied by this particular solution. 

Now, what we do is; we combine the general solution for the homogenous part plus with 

a particular solution for the non-homogenous recurrence relation we have. And, that is 

indeed a solution for the non-homogenous recurrence solution given to us. But, then the 

good thing is there is a constant available there, which we can manipulate; which we can 

fine tune to meet our requirement. What is the requirement? We have to meet the initial 

condition. We substitute n equal to whatever; maybe 0; whatever. And then, we get an 

equation involving c and we solve for it; that is what. We will take yet another example 

and see what happens.  

(Refer Slide Time: 15:24) 

 

If b n is a… Before getting further, we will just mention that, here off case, there are two 

parts. One is first find the general solution for the homogenous part. There you have to 

solve the characteristic equation off case. We can easily find the characteristic equation. 

The difficult part is to get the solutions for the characteristic equations; which may not be 



so easy, because we do not have techniques to solve any polynomial equations. For 

instance, if it is a higher degree polynomial, we may not be able to do it so easily. So, 

that is the difficulty in it in using this method. Somehow we can find the roots of the 

polynomial. So, we can get by the earlier methods some particular solution for this thing. 

We have given general solution for this – general solutions in the case of all distinct 

roots and also when the roots are repeating, we have given solutions for this thing. 

But, the next part is to find the particular solution. Particular solution – how will you go 

about finding the particular solution? In the tower of hanoi case, what we did is; we just 

substituted; we saw whether a constant would work or not; will a sequence like k, k, k, k 

– I mean unchanging values – will it fit the given recurrence. Definitely, it need not fit in 

all cases. So, here we need… Sometimes we may need some different kind of 

substitutions also. Here there is a list – what kind of particular solutions we may try. For 

instance, if the b n is indeed a constant; like now, previous example, it was 1 there. Then, 

we can try a constant like this if it may work. 

If b n is of the form dn is plus e – some linear in n; that d times n plus e; then, we can use 

h n equal to r n plus s. See not that always if we substitute this thing, this will always 

work; but, this is the thing to try. Then, similarly, if b n is equal to f times n square plus d 

n plus e; then, we can try h n equal to r times n square plus s n plus t; where r, s, t, 

etcetera are some constants; f, d, e – all of them are constants here. If b is an exponential; 

that means like b equal to d raise to n for some constant d; then, what we do is try h n 

equal to p times d raise to n for some other constant p. So, these are some guidelines for 

finding the particular solution. Now, you see once you get the particular solution, then 

see what happens is; you can sum up the general solution for the homogenous part and 

the particular solution and then solve for the constant, so that the initial conditions are 

met; that is what we should do. 
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Now, we will get some experience by looking at some problems. For instance, look at 

this problem – h n equal to 3 times h n minus 1 minus 4n for n greater than equal to 1; 

and, for h 0, you have 2. Initial condition is h 0 is equal to 2. h n equal to 3 times h n 

minus 1 minus 4n. Here you can see that it is a non-homogenous recurrence relation, 

which is linear and of order 1. And, non-homogenous, because b n is not 0 here; b n 

equal to minus 4 and here. 

(Refer Slide Time: 19:31) 

 



Now, this is the recurrence solution – h n is equal to 3 times h n minus 1 minus 4 n. We 

have h 0 equal to 2 for our initial condition. The first step is find the general solution of 

the homogenous part. Homogenous part is h n equal to 3 times h n minus 1. Clearly, the 

characteristic equation here is x minus 3 equal to 0; which means x equal to 3. So, 

general solution for this one is h n equal to some constant c times 3 to the power n. For 

this thing, you can substitute c times 3 n; whichever is the constant – c times 3 n; it will 

work; you can see that – c times 3 n minus you put here; c times 3 n is coming. And, that 

is exactly the value for (( )) 

(Refer Slide Time: 20:31) 

 

The next step is to find a particular solution for this one – 3 into h n minus 1 minus 4 n. 

Now, we are saying that, this is of the second type. Second type means we will go for the 

chart here (Refer Slide Time: 20:48) d n plus e. Then, rn plus s is what we should try. If 

this is minus 4n plus 0; this is of this form – second category. So, we will try h n equal to 

rn plus s for the further particular solution. This is what we will try – h n equal to rn plus 

s. Here this r and s – both are constants. See whether will work or not; that means you 

substitute for h n. So, what we get is rn plus s equal to 3 times r into – here n minus 1 – 

plus s minus 4 into n. Now, we have to simplify. So, this is 3 rn or we get here 3 times rn 

minus 3r plus 3s minus 4n here. 
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Now, we can collect the terms involving n together; that is, 3r minus 4 – this is equal to 

rn plus s is equal to 3r minus 4 into n plus 3s minus 3r. This is what we say. Now, we can 

compare the coefficients of n. If we have the coefficient of n as r here; r has to equal to 

the coefficient of n here namely, 3r minus 4; which would imply that, 2r is equal to 4 is 

equal to… which will imply that r equal to 2. Now, we can compare the constant terms. 

Here it is s; s equal to 3s minus 3r is the constant term here. So, that would be 2s equal to 

3r; that is, 3 into 2 – 6. What does it mean? s equal to 3. We get r equal to 2 and s equal 

to 3. 

(Refer Slide Time: 23:26) 

 



So, our particular solution is 2n plus 3. So, we can try it out. See if we substitute 2n plus 

3 in the recurrence relation h n equal to 3 times h n minus 1 minus 4n. It should indeed 

work, is what it says. It will work. If we want to try it, we can just check it – 2n plus 2 

equal to –  it will become 3 into 2 into n minus 1 plus 3 minus 4n. So, here we have 6n; 

here we have minus 6 plus 9; that is, plus 3 minus 4n; which will make it 2n plus 3s we 

want. This and this are same. I just verified this particular solution is indeed one.  

But, only one problem here – if 2n plus 1 is the solution, this will not meet the initial 

condition. For instance, we wanted h 0 to 2. This is what we mentioned before – h 0 

equal to 2. h 0 equal to 2 is what we wanted. But, in this case, if we put n equal to 0, 

what will happen is 2 into 0 plus 3; that will be 3; h 0 will 3 here. But, we want h 0 equal 

to 2. What we will do? This particular solution is indeed valid for the recurrence relation, 

but it is not satisfying the initial condition. And, we do not have any thing to tune, 

because there is no constant, which we can select according to our requirement. 

(Refer Slide Time: 25:33) 

 

So, what we do is, we will combine the particular solution – 2n plus 3 with a general 

solution of the homogenous part; which was c times 3n. This is indeed going to be a 

solution for your… If I take h n is equal to this; this will indeed satisfy h n equal to 3 into 

h n minus 1 minus 4n. Why? Because you know this part is a solution for this thing. And, 

when I substitute this, the contribution due to this will be cancelled here. So, here and 

here the same contribution. And now, we only have to worry about, whether this will 



balance both sides when I give this thing here and this thing is for instance, 2n plus 3 part 

is given to n equal to n minus 1 here. Substitute; will it satisfy it or not? That is all we 

have to worry. And, we have already seen that, this solution h n equal to 2n plus 3 will 

satisfy this thing. Contribution from this thing is anyway balanced due to the fact that, 

this was the solution for this h n equal to 3 into h n minus 1 – the homogenous part.  

Therefore, this is indeed a solution for this thing. What is good about this new solution? 

The good thing about this new solution is that, there is a c here. And, this c we can 

choose; it is irrespective of whichever c we put. This relation will be satisfied, because 

that does not depend on this c. But, on the other hand that, tuning this c, fixing the c at a 

correct value will help us to get our initial conditions satisfied. 

(Refer Slide Time: 27:18) 

 

What is the initial condition? h 0 equal to 2. Now, you try putting (Refer Slide Time: 

27:22) n equal to 0; we get… This will go away. We get 3 plus c; 3 plus c equal to… that 

means 3 plus c has to be 2 is what we say. So, we can decide c to be minus 1. If you 

decide c to be minus 1, it will work; that means here we have to put minus 2n plus 3 

minus 3n; that is all. So, we could find the value of c, so that this not only satisfy the 

recurrence relation; but, it also satisfy the initial condition. h 0 equal to 2 here. So, that is 

is the idea. So, we can recall that, how we have gone through three steps and then how 

we got the solution (Refer Slide Time: 28:18) in the end by solving for the constants. 
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Now, we will try one more example that, h n equal to 2 into h n minus 1 plus 3 raise to n. 

This is a slightly different example to show that, this may not always easily work. 

(Refer Slide Time: 28:40) 

 

h n equal to 2 into h n minus 1 plus – what is that? 3 raise to n. Let us see what this is. n 

(Refer Slide Time: 28:56) greater than equal to 1 (( )) h 0 equal to 2. We have h 0 equal 

to  2. This is the initial condition, because we can only… This is the first order relation. 

So, we have this reccurence relation working starting from n equal to 1 onwards; n equal 

to 0 – we have to give the initial value right. Now, to solve this thing, the first step – as 



usual, separate out the homogenous part – h n equal to 2 into h n minus 1; and, its 

characteristic equation – that is, x minus 2 equal to 0. The solution of the characteristic 

equation is x equal to 2. 

(Refer Slide Time: 29:55) 

 

Now, if the solution of the characteristic equation is x equal to 2; then, we know that the 

general solution is h n equal to c into 2 raise to n. This is for the homogenous part. Now, 

we have to find a particular solution for the entire non-homogenous equation namely, h n 

equal to 2 into h n minus 1 plus 3 raise to n. How will you find the particular solution 

and for this thing? We look at the chart; when we look at the chart, we see (Refer Slide 

Time: 30:28) that, if b n is an exponental – like b n is equal to d to the power n form; 

then, we can try h n equal to something like p into d raise to n. Here 3 raise to n.  

So, we will try h n equal to some p times 3 raise to n. This is what we will try; that 

means we subsitute it – p into 3 raise to n equal to 2 into p into 3 raise to n minus 1 plus 

3 raise to n. Now, we can cancel off this 3 raise to n minus 1 from all here; we get 3 here, 

3 here; that means 3 p equal to 6 p plus 1. This is what we get. So, we put h n equal to p 

into 3 raise to n. So, 2 into p into 3 raise to n minus 1 we put, because h n minus 1 only 

we consider; and, this is 3 raise to n. Off case, we can cancel off 3 raise to n from 

everywhere. But, (( )) wheter I am (Refer Slide Time: 31:58) (( )) this 2 only. So, we 

get… 
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From this thing, what do we get? 3 p plus 1 equal to 0 is what we are getting. So, we get 

p equal to minus 1 by 3. Now, off case this (Refer Slide Time: 32:19) will… minus 1 by 

3; what will be h n then? h n equal to p times 3 raise to n; that is, minus 1 by 3 into 3 

raise to n; that is, minus 3 raise to n minus 1. This will be the particular solution. If you 

want to check whether it is working; it is minus 3 raise to n minus 2 here. And then, 

minus 3 raise to n minus 1. This is 2 times 3 raise to n minus 1. This is 3 times 3 raise to 

n minus 1; this is, 1 times 3 raise to n minus 1 minus will stay here. And then (( )) We 

wanted to find a particular solution; I put h n equal to 2 times h n minus 1 plus 3 raise to 

n.  

So, we get p times 3 raise to n equal to 2 times p into 3 raise to n minus 1 plus 3 raise to 

n. Now… This is not 1; this is 3 – plus 3 (Refer Slide Time: 34:06) because here I cancel 

3 raise to n minus 1; here 3 is remaining; here 2 p is remaining; this is 2 p – 2 p is 

remaining. And then, here it is 3 p. So, we can see p equal to 3. So, this was wrong. p 

equal to 3 is what is coming. So, p equal to 3. So, this will be h n equal to 3 raise to n 

plus 1. 

Now, we will check whether it is working out on this thing that, h n equal to 2 times h n 

minus 1 plus 3n, because this 3 raise to n plus 1. When I substitiute h n equal to 3 raise to 

n plus 1, h n minus 1 will be 3 raise to n – 2 into 3 raise to n plus 3 raise to n is 3 into 3 

raise to n; that is, 3 raise to n plus 1. So, its working out. So, that is indeed a particular 



solution for the given non-homogenous recurrence relation – this one. Now, we will 

combine this particular solution. See again not that this particular solution – it is working 

fine with the recurrence relation, but the initial condition will not be met, because the 

initial condition is again h 0 is equal to 2.  

So, that is not met here, because we see 3 raise to n minus 1. If we put 0; that 3 raise to n 

plus 1 is… Put n equal to 0. That will only give 3 raise to 1 equal to 3; that is not 2. For n 

equal to 0, we want h n to be 2; h 0 is equal 2. We are given that. But, if we take this 

particular solution alone, it is not true; it is actually 3. So, how will we find a solution, 

which will satisfy our initial condition also? 

(Refer Slide Time: 36:20) 

 

What we do is we combine the general solution for the homogenous part namely, c times 

3 raise to n – c (Refer Slide Time: 36:31) times 2 raise to n. This is the homogenous part 

of solution. c times 2 raise to n and our particular solution – 3 raise to n plus 1. And, try 

putting n equal to 0. You get h 0 equal to 2. So, putting n equal to 0, we get c plus 3 

equal to 2; that is, c equal to minus 1. 



(Refer Slide Time: 37:04) 

 

That means our solution will become h n equal to minus 2 raise to n plus 3 raise to n plus 

1. So, indeed this will satify the recurrence relation. Now, if you put n equal to 0, what 

you get is here 3. This is 3 and this is minus 1 (( )) 3 minus 1 is equal to 2. As we want, h 

0 is indeed 2 here. So, it is satisfying the initial condition also. This was our last…  

(Refer Slide Time: 37:43) 

 

Now, we will look at the last example namely… So, it is a slight modification – h n 

equal to 2 into h n minus 1 plus 3 raise to n is what we looked now. 
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We will look now h n equal to 3 times h n minus 1 plus 3 raise to n. h n equal to 3 times 

h n minus 1 plus 3 raise to n. So, this is only valid for n greater than and equal to 1. So, 

we need to give the initial condition h 0. That is again 2. Now, particular solution… 

First, we take the homogenous part; that means h n equal to 3 into h n minus 1. We write 

the characteristic equation x minus 3 equal to 0. Solve it; that means x equal to 3 here. 

Now, we infer that, the general solution for this thing is h n equal to c times 3 raise to n 

for any constant c. This is (( )) solution. 

(Refer Slide Time: 38:52) 

 



Now, we look for a particular solution for this h n equal to 3 into h n minus 1 plus 3 raise 

to n. What we can do, we go back to the chart. If you recall the chart; chart would say 

because its (Refer Slide Time: 39:07) an exponential b n equal to d raise to n. Then, try p 

times d raise to n. That is what it will say. So, h n is equal to p times 3 raise to n. That is 

what it proposes to try.  

But, we have tried it earlier for h n equal to 2 into h n minus 1 plus 3 raise to n twice. Let 

us try it again. So, this is p times 3 raise to n is equal to 3 times p into 3 raise to n minus 

1 plus 3 raise to n. Now, this is what. This is again… This is p into 3 raise to n plus 3 

raise to n. Cancelling this, we get 3 raise to n equal to 0. This is what; which is not true. 

When you cancel three raise to n everywhere, p equal to p plus 1 is what we are getting. 

(Refer Slide Time: 40:15) 

 

p equal to p plus 1 is what we are getting; which is absurd. So, we cannot get such a 

value of p; that means (Refer Slide Time: 40:24) h n equal to p times 3 raise to n. If you 

take h n equal to p times 3 raise to n, there is not going to be a particular solution for this 

non-homogenous recurrence relation of that form. So, what we do which… We then 

change the pattern of this particular solution a little bit. We will try h n equal to p times n 

into 3 raise to n. This is a slight change we give and then we again try that. 
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Now, h n equal to 3 times h n minus 1 plus 3 raise to n will become p into n into 3 raise 

to n equal to 3 into p into n minus 1 into 3 raise to n minus 1 plus 3 raise to n. Now, we 

can cancel off all the three raise to n’s here; that means p n equal to p n minus p plus 1. 

This is what we get. So, p n also goes away. So, we get p equal to 1. So, we get a 

solution for p now. 

(Refer Slide Time: 41:54) 

 

We get a particular solution h n equal to p times n into 3 raise to n; that is, p being 1 as n 

into 3 raise to n. This is the solution. We can try it out here (Refer Slide Time: 42:07). 



We will see that it is correct, because this is n into 3 raise to n. This is 3 into n minus 1 

into 3 raise to n minus 1; n into 3 raise to n equal to 3 into n minus 1 into 3 raise to n 

minus 1 plus 3 raise to n. So, this is n into 3 raise to n here minus 3 raise to n plus 3 raise 

to n. So, here n equal to 3 raise to n. This is true. This is indeed correct. So, n into 3 raise 

to n indeed a particular soultion. Again as we were always seeing, if you try whether the 

initial condition is met; it is not met, because if you put n equal to 0, this will become 0. 

So, n into 3 raise to n is indeed 0. But, we want h 0 equal to 2. So, how will it happen 

now? 

(Refer Slide Time: 43:21) 

 

What we do is we combine the general solution equation c into 3 raise to n. This general 

solution was for the homogenous part alone – h n equal to 3 times h n minus 1. This is 

combined with the particular solution that we obtained for the non-homogenous 

recurrence relation – the full recurrence relation namely, n into 3 raise to n. Now, we 

want… When… We will check when n equal to 0, what happens. When n equal to 0, this 

will be c; this will be simply be c, because this will go away; this is c. And, this has to be 

equal to 2.  

Therefore, we select c equal to 2 and substitute here. So, 2 into 3 raise to n plus n into 3 

raise to n; that is, n plus 2 into 3 raise to n is indeed a solution for the given recurrence 

relation, which satisfies the initial condition also. That is what we get, because if we put 



n equal to 0, we will get 2 here; indeed by our construction of the solution we know that 

satisfies the recurrence relation. 
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Now, we are going back to the… This is our last example. Off case, this whatever we 

have done are some examples. But, it illustrates say general strategy to attack this kind of 

kind of problems. But, success is not guaranteed always. Sometimes it may feel; in 

which case, you may have to do some slight adjustments and go forward or sometimes it 

may not workout. So, I have taken some examples to illustrate all those points. 
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Now, what we do is we will look at the next topic namely, generating functions. 
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What are these generating functions? 
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Consider a sequence h 0, h 1, h 2, h 3 like this. Now, the generating function 

corresponding to this sequence is given by this power series h 0 plus h 1 raise to x 1 plus 

h 2 into x raise to 2 plus h 3 into x cube plus so on. This is the power series. Let us say 

you write it as g of x. This g of x is the generating function of this sequence h n. 
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Now, it is not always necessary that we should have all these h i’s to be an infinite 

sequence. Suppose in some cases it may be just h 0, h 1, h 2. And, after sometime, all of 

them may become 0. So, this is indeed an infinite sequence in that sense; otherwise, only 

the relavant nonzero terms come only in the first m terms say finite number of terms. 

That is also possible.  

We will look at some examples. We will start with the most fimiliar example namely, let 

h 0 equal to m choose 0; let h 1 equal to m choose 1 – second number; third number be m 

choose 2; and, fourth number be m choose 3 and so on. So, h m equal to m choose m; 

and, h m plus 1 onwards – it is all 0. Now, h m plus 1 onwards – that is 0, 0, 0, 0. So, this 

is a sequence. What is the generating function of it? 
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The generating function of this is given by m choose 0 plus – because we are writing this 

as h 0 off case – m choose 1 into x raise to 1 plus m choose 2 into x square plus m 

choose 3 into x cube plus like that until you reach m choose m into x raise to m. So, the 

rest of the terms are all zeros. So, we can discard them. So, this corresponds to h 0; this is 

h 1; this is h 2 and until… This is h m. 
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Now, what is this? This we know already; that is.. This is 1 plus x whole power m. So, 

the generating function g of x for the given sequence m choose 0, m choose 1 to m 

choose m is 1 plus x raise to m. 
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Now, that is probably the most familiar generating function for us. 
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Now, we will look at some infinite series. 
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This is 1 plus 1 plus… So, this is infinite series. This is h 0, h 1, h 2, h 3 like that. So, 1, 

1, 1, 1, 1, 1. So, the genrating function is 1 plus x plus – see 1 into x – 1 into x square 

plus 1 into x cube plus this infinite series. So, this is equal to 1 by 1 minus x. So, this is 

the generating function for it. 
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If you want to convince yourself… You can recall that… Suppose if 1, 1, 1, 1 – suppose 

there are n terms – n 1’s and later all are zeros. Then, what will be the corresponding 

generating function? It will be like this – 1 plus x plus x raise to n. n trems means 



including 0 upto n plus 1-th term; that means this corresponds to h 0; this is h 1; this is h 

2… So, we are writing upto h n. So, we have 1 plus x plus up to h n. So, this we know is 

1 minus x raise to n plus 1 by 1 minus x. For instance, you can try multiplying 1 minus x 

into 1 plus x plus x raise to n. This will be indeed 1 minus x raise to n plus 1, because 

when you multiply by 1, you will get this. And, when you multiply by minus x, you will 

get minus x here, minus x square from here. And finally, minus x raise to n plus 1.  

So, all the terms except the first one and the last series, n will be… For instance, if you 

want to see this, it is like x raise to… When I multiply by 1, here this (( )) will come – x 

raise to n minus… When I multiply by x, we will get x plus x square plus x raise to n 

plus x raise to n plus 1 will come. So, these terms will go away. So, we get 1 from here; 

minus x raise to n plus 1 here. This is what we get.  

So, that is why this sequence has n rating function – 1 minus x raise to n plus 1 by 1 

minus x. Now, we can see that, the same technique will tell us… For instance, if this was 

infinite sequence, it is not ending at x raise to n; it is 1 plus x plus x square plus x cube 

plus… The same argument would tell us that, that is equal to 1, because there is no… In 

the end, what happens is this x raise to n plus 1 – that is tending to 0. 
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So, we can say that, 1 minus x into 1 plus x plus x square plus is equal to 1; that means 

here 1 plus x plus – this sequence is equal to 1 by 1 minus x. Only thing we have to 

worry about is… When we argue this thing, we have to worry about whether this 



converges or not. See it will converge when x is less than 1. In all of our discussions, we 

will not worry too much about this part – convergence, because we will be worried more 

about the coefficients of the powers of x, which is coming here and we will not be 

discussing the issue of convergence all the time. Therefore… And, we will be dealing 

with familiar forms, where… Therefore, some ranges – it indeed some converges; which 

range converges will not be relavant to our discussion. We will not be trying to sum up 

the series anyway. 
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Now, the next one. So, we will… Now that we have seen this one; 
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So, we cannot also cook up some other sequences. 
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See from this thing – 1 by 1 minus x – this is 1 plus x plus x square plus this thing; that 

is, this g of x equal to 1 by 1 minus x is the generating function of the sequence 1, 1, 1, 1, 

1, etcetera. Now, what we can see is that, this part – if you differentiate, we will get 0 

plus 1 plus 2x plus 3x square plus and so on. So, if you differentiate this portion, we will 

get minus 1 by x whole square, because this is minus 1 by x square and there is a minus x 

here. Therefore, it is plus 1 by x square. But, then here we have 0. That we can anyway 



remove – 1 plus 2x plus 3x square. The only thing is here 2 is the coefficient of x; that 

either we can say this is the generating function of the sequence 1, 2, 3 and so on. So, h 0 

is equal to 1; h 1 equal to 2; and, h 2 is equal to 3 and so on. 
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That means the sequence h n equal to n plus 1. That is what it is. So, this is the 

generating function 1 by 1 minus x whole square, is such a sequence. Or, what we can do 

is, we can multiply here this side by an x; this side by an x. So, x into 1 minus x whole 

square. That will introduce an x everywhere here like this; that means this exponent, 

which is coming x to the power what?  

That will be the same as the coefficient in that term. Therefore… Just that we are starting 

with x; not with a constant term. Therefore, we can put the constant term as 0. The first 

term is 0 – 0 plus x plus 2 x square plus 3 x cube and so on. So, we see that, x by 1 minus 

x whole square is the generating function of the sequence 0, 1, 2, 3 and so on; that is, h n 

equal to n.  Before getting into the one, what we can mention is… If you want to 

generate a… So, it is a good exercise to try to find the generating function for 0,  1, 2 

square, 3 square – this sequence – 4 square, 5 square and so on. 
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How do we do that? Because we know that x by 1 minus x whole square is the 

generating function for the sequence 0 plus 0, 1, 2 and so on; that is x plus 2x square plus 

3x cube plus… This is the sequence that is representing – This one. So, you can see that, 

if you diffentiate it further – d by d x of this one – this g x if I take; this being g x. Then, 

what will happen here is – this will give 1; this will be 2 square x plus 3 square x square 

and so on.  

So, we see the terms, which we want here. But, just that 2 square is the coefficient of x, 

what we can do is we can mutliply by what? x here. So, this will be x… So, if you 

multiply by x here; then, we will get x plus 2 square x square plus 3 square x cube and so 

on here. Now, this function will be the generating function of this; that means this is the 

generating function corresponding to 0, 1, 2 square, 3 square etcetera. And, if you 

consider this function; that will correspond to that thing. We will discuss in the next 

class. 

 


