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Welcome to the 18 lecture of combinatorics. In the last class, we were considering Hall’s 

theorem. So, we were doing it as a part of considering third one example. So, double counting 

technique and counting in two different ways in comparing and then inferring something from 

that, right.  
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Hall’s theorem is in itself an important theorem. It is about the system of distinct representatives. 

In this problem, we have a universe. So, let us say it is cardinality and we can take it as n for 

instance for example u is equal to n, right. Now, we have a family f of subsets of U. Let us say, it 

is S1, S2, Sm. So, this m can be less than equal to n or greater to, n, but our interest is that we 

should get a representative. So, we have to select a few elements actually, m elements. So, we 

want to select m elements from u. So, that means m has to be less than and equal to n, otherwise 

how will we select it, right, such that one of them can be a representative as to S1 and another 

one can be a representative of S2, and another one can be, finally another one of them can be a 

representative of Sm, but no person can become a representative of more than one sets, a sub in 

this collection, right. 

So, that it is of course it is ok that if a particular x is a representative of x n x s 1, but member of 

S2, S3, everything, it is not a problem, but we are allowing one person to represent only one set 

and that person has to come from that set, right. That element has to come from that set. So, this 

is now Hall’s theorem gives a necessary and sufficient condition for the existence of such a 

distinct representative as we have elaborately discussed in the last class. 
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This problem can be recast as a bipartite graph problem. So, for instance, here is a bipartite graph 

problem. This is the A side, this is the B side and on the A side, the vertices, there are m vertices, 

right. So, 1, 2, 3 up to m and each vertex correspond to say, the ith vertex corresponds to the set 

S i. That means, it is the S i, the set S i is like represented as this vertex here, right and on the B 

side, we have the elements of the universe. That means, 1, 2 up to n, u, the elements of the 

universe, right. Now, the edges as put like this, the S i if it contains the few elements here, so 

now they are those members of S i from here will be connected to S S i, right.  

So, this is membership actually, right. So, any edge from i to j here means that j-th element of the 

universe belong to the i-th set, right. Then of course the degree of the, a vertex on this side is the 

cardinality of the set S i, right and then the degree of the vertex j here is essentially d of j. That 

means in how many sets it is part of. Now, that is the way it corresponds to here. Now, the 

question of selecting distinct representatives corresponds to selecting m edges from this graph, 

such that these m edges have the n points of this m. 

Edges are all distinct. That means no two edges in this m edges share an n point, right. So, m 

edges are there. All the edges are there going from this side to this side, right. So, that means one 

edge should be like this, one edge should be like this, one edge should be like this, one like this. 

So, every vertex here should be part and point of the one of the edges because I am taking m 



edges. So, there are only m things here on their side that is always go from A to the B side here. 

There are n elements and n, it is greater than and equal to m. So, therefore they can be elements, 

say which are not touched by edges, but then if a particular vertex here is touched by only one 

edge, it is not possible that we have something here and then something else is coming here. That 

is what will never happen. So, this kind of collection of edges is called a matching. It is called a 

matching. The graph theory, it is called matching, right and in this specific case, we say that we 

seek a matching of the A side. That means, we want every vertex on the A side to be matched, 

right.  
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Then, matching Hall’s theorem is about the existence of, such a matching is about the existence 

of such a matching and the important thing is something called Hall’s condition. So, this theorem 

gives a condition and if this condition is met, the Hall’s theorem says the system of distinct 

representative access or the matching of the access. What is the condition? The condition says 

for every S subset of A. That means, if you consider any subset from the subset of what is going 

to be of a side and then if you count the neighborhood of S, you see the neighborhood be all on 

the B side. This has to be at least as much as the cardinal to S as big as the cardinality of S n of 

the cardinality should be and greater than equal to S cardinality. 
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N of S cardinality should be greater than equal to cardinality of S for all S subset of A. This is 

the Hall’s condition, say if Hall’s condition is met, and then if Hall’s condition is met, then there 

exit a matching of A. So, the language of the distinct representative is this. So, what do we mean 

by the cardinality? What is N of S? N of S is essentially the union of all the members of filled S, 

sorry for instance, this S we should here it is A will be some set, some S i in S, right and we take 

the union of S i’s, right. This will play because this is essentially the vertices on the A side 

corresponds to some subset of the universe and then this S is a subset of S on the A side. That 

means, the collection of vertices from the A side, they are certain subsets from the family and 

then you take union of all those subsets.  

They consist of some elements, right. So, those elements of the universe are to down from the 

other side, B side. They constitute n of s, right. so we say that N of S has to be greater than and 

equal to S, which means that if you take this union, this union has to be greater than equal to how 

many s i’s are there on this. That is what we are saying, how many subsets we are saying? It is 

all the family should be such that we take A 1 subset and then each subset should contain at least 

one element. If two subsets are there, any two subsets are there. If you take the union of that, 

there should be at least two elements in the union and then if you take any three subsets, then 

there should be at least three elements in the union and so on, right. 
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So, in other words, you can select k subsets from the subsets, k subset, not k subsets. K subsets 

from F in definitely m choose k ways, right because they are m total m subsets s 1 s m. So, from 

these subsets, you can tell it is a two way and if you take any k subset of this collection, if you 

take the union and the number of elements in the union should be at least k is what we are saying 

and there should not be any subset with less than m, less than k members in the union. When you 

select k things, not that they are of that Hall’s conditions says for all successors, that means any 

possible subsets you should consider and there are 2 raise to m possible subsets of that subsets of 

S, right. So, for every subset, it should work including F i. In F i, it is trivially true because n of F 

i is just empty. So, 0 is greater than 0. So, therefore it is correct, right. 
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So, now this is a necessary condition, very simple. Why? Because if this is not met, there will be 

some k element, k subsets, k elements subset, right. S i 1, i 2, S i 3, S i k, such that if I take the 

union of them, the cardinality is strictly less than k, right. What does it mean? Then definitely 

you cannot find x 1, x 2, x 3, x k such that this belongs to this belongs to this, this belongs to this, 

this belongs to this and there are all different because then they will be actually x 1, x 2, x 3, x k. 

They themselves form k elements, they come from the unions, but by our assumptions, it is less 

than the union contains less than k things, right.  

So, therefore, this condition that the union of si 1, si 2, si 3, si k for any selected i 1, i 2, i 3, i k 

should be greater than equal to k. It is definitely a necessary condition for distinct representatives 

to exist. So, the sufficiency is the non-trivial aspect. We won’t get into the proof of this. As I 

told, what I want to means this is available in any graph theory book or you can consider the 

graph theory person or learn it from the graph theory course. 
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So, what I want to discuss here is a special case of it newly when the bi parted graph, we 

consider is k regular, right. So, k regular bi parted graph. So, this is A side, this is B side. So, you 

see k regular bi parted graph will be like this, right. Every vertex here, k edges will be going out 

from every vertex and k adjust will be coming out from every vertex, right. Now, we want to 

show that the Hall’s condition is met by this thing.  

So, first let us know that trivially the number of vertices here n and n, if there are n m. As we 

know, m vertices are here. These n vertices are here and if vertices are here, so we should have m 

equal to n. This is what we first claim. Why is it so? Because we do the double counting here. 

So, now we count the edges, right. We count the edges in two different ways. One from this side. 

That means, we count the edges like, ok here this is the first vertex, 1, 2, 3 and this is the second 

vertex from 4, 5, 6. Like that we count, right. So, since each vertex here has k edges incident on 

it, then I have definitely m vertices here. So, m into k edges are here counting from this side, that 

A side, right.  

So, not that every edge we have counted. Why? Because each edge is incident on exactly one 

vertex incident. On the A side, it is an incident on one vertex, exactly one vertex because the 

other end points on the B side and the point is on the B side. Definitely the same number of 

edges we can count on the B side which vertex it is k edges. So, since there are n vertices on the 



B side that is n into n into k n into k, so what we can say is because this is we are counting the 

same things, the number of edges in the graph that will be equal, right. So, k cancels and then we 

get m equal to n. That is what it is. So, the same kind of strategy we will use to illustrate, to 

prove that the Hall’s theorem is valid for k regular edges. 
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So, in say if you want to say, it in the matrix form which we were discussing before. So, here I 

am taking the A side, the vertices of the A side as the rows. So, this is 1, 2, 3 up to m, but the 

vertices of the B side are taken as columns, right. Now, the graph of some kind where the matrix 

representation for the graph will be like this. So, if i j-th entry will be 1, if there is an edge from i 

to j i on the A side, j on the B side, so of course edges are always going from A to B side. 

So, we do not have to worry about like why there is no edge inside A, there is no edge inside B. 

So, therefore all the edges will be of this form that it is between i and j, where i is from the A and 

j is from B, ok. So, this is the situation we will get. Of course if you want to count the number of 

edges, we want to count the number of one’s in the matrix, as I told one way to count the number 

of edges is by counting the number of one’s in the rows, r 1, r 2, r m, right. So, this r 1 is 

essentially the degree of vertex. One on the A side. R 2 is essentially the degree of vertex 2 on 

the A side and r n is the degree of vertex n on the B side, right because see essentially given a 

vertex, if you scan through this thing, you see so many one’s there. That means, it is connected, 



this vertex is connected to this, this, this and this, right. So, this will give you the total number of 

edges. This is the number of edge, number of edges in the graph. Similarly, the number of one’s 

we could have counted by counting along the columns. 

So, in the column if we count here, this is degree of vertex one on the B side. So, we can say, 

yeah the degree of vertex one on the B side and then because we have numbered the vertices on 

A side as 1,2, 3 up to n, the vertices of B side as 1, 2, 3 up to m. There they are using the same 

number, but we should understand that the columns count the degree of what is in the B side. If 

you count the number of one’s in acceptance of eight columns, so you see the degree of the eight 

vertexes on the B side, right.  

So, therefore some of those numbers we will get the total number of one’s here. So, by using we 

can match them, we can equate them because they are equal, right. That is what is that the 

situation and then of course I just put a thing that previous using the notation of the previous 

matrix form. So, these are the things that are quite simple and just wanted to give a frame work 

in case some student is finding it a little difficult to think about this. How do I double count that 

matrix picture is very nice. 
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Now, again coming back to the Hall’s condition, how do I say that the number of, for neighbors 

for any subset s on the A side, N of S has to be greater than and equal to cardinality of S for 

accurate (( )). So, from the previous matrix, we can collect those vertices i 1, i 2, i cardinality of 

S, right. These are the vertices in the S, right. So, this all belongs to S, this belongs to S, each of 

them, right. So, now if we scan this row, this again, the columns are again 1, 2, 3 up to n. The 

vertices of B, the vertices of these are vertices of B, these are just selected rows. That means the 

vertices of the A side, but those vertices which are in S, right.  

Now, we create a sub matrix of that actually. So, we selected few rows. That is all. Now, we can 

scan again for the 1’s in the first row. So, what will we say is this will be the degree of i 1, right. 

Similarly, here if I scan through the 1’s and add counter number of 1’s, I get degree of i 2, right 

and here I will get degree of i cardinality s because for each, the degree of each vertex in the set 

S, we will get, if I sum it up, I will get the number of edges in the graph which are incident on 

some vertex in S. In other words, those edges which are going out of the vertices of S, we will 

get, right. So, in the graph picture, we have some S here, those edges which like this, right. So, 

this is what we will get, right, the other edges and we are not counting it out. So, these are the 

edges, right. This being S, this being A, and this being B, right.  

What are the neighbors of S here? So, you know certain columns. So, for instance, say the j-th 

column here, that will that correspond to the j-th vertex. How will I say that vertex is a neighbor 

or not. So, if it is all 0 here, that means j is not a neighbor of this. No vertex in S sense an edge to 

j. That is why we see 0’s here, right. We can kind of imagine that we are discarding those rows. 

We can remove those, sorry discarding those columns, where all are 0’s. 
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So, the remaining rows, remaining columns correspond to N of S and these columns are such that 

there is at least one edge in it. So, the number of edges as I say the number of, edges in number 

of edges in G, right. So, I am counting. So, what I did was I created a sub matrix here and then I 

removed some of these column which are not in N of S because they were all 0’s in there 

columns. That means they are not in the remaining columns. All have at least one in it. 

Therefore, they are in N of S and then now the matrix is slightly different.  

The matrix is S and the vertices of S is listed here and then the vertices of N of S is listed here 

now, right because those vertices of B which are not in N of S now remove it, right. So, here I 

know that the number of edges going out of S will constitute actually the number, the 1’s in the 

matrix. Now, we know this is at least N of S into 1 because you know every column now has at 

least one N in it, right and we know this is less than equal to because the number of 1’s we have 

already calculated S into K, right because that is we are summing up the degrees of the vertices 

and they all have of K degree vertices, K degree. 

So, this is not an upper bond. So, what we want is a lower bond. So, what we say is at least have 

one such (( )) instance only get, but still we know that this cannot have more than K. So, while 

this is at least one of s, definitely how big can it go? This cannot go into k, right because each 

column can have at most K 1’s in it. So, maximum n of k into this thing has to be greater than 



equal to S into K, right and in the worst K’s, it can be N of S case into 1, but in the maximum 

K’s, it can be N of S into K. Therefore, the number of 1’s here cannot be more than N of S into 

K, but you know the number of 1’s in this thing actually is S into K. So, it is N of S into k is 

greater than equal S into K. So, we can cancel it off and we get N of S is greater than equal to S 

as we want. This is the Hall’s condition and it seems we are talking about any subset S. 

So, when S is pi, it is trivial, otherwise we can make this matrix, this argument make work, right. 

So, this proves that the Hall’s condition is trivially true. Now, trivially true we need to put some 

little effort to show that. So, for the K regular case, so for in what is the k regular case. It means 

that every subset has equal cardinality. The k uniform hyper graph, we consider as we use the 

terminology we introduced in the last class. K uniform hyper graph, the subsets, the subset f. The 

family of subset f is such that each subset in f has the same cardinality K uniform hyper graph, 

right and also each vertex in the universe has equal degree. That means, there are all in the each 

vertex is an exactly K sets. In this special case, this turns out to be K regular bi parted graph from 

the point of view of the sets system. It may look a little too much to ask for both this condition, 

namely your subsets are K uniform and also, your each vertex has degree equal to K, right. So, of 

course we are only asking for degree at most K, right. 

So, the double counting is very clear. What we have done is we cooked up a matrix like this. So, 

S and N of S verses N of S being the set of, we are considering some arbitraries subset. Those 

rows are picked up and N of S is the neighborhood of S, right. Those columns are picked up and 

then we look at this matrix. In this matrix, the number of 1’s is counted. When we add up the 

number of 1’s row wise, that will give us sum of degrees of the vertices in S, that is S into K. 

This is the number of S into K, while the number of 1’s can also be counted column wise, but in 

a column, maximum K 1’s can be seen. So, this number of 1’s in the matrix cannot be more than 

N of S into K. So, N of S into K is greater than equal to S into K. Therefore, N of S is greater. 

We cancel off K and we get N of S is greater than equal to S. This is what we mean, right.  

So, these kinds of arguments are very common in graph theory combinatorics. So, this much is 

enough for the table counting technique. The last problem we discussed was a little, was 

interesting enough for spending sometime on it, right because this system of distinct 

representatives that is in itself an important topic. So, now though the most of the things we 



consider during this course are taken as examples should not like it is. Not many times these 

examples can be. They themselves can be important, right. They may be general enough 

problems that it may appear in some other applications which you consider in some other 

context, right. Therefore, one has to take note of these examples beyond like the technique that 

we are studying, right. It is not just the technique; also sometimes these problems themselves are 

important because they have a certain generality about them. 
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The next topic we want to consider is inclusion exclusion principle. This is another technique 

which is quite important. So, what is this inclusion exclusion principle? 
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So, we consider this question and we have two sets A and B, some universe is there of course 

and then we have two subsets. So, A and B, we can assume that universe is, say n or 1 to n. As 

usual, it is a finite numbers are there in the universe and what we are interested in is finding the 

cardinality of a compliment intersection B compliment, right. So, I will draw a picture to 

illustrate it. 
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So, let this be the universe U, right. Now, you can draw two sets. Typically, it can be like this 

AB, right. So, now these are all members of A, these are members of A and A minus B, namely 

which are in A, but not in B. These are members of B and A together B and intersection B. So, 

these members of B and then there are members outside it also, right. So, what we are interested 

in is the green type of members. That means, which are outside A, outside B. That means, 

members in A union B compliment or in other words, the members in a intersection A bar, 

intersection B bar, A compliment intersection B compliment.  

So, we should note that a compliment is something I can mark it like this. This is bright color. 

This is yellow color. Yes, may be it can be, it is this, right. So, in the Venn diagram, this yellow 

region which we are marking is the A bar and B bar or say, you can use this brown color to see 

this is B bar, right. So, now in the intersection, what is there? So, everything which is not in a 

union, so in this part is in brown, this part is in brown, but definitely not in yellow. Similarly, this 

part is in yellow, this part is in yellow, but not in brown, but brown yellow both comes in here. 

That is where we put the green dots, right. The green type that is what we are interested in. 

So, you can take several examples. For instance, this can be a class of a hundred students. This 

can be class of hundred students and then out of that A, be the set of students who go to the 

Mathematics class, mathematics lectures and B may be the set of students who goes for the 

physics lectures. There are some people who go for both and there are some people who do not 

go for mathematics, who do not go for mathematics or for physics, neither mathematics nor 

physics, right. They are not interested in both. They can be people who go for mathematics, but 

not physics and that can be people who go for physics, but not mathematics. So, when suppose 

we want to estimate or we want to find the number of students who attend, would not attend 

mathematics or physics. None of them, right.  

So, then that will be this because being the students who attend the maths classes, being the 

students who attend the physics classes, A compliment intersection, B compliment will be the 

students who do not attend the mathematics class and do not attend the physics class which is 

essentially you are familiar with the mode. That means, U and all. So, that is A union B 

compliment, but these are all may be 11, 12 standard material before we don’t ellobrate more 

than this. 
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So, then we see if we want to find out the number from the Venn diagram, it is very clear what 

we should do. So, this is A, this is B. Now, if I want to find a A union B compliment which is 

essentially A compliment intersection B compliment, what we do is we consider the cardinality 

of U. That means, this one, this entire thing, right. From that U minus A cardinality, this will be 

minused off. Then minus B minus A cardinality, this will be minused off, then minus B. So, this 

will be minused off, but then we see that this portion, namely this portion is minused off twice 

because finally we are interested in this region. So, this region which means marking like this, 

right. This region if you are interested in, so it is natural that we took the entire thing U and 

minused of A and the minused of B and we expected we get this answer and the number here, 

but the problem is that this green part which I marked here, this is the intersection of A and B 

which got minused off, A as well as B, both two times. So, before I have to readd it, plus 

cardinality for intersection B, that is what we need to do. 
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So, the final formula will be A union B compliment cardinality is equal to cardinality of A union 

B compliment and is equal to U, the cardinality of the universe minus cardinality of A minus the 

cardinality of B plus the cardinality of A intersection B. So, one may worry whether this formula 

is correct or not. For instance, it is not very vigorously done. What are the situations? I drew a 

Venn diagram. Is it always true that A intersection B has to like this or sometimes can be like 

this, right, sometimes can be like this.  

So, am I considering all cases or because I gave clues based on the picture, am I taking all the 

cases carefully. So, in this case, it is not very difficult to consider all the cases very carefully and 

see that we are actually considering all possibilities. For instance, when A and B were disjoint or 

A intersection B will be empty, then you know A union minus A minus B is the correct answer. 

This is empty. Therefore, it is like adding a 0 to it. It is not a problem. Similarly, if this was the 

case, A and B, so this itself would have been A is inside and B is inside A. 

So, this U minus A would have been enough to give you the answer because B anyway goes 

away when I remove A from U, but then I have removed B also, but then readded A intersection 

B, but A intersection B will be the cardinality of B. So, it is like minusing B and then adding B 

back, so that it cancels off and gives you back B minus A. So, in all these cases, this is correct, 

right, but we can do one thing. We can argue it in a slighlty different way to make it a little 



vigorous, may be in this case if it is not more vigorous and then they are more sets to consider 

more genrealized cases. We will need definetly a different approach. Then just saying that minus 

or add something back, right. Therefore, we will carefully consider it.  

So, what are the members in it, right? So, here for instance, I want to count these members here, 

this region, right in U A union B compliment. I mean which are not in A, not in B, right, but in 

U. So, definitely these are the kind of members we want to count, but those members which we 

want to count will actually come here in U. So, it is counted in this part once, right. On the other 

hand, those members are never counted in this part or this part because they are not in A. Even 

then for a particular x, how much is it contributing to this?  

Entire sum on the one hand side of this x is contributing 1 to the sum this U cardinality because x 

is contrbuting 1 to this count, but nothing to this count because A does not contain x at all 

because when you minus A, some other members in A are contributing to this con which is 

similarly it does not belong to. Therefore, when I am minusing cardinality of B, some other 

members in the universe is contributing to this substracted number, right and they are not in A, 

not in B. They definitely not in A intersection B. There such access are not contributing to this 

also. 

So, if I consider the contribution of x in this region, so x in this region, that means A compliment 

intersection B or x in the compliment of A and B, then those things contribute to this sum in the 

right hand side only once, namely in the first term, right. The other term, they don’t contribute 

here. So, for instance, for each member here we contribute once to U. So, therefore this count is 

as same as their contribution to here, but then what about the members which are inside this or 

inside this. You can see inside A alone, right. A minus and B part.  

So, suppose particular x belong to A minus B part. See this belongs to A part, sorry A, then 

definitely here it is contributing one, whereas x belongs to U and here, it is contributing 1 minus 

1, right. This is minused off. Here, it is not contributing anything. That means 0. Here, it is 

contributing 0 because it is not a part of this. So, it is 1 minus 1. 0 is the total contribution 

coming for that particular x, right. So, similarly, we can consider a particular x in B minus A. 

That means, those members which belongs to B, but does not belong to A. They will contribute 



1’s to U, 1 minus 1 to 1 to minus 1 to B and 0 to A and 0 to this term and 0 to this thing. So, 

therefore 1 minus 1 total contribution which is 0. 
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Finally, those vertices which are in, say in x element of A intersection B which are in both A and 

B, they contribute 1 to U. So, they contribute. Such x’s will contribute 1 to U minus 1 to this A 

and minus 1 to this B and definitely 1 to this. So, this will be 1 minus 1 minus 1 plus 1, right. 

Total we will get a 0, right. So, what we mean is any x which does not belong to A union B bar 

does not contribute to the sum on the right house. Also, only things which contribute to the sum 

in right hand side are the members in A union B. Therefore, our formula is correct. Of course, 

this is just two element set. We can always consider a slightly bigger example, namely with three 

elements. There may be question like this. 
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So, that is a big universe. So, it is U, right and then let us say A, B, C. So, the Venn diagram is 

only indicative. It can be in a different way also. 
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We could have drawn A B C like this, right or this is also A B C. So, several possibilities are if 

we just take one example case, right. So, here in totally what we were interested in is this region, 

right. For instance, A may be the students who go to the maths class lectures, B may be the 



students who go for the physics lectures and C may be the set of students who go for the 

chemistry lectures. What we are interested in is the students in this red region. That means, those 

students who do not attend the maths classes, if students who do not attend the maths classes and 

the physics classes, do not attend the physics classes and do not attend the chemistry classes, 

they don’t go to any of physics, chemistry, maths, right. So, how many are there that I was 

asking, right. So, of course we can apply the earlier technique. This is like this. 
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So, U cardinality of U, the total, then minus of A, then minus of B, then minus of C. This is the 

initial try. So, for insitance if A B C, all of them were dischurn, we would have become 

successful by now because you know we just have to minus the cardinality of A and the 

cardinality of B and the cardinality of C. From the cardinality of U, we would have got those, the 

cardinality of A compliment intersection B compliment intersection C compliment, namely the 

cardinality compliment of A union B and C. We would have easily got it, but then we have 

intersections here, n minus A, n minus B. We have actally minused, say this portion which 

portion, say this portion, this brown portion two times, right because from A part of this, we have 

minused it once, as part of B we have minused it once and as part of C we have minused it once, 

right. 



So, again all these portions are minused two times. What if the this portion, the middle portion? 

So, yeah got minus three times. Isn’t it? Because it as part of this, this is part of this as part of 

this also, right. So, what we do is that this is the strategy. So, what we do is first we readd the 

cardinality of A intersection B and then B intersection C intersection A because we noticed that 

the members in A intersection B was minused of twice, once part of S as part of A, once part of 

as part of B. So, we readded it, but then noticed that the members in A intersection B intersection 

C were minused of three times because once here, once here, once here, but now we readded it 

three times. 

So, we three times minused it and three times readded it. Here also, here also and here also. That 

means, its contribution is not those members in A intersecton B intersection C are not minused at 

all. You minused it three times and then added it back three times. That means, we have not 

minused it off. So, therefore we have to minus it once again. Minus A intersection B intersection 

C cardinatlity. Once again this is the formula, right.  

So, I thinks it is convincing. Now, what we did is to find the number of members in A union B 

union C compliment. That means, the members in U minus A will be the union C, right or in 

other words, the members in A compliment intersection B compliment intersection C 

compliment. That is what we are interested in, right. So, what we can do is we first consider 

everything in U and then minus of the members in A, then minus of the members in B and then 

minus of member in C, but then if A,B, C are all distinct, we are all definetly through by this 

procedure, but then there are members in a intesection B possibly. There are members in A 

intersection B possibly and there are members in C intersection A possibly. Each of these 

members were minused off two times.  

Once these members of A intersection B were minused off, once a part of A and once as part of 

A, so we added all of them because we want to minus only once, not two times, but when we did 

it, what happened to the members in A intersection B intersection C is they were minused of 

three times because once a part of A, once a part of B, once a part of C, but readded also three 

times with once as part of A intersection B, once as part of B intersection C and once part of C 

intersection A. So, we have to minus it once, right because we want only things which are not in 

A, not in B, not in C, but the things in A intersection B intersection C are in all of them. 



So, we have to minus it once again. So, that is how this formula works. So, that is correct 

because we have carefully argued it. So, now we can also consider the trick, the technique, the 

argument. We consider in the last thing. For instance, we take the member in this region, some x 

of the universe from which is coming from this region, namely that x we have to actually count 

because that belongs to the compliment of A union B union C. In other words, that belongs to A 

compliment intersection B compliment intersection C compliment.  

So, how does this x contribute to the total count in this? So, definitely contribute once to 1 to U 

and definitely 0 to this one, 0 to this one, 0 to this one, 0 to this one, 0 to this one, 0 to this one 

because that particular x is not part of A, not part of B, not part of C. Therefore, this minus 

cardinality of A minus cardinality of B minus cardinality of C excetra are not effected by that 

particular x. Similarly, A intersection B intersection C intersecion or A intersection B 

intersection B does not contain that x. Therefore, all the contribution of that x to each of this term 

is 0. So, overall it is contributing one for this entire sum, right. 

So, that is correct. They are contributing correctly, but suppose if you take x from here for 

instance which is in A, not in B or C, only in A, right. So, then such A contributes definitely one 

to because (( )) is part of U and 1 to A and it is not contributing to B or C definitely this 0 

because it is not a part of A, not part of B and not part of C. Similarly, it won’t contribute to A 

intersection B intersection C because it is only in A. It is not in intersection B because it is not in 

B. Similarly, here everything is 0. So, its total contribution is 1 minus 1, 1 for 2 and 1 minus 1 to 

A, sorry minus 1 to this minus A, right. So, total contribution is 0. So, similar argument shows 

that the members which are coming from this region, that means only from B. That means, those 

members which belongs to B, but does not belong to A, does not belong to C.  

Similarly, those members which are coming from this region, namely graph to see, but does not 

belong to A or B, they also contribute only actually 1 minus 1 to U and minus 1 to at minus 

cardinality of A term, right. No other term will contain the contribution. So, therefore they are 

proper and now, if you take a member from here for instance, some x from here which belongs to 

A intersection B. That means, it belongs to A and B, but not to C, but then exactly two sets, they 

belong to. What will be the contribution? There contribution will be 1 to U minus 1 to A minus 

this term, the second term. So, minus 1 to this term and then of course this term will contribute 0 



because it does not contains in 0 here. On the other hand, it will contribute plus 1, right because 

it is being added, right. So, the total contribution is 1 minus 1 plus 1 minus 1, that is total 0, right. 

So, that is true of any element which is coming just two sets out of three sets it belongs to two of 

them, but not the third and now, if it comes to, if you consider any member which belongs to all 

the three of them, that means any member which is coming from this portion, say something like 

this, right. 

So, such members will contribute to all the terms here, right. How will they contribute? They 

will contribute 1 to minus 1 to this, may be k term minus A and similarly, minus 1 to this 

cardinality minus cardinality B. Similarly, this one to this one and then plus 1 to this plus 1 to 

this and plus 1 to this and minus 1 to this. Now, how will you go calculate it how much is there 

because here, it is 1. How many A’s are there? Three A’s are there, right. 
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So, the total contribution is 1 2 1 2 and minus 3 because 1’s 2, A’s 1 to B 1 to 3 or minus, then 

this actually is 3 choose 1. Each set is selected one times out of three sets. Not of each of the 

selection of one set minus 2, then two elements sets 3 choose 2 possible ways. We can select A 

and B, B and C, A and C. For each of them, we have contribution from that, such as x is one’s. 

Finally, 3 choose 3, right. That means, all the three sets, it is contributing minus 1. 



So, this as we know is adding to 0, right because 1 minus 3 plus 3 minus 1, but this is adding to 0 

and you know this is as we can see, this identity we have seen earlier. If you do 1 plus x cube, so 

this will be input x equal to you expand it and this will be n-th 3 choose 0. 3 choose 0 is 1 minus 

3 choose 1 x plus 3 choose to x square minus 3 choose 3 x cube and you put x is equal to 1, sorry 

this was plus 1. This was plus 1, put x equal to 1 minus 1 and then we will get this alternate 

minus 1’s. Minus 1’s is required, right. This is what we will get putting x equal to 0 in this thing, 

but anyway, we have seen it before. So, therefore it is not very surprising. Otherwise, in this 

case, definitely you can evaluate it seperatly or also, we can just write down the values and sum. 
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In the next case, we consider the most general situation when we have n sets in A1, A2, A3, An 

and these are which Ai is the subset of the universe U, right. Now, we are interested in the 

intersection of Ai compliments which is essential. As we know, it is A1 union and A2 union An 

all compliment, right. This is what we want to estimate. 
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Now, we can use the previous tactic of you can try to use it. We cannot use it, so for writing 

drawing a Venn diagram, the complicated Venn diagram saying that this we have drawn n sets in 

the uninverse and then consider the cardinality of U first and then we are interested in the 

member in U, but those members of U which are not in any of A1, A2, A3, An, right. This is 

what we usually want to say, but then we will say that ok, first we can try and take all the 

members of U. Then minus of members of each Ai. That means, first minus A1 cardinality, the 

cardinality of A1, then minus cardinality of A2 and up to cardinality of An. Then we have to 

readd the cardinality of Ai intersection Aj, for every A pair A j. Somehow within that, those 3A 

element, three sets 3 in the set, the members intersection of three sets might have got readded too 

many times. 

So, we subtracted and things like that, but it is a little clumsy to go like that. So, we prove it the 

other way. We have been abopting the second proof all the time. We were just when two set 

case, three set case, we had the second proof, but of course we have to write down the formula 

for that. Looking at the pattern, we can write it down as this. 
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So, A1, sorry Ai compliment intersection, the cardinality will be given by cardinality of U minus 

sigma Ai. So, for i equal to 1 to n, here all the n’s we minus here. Then the plus Ai intersection 

Aj cardinalities, that is for every i, n, j. Every pair i j will do this. Then minus for every three sets 

subsets taken together. So, Ai intersection Aj intersection Ak will take that cardinality will be 

minused and so on. So, alternate plus and minus and in the end, thing we get A minus 1 raise to 

n, right. We have the cardinality of A1 to An. So, that will be the end. So, these formulas, the 

question is how do we get these formuals? That is what we have discussed in the last two cases. 

So, we will discuss in the next class. 


