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Welcome to the seventeenth lecture of combinatorics. So, in the last class we were discussing 

about Turan’s number giving a lower bound for Turan’s number. We will go back to that. So, 

this is the problem, we defined Turan’s number as the smallest number of l elements subsets of 

an n element set x such that every k element subset of x contains at least one of these sets, right. 
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I was trying to give a picture using the bipartite graph. This is many times this is a very nice 

strategy to draw bipartite graph when we are talking about set systems and we can think about it, 

or at least, we will get some clarity about what we are asking for, right. So, we told that we are 

taking, sorry, we decided to take k element subsets of n, on the the, right side. So, let us say this 

is A side, and this is B side and l element subsets in, in this side. So, when I say n element 

subset, each n element subset is conceptually considered as a vertex above bipartite graph now, 

and now it became two vertices. We inserted an edge, we put an edge, if this l element subsets, 

say we will say A, and so maybe can use S 1 and this is some T, yeah, T 1, say S i and this is T j. 

If S i is a subset or subset equal to T j, then I will put an edge between them, so I will get lot of 

edges here depending on, right. 

So, what we are interested in is, say, in, is in selecting certain subsets here, so certain vertices 

here such that any vertex taken here as an edge into this set. It should not happen that there is a 

vertex here, which has no edges. So, it is all its edges are going to here, means, any subset of this 

k element subset are not taken; no, subset of this k element subset is not taken, right. So, so that 

in some other what we say is that at least one of the k element subsets will have to be taken. 

So, we can see, that here if you get a, consider a k element subset here how many edges will 

have a vertex here of this thing? How many edges will go out of it? See, though I have drawn a 



big this thing, it is, it should be considered as one vertex because this is, this is one k element 

subset, subset, which is thought of, say, vertex of the bipartite graph. Now, how many edges will 

come out of these things? Exactly k choose l edges will come out of it, right, because there are l, 

possible l element subsets. Often this we are planning to select a few from this side, so one of 

this k choose l things should be taken when I pick up this thing. So, if you are familiar with 

probability or something, the probability, for instance, if I select, so there are n choose l of this 

things here, n choose l of members here in the A side because there are l, the number of l subsets 

of n is n l n choose l. 

Now, if I pickup, so if I, if I pickup a subset by tossing a coin, maybe, which is head with 

probability, say, k choose l, right, so 1 by k choose l. So, when it is, like for each of this vertex 

here, each of this subset l element subset here, I may pickup, that I will pickup in my collection 

with probability 1 by k choose l. So, if you are familiar with probability, otherwise you can 

discard what I am telling, so then it looks like, so for if I do this thing for each or then toss this 

coin for each of the n choose l members here. So, then I expect the expected number of set 

vertices I am planning I may take on this side, is this right. So, n choose l by k choose l because 

1 by k choose l is the probability of picking one of them. n choose l things are there out of that so 

that, therefore, so you can expect, that the expected number of vertices taken here, I mean, l 

element subsets picked up will be n chose l by k chose l, right. 

Now, so so from this side for each vertex I want is, here, k element subset here if vertex here 

means a k element subset. The way, what we want is one of each subset, that k element subsets, l 

subsets if you consider, that should be picked up. So, there are k choose l of them because each 

one of those things are picked, the coin is tossed with probability 1 by k choose l, so we expect 

one of them to be in the same picked up, right. So, therefore, it makes sense in that sense, right. 

For instance, somehow we may be able to find one subsets, but then of case, so this was an 

intuitive or suppose, if you are ably aware of what is probability and so approximately, for 

instance, how to randomly select things and things like that and then that makes, so therefore this 

statement makes sense. 

So, it is like if we had picked up n chose l by k chose l, of case, at least that much you should 

pickup. This is what you are saying, of case, yeah, so it is just because we expect, it does not 

mean, that we should be able to hit, but what this theorem says is, suppose we go below this 



thing, there is no chance, right. You have to take n chose l by k chose l, otherwise we, we, do not 

have chance of satisfying everybody. That means, one of the neighbors of it will be picked up, 

right, that is what I said. So, we, we need to take at least that much (( )) 

Now, we will do a counting argument to show that. So, this is, of case, this is all intuitive 

argumentation, which is to, of case, this is not even an argument for this to prove this theorem. It 

was just to give a feeling what we are trying to do, right, what this quantity on, the, the RHS is 

and what we really want, right. So, what we want is this will also something like, you know, if, if 

we consider k element subsets, we list down the k element subsets, right, for each of them. So, 

we want a representative set such that every k element subset has a representative in our, in our l, 

l element, in fact, l. 

So, for instance, if its committee is, we were talking about the k, k member committee is formed, 

so we should have at least l members in the committee, right, or again we go back to our 

previous example, this red people, red subsets are the subsets, right. For instance, I said 

committee, we, we bribe this thing, so if that, that example does not work exactly here, but 

suppose you have to bribe each l, l element committees separately. Suppose, you know this 

committee is fully bribed, this committee is fully bribed, right, or corrupted or something like 

that. Now, I want, for every k element committees here I want a one of the corrupted l, l set (( )), 

that is what we are saying, that is what we are trying, ok. So, so approximately, so we would not 

show, that k choose l by k choose l is a requirement, right; at least that much is required. 
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Now, to show this thing what we do is, suppose some f family of l element subsets, say f is a 

family of l element subsets, is a family of l element subsets having the required property, so not 

that f is a subset of n choose l. So, this is notation to, notation for all the l elements subsets of, l 

subsets of n, ok. This is subset of this and now we want to show, that we want to show 

cardinality of f is at least n choose l divided by k choose l. This is what we want to show, right. 
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So, now we will again use that double counting technique. So, this time what we do is, we index 

the rows S, the members of F. So, let us say, S 1, S 2, S 3, these are all l element subsets, multi of 

F, look this coming from this, right. These are the members of F, right. These are the members of 

this, but these are all subsets again, l element subsets. 

Now, this time we index their ways by the k element subsets, T 1, T 2, T 3, T n, choose k, all the 

k element here in the columns, we have n chose k columns because each k element subsets has a 

corresponding column there, that there are not choose, we do not have n chose l rows because we 

are only interested in the hypothetical family we have constructed. So, we claim, that this family 

is one satisfying the property, right. And then we have listed the members here and we are 

interested in the cardinality of that family. 

And now, again what will be i j-th entry? So, S 1, T 1, here I will put a 1 if S 1 is a subset of T 1, 

otherwise I will put a 0. If S 1 is a subset of T 2, then I will put a 1 here, otherwise I will put a 0 

like that, right. So, similarly, so if I take a S i and a T j, a 1 will be put if S i is a subset of T j, 

subset equal to T j. Not that these are all l element subset, l is less than equal to the cardinality of 

each subsets corresponding to columns because i have k element subsets, right. Now, what are 

we interested in? We just count it into different ways, namely we count the now 1s, number of 1s 

in the matrix row-wise, so how many 1s are there here? How many 1s are there here? So, as we 

told here, r 1 and r 2 is r cardinality of, we will count so that is easy to do data equal to 1 to 

cardinality F. 
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So, we want to count the number of 1s in each row. You can see that because this is an l element 

set, so a row corresponds to an l element set. They are asking in how many k element sets it is a 

subset of, I mean, they, how many k element subsets are there? (( )), it is a subset of that will be a 

number of 1s in it, right. So, for each element you can easily see that for each l element subset 

the number of 1s we see in the corresponding row will be same though it will be in different 

places that will be same, why? Because it is a same number, so you give me an l element subset, 

right. 

Now, I want to know how many Ys are there such that y contains S. Now, it was a picture like 

this. Suppose this is a Y, so now S has to be here, but this is already l, now this total wise k. I am 

right, so now the question is we want to decide the remaining elements, namely k minus l 

elements of y. In how many ways I can decide it because this l things are already decided 

because that is exactly S. If we exit right now we can decide this thing, but there are total n 

minus l remaining elements because the universe has l elements. We have already fixed the l 

elements corresponding to this S. Now, the universe has n minus, so l remaining elements out of 

that we have to take this k minus l elements, so k minus l ways of picking it up, right. So, this 

portion, so this portion can be decided in n minus l choose k minus l. Is it clear? 



So, because so we want the k element subsets of universe n, n element subset such that a given l 

element subset is there inside it. So, the way to do it is we just pick up the members of that l 

element subset first and keep it aside and now decide their remaining k minus l elements, which 

should make up the k set because this element subset, this l elements has to be there anyway, but 

the remaining k minus l elements can come from n minus l possible elements. Why n minus l? 

Because total number of elements in the universe were l, but this particular l elements we kept 

apart. Now, they are already gone, right. We cannot select again those things, so out of the n 

minus l remaining things we have to select k minus l of them. So, that is saying for every l 

element subsets. 

So, the number of 1s you see in each row will be equal to n minus l chose k minus l, so we can 

just write n minus l choose k minus l here, right. But because this is a same number, we know 

this is equal to cardinality of f because this is summation, same thing is summed up. So, this is F 

into n minus l choose k minus l, this is what our sigma r i is, right, sigma r i is. Now, this has to 

be equal to sigma c i, the column sum, and what is that the column sum says? So, you pick up a 

particular k element subset, how many l element subsets are there inside it that is what x is. I 

mean, how many l element subset does it contain from this F? You know, that is difficult to 

know. You know that suppose given a k element, subsets, subset given a k element subset we 

definitely have k chose l, l element subsets inside it k chose l l element subsets inside it. Now, k 

choose l, l element subsets are there inside it of case. So, there are k choose l l element subsets 

inside it, but how many of them will come from F, that we are not sure, right. 
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So, but then let us say, that see the column sum can be at least k choose l, that is clear because 

you cannot have more than l element subsets, more than k chose l, l, element subsets for a given 

k element subset, even that much may not be there because we are not considering all l element 

subsets, S rows only. Some l element subs, namely, that those subs, l element subset, which are 

inside F are coming S rows, but we have now way of doing because we do not know what, that F 

is right. We only have a hypothetical F there, so we do not have, so we just put an upper bound, 

we say that at most k choose l things are there. 

So, the sigma c i has to be at most this. So, this is going from i equal to 1 to n chose k, right, 

because there are k, k, n choose k, possible k element subsets. So, for each of the k chose l can be 

taken, this is what we get and this is what I can do a little bit of manipulation. Here, k factorial 

by l factorial into k minus l factorial and then k or we have n factorial divided by k factorial into 

n minus k factorial. Now, this will go away, right, so k choose l into n choose k is the row sum. 

So, what do we get from here? So, we get F, cardinality of F into, so in the previous case we 

have cardinality of F into n minus l choose k minus l, that is equal to, so we compare it 

cardinality of F into n minus l choose k minus l. This is less than equal to, so this also, right, 

because k choose l into k choose l into n choose k. This is what we get. 
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Now, of case, so the question now is, so we get cardinality of F is less than equal to, I just have 

to do the manipulation, k choose l into n choose k, k choose l into n chose k divided by n minus l 

choose k k minus l n minus l choose k minus l. So, we will try to do (( )), so the, so this is, of 

case, I should not make any (( )), so this is k factorial divided by l factorial into k minus l 

factorial here. And a numerator, I am expanding n factorial divided by, n, k factorial into n minus 

k factorial and this total divided by below this is n minus l factorial divided by k minus l factorial 

n minus l minus k minus is n minus k factorial n minus l minus k minus l. This is just n minus k 

factorial. So, here the two things will cancel, so this n minus k this n minus k and this n minus k 

factorial will go away and this k minus l factorial and this k minus l factorial will go away. 

And of case, see you have to write it in a proper way. For instance, this into, maybe I can, if you, 

if you are, if you want to do it, may be I can do it more carefully here at least, so this will go 

away, at least that much we can, we can be sure. So, instead of doing this thing, let us say this 

will anyway go away, right. This and this will go away, so therefore, I will write it again. 
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Once again, n here, n factorial in the numerator, l factorial and then k minus l and n minus k 

factorial, that I will write n factorial, divided by k l factorial l factorial n minus k minus l and n 

minus k factorial k minus l factorial and n minus l n minus k factorial in the denominator, right. n 

minus k factorial here, below, we have, yeah, this, this, the denominator goes up, that is k minus 

and n minus k k minus l factorial into n minus k factorial divided by n minus l factorial, right. 

Yeah, now we can cut this off. 

So, what do we get? So, finally we get n factorial divided by l factorial into n minus l factorial. 

This is what we get, that is, n choose l. And finally what do what we want to get? We have to get 

n choose l by k k choose l, right, n choose l by k choose l n choose l by k choose l. We will get n 

choose l, right. This manipulation has, once again I will do. So, this is correct, so the k chose l 

into l chose k here, so we have F into n minus l chose k minus l, right. And we want to show, that 

F is less than equal to, sorry, F is, oh sorry, so what (( )), I made a mistake because I wanted to 

show a lower bound, I went for an upper bound. So, therefore, actually, the, the, the thing is I 

took a lower bound here; in fact, I have to take lower bound here, right. So, but this is not true 

here. So, because this is only an upper bound, I, I, I took k chose l into n chose l, that is a 

possible thing. So, therefore let me see, in the worst case we may have just one here, right. 
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So, we can, we can write, yeah, that is, that is one mistake I made. So, sigma C i, when I say 

sigma C i, that is definitely less than equal to n chose k into k chose l. But what we want to prove 

is, that F is greater than equal to something, right. But what we know is F into n minus l chose k 

minus l is the sum of rows, sum of rows. Now, so this is sum of columns also. So, we want to get 

lower bound for this, right, so that we will, we will be able to say, that F is greater than equal to 

whatever lower bound we get divided by this n minus l, this thing. So, that is why I made a 

mistake. So, therefore, I want to get something here also, right. This, this is not good for me, 

right. So, what can I do, but because I know that I have, n choose k times, but the, the thing is I 

cannot say, that for each column I have k choose l entry once in it, that is definitely not true for 

each column. They may not have k choose l into S because why, because they go back to the 

matrix, go back to the matrix here. 

If you consider the rows, we are on this; rows only correspond to the members of F. So, for 

instance, if I take a T j, its subsets may be such that many other subsets may be outside this, but 

one thing is sure, we have at least one subset unit, but that is a property of F, it is not that 0 

subsets of T j are listed here, no subset of T j are listed here because if no subset of T j are listed 

here, then F is not the kind of family we wanted because the kind of family we wanted was a 

family such that for every k element subset there is one l, one of the l element subset of, it is part 

of the family. So, definitely I am sure, that at least one 1 can be seen in this row. So, not that 



every, every member of this row will be 0s, right, so at least one 1 will be seen from this thing, 

right, that is because F has that property, right. So, therefore, as a lower bound we can take just 

one, we do not know whether more than one element, l element subset of this particular k 

element subsets will be listed here in the rows, that is not guaranteed, right. If it is, if this F did 

not have that property, it can even be 0, but because F has the required property we know there at 

least one 1 will be same, so we will just put one as a lower bound instead of, yeah, here. So, here, 

where we have taken k minus l, here we will just put 1 into n chose k as a lower bound. So, now 

it will, so now here we do not want this, we want greater than equal to, right, 1 into n chose k. 

This lower bound we will put, so 1 into n chose k, this just n chose k, right. 

So, now, ok, this manipulations are, were not what we were looking for because this was a, this 

will only give an upper bound on f. Of case, whatever we are getting as an upper bound for F is 

valid, but then the problem was, see among the manipulation that we have done is not wrong, but 

that is not our aim. Our aim, the theorem was asking for a lower bound for F, not for an upper 

bound for F, right. So, because you know when we take thing what we got is, this is n chose l, 

right. So, finally upper bound of n chose l is quite valid, but trivial, that is all. So, this, whatever 

after doing all this manipulations we had got, this quantity, mainly n choose l. But then it is like 

we have, take the, F is at most all possible l element subsets is what it says, right, n chose l. So, it 

is a trivial upper bound we got, but it is not wrong because it is giving that information at least 

by doing these double counting. But we go by the, because the nontrivial thing what we wanted 

was the lower bound, so we work on that part. 
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So, we get cardinality of F into n minus l choose k minus l is greater than equal to n chose k, 

right. So, now we can do this thing. So, cardinality of F is greater than equal to n choose k 

divided by n minus l choose k minus l. This is vertices, so we want to show that this is equal to, 

so you know, still we are not through, why? Because you know, this is not, this is definitely true, 

but this, what we want to show is, that I can go back to the theorem n minus l by k choose k 

choose l is what we want to show, right. So, so we want, somehow want to show, that this one is 

equal to, this one is equal to n choose l by k choose l. This is what we want to show, then it will 

work. 
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So, we will work on that. So, n, n chose k divided by, n chose k divided by n minus l chose k 

minus l. We want to show, that this is equal to n choose l divided by k choose l. Is this true? If 

this is true, we are done, right, because when we, we got this thing from our double counting 

argument and if we can show, that this is same, then this is we are done. But this, how do we 

show this thing, let us, let us try cross-multiplying means, we will multiply this here and this 

here. So, what, what is that saying? So, that say is, n choose k into k choose l, this equal to n 

choose l into n minus l choose k minus l. 
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Now, there are two ways to deal with this thing. One is, just expand it and see, of case, so n 

factorial divided by the same expanding n chose k into k chose l. n factorial into k factorial into n 

minus k factorial and this is k chose l k factorial by l factorial k minus l factorial. Yes, in this 

factorial I want to show, whether I mean to say, whether this equal to n chose l into n minus n 

choose k choose l. So, there is n factorial into n factorial into n minus l factorial into n minus l k 

choose l, right. n minus l factorial k minus l factorial into n minus k factorial, so n minus n minus 

l minus k minus l, you will get n, n minus k factorial. 

So, all these things will cancel off: k factorial, k factorial; k minus l, k minus l; l factorial, l 

factorial; n factorial, n factorial; (( )). So, this is on one is to one thing, just a blind checking by 

expanding both sides. So, therefore it will, so note, that there is no 0s and all we are cancelling, 

we are just given k equal to l, k is, this is 0 factorial is 1 only, so all factorials are being 

cancelled, therefore no problem. So, this is, one is one, so one equal to one. So, it is true or if you 

want to get a combinatorial proof of that you can try. So, what does it mean? 
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So, this side, n choose k into k chose l, yeah, n choose k, n choose k into k choose l means, yeah, 

n choose k into k choose l. So, we have first selected a k element subset here, then we have 

selected an l element subset of it. So, let us say, A is the k element subset, B is the n element 

subset, then it is like we are counting (A, Bs) pairs, (A, Bs), where A is a k element subset and B 

is an l element subset, which is contained in A. We are counting this pairs (A, Bs) such that this 

is, for instance this is the number of ways of selecting, this is the number of ways of selecting the 

first k element subset and this is the number of ways of selecting an l element subset of that 

selective k element subset. So, this, the total thing n chose k into k chose l count the number of 

pairs (A, B) such that A is a k element subset of n and B is an l element subset of A. 

But this can be counted in a different way also, how you could have first selected B, namely the l 

element subset, that can be done in n chose l ways, right. So that can be done in n chose l ways. 

And after selecting B you can fill in, like we have done before, the remaining because we have 

already selected l thing from the remaining n element, n minus l elements of the universe, you 

could have selected any of the k minus l elements, so that you can make a k element subset, 

right, so that will be B is selected first, then A is selected, right. This will again counting the 

pairs (A, B) such that B is an l element set and A is say, k element subset of n, which is the 

superset of B, which is the same as saying that A is a k element subset and B is a subset of A, 



right. That is, that will give you this thing, so therefore this and this are equal. n chose l into n 

minus l chose k minus l, both are same, right. 

So, here this is also, this also illustrates a usual counting strategy, the counting here, we counted 

a pair of things, right. We counting pairs, tuples, this kind of things usually happens in 

combinatorial arguments. And this tuple here, the pair is interpreted in two different ways, first is 

the first coordinate, the first member as the first selective thing and B is selected after selecting 

that or then the other way is looking at B and then selecting Bs first and then selecting A. This is 

also a kind of double counting, right and double two ways we are doing it, right. So, therefore, 

we can, we can see that. So, both the quantities are equal. We try verified it two, in two different 

ways, first by just putting in the equations, second by showing a combinatorial argument for that, 

again a double counting for that matter, right. So, the entire (A, B) is counted in two different 

ways. 
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Yeah, for, for instance if you wanted a, like matrix kind of form for this formula n choose k into 

n k choose l is equal to n choose l into k minus l, sorry, n minus l choose k minus l, right. So, we 

could have drawn it like this. We draw a matrix, right, then we list all the l element sets here. So, 

all l element sets, we can say all k element sets are listed here, namely how many we have. Total 

there will be n chose k of them and similarly, along the rows, all the rows correspond to the l 



element set, let us n chose l will be there, so n principal we can write like this. So, that means, 

the k element subsets are at least, are, are corresponding to the rows. We have k element subsets 

corresponding to the columns; we have l element subsets, so in columns we have l element 

subsets. 

Now, we can say, that four, the i-jth entry here, this is, may be this is the entry, the row 

corresponding to A, this is a row, B corresponding. So, if B is contained in A, then we put a one 

here. Almost the same strategy we did it in the earlier one, right, and then we count like that. We 

create a matrix, right. Whenever this particular, the set l element subset corresponding to the 

column is contained in the set corresponding to the row, one row, then we will put a one in it. 

Then we, counting the total number of 1s here, total number of 1s here, so how many 1s are 

there?  

So, one way is to find the row sums and add up, that is clear because a row sum will be there for 

a given, how many will be there because given a k element subset, there will be exactly n k 

choose l subsets, l element subsets of it. So, the row sum sigma arise here will be equal to n 

choose k into because there are n choose k rows and each row contains a k choose l, k choose l 

1s. This is the row sum, and the column sum will be what? Column sum will be, because there 

are n choose l columns and here, again for each column, that is an l element subset, they are 

asking how many k element subsets are there such that it is contained. That, as we have argued, 

it is n minus l choose k minus l, right. So, this and this are equal. 

So, that way, ok, we can again see it from the matrix as counting the number of 1s in the matrix, 

that (A, B) pairs we are counting, we told, that is, that correspond to a 1 here because this A 

correspond to a row, B correspond to a column, that is this pair, (A, B), right. So, ok, that was a 

different way of putting it. So, we, but if it is like easier to think in terms of counting the number 

of 1s in the matrix, we can always do it that way, right. Of case, so what otherwise we can think 

in terms of counting certain pairs, right. 

So, now, so I, we have proved it, so I just summarize, that the Turan’s number we, we first 

explained, what is this Turan’s number and then see, we wanted to get a lower bound for Turan’s 

number in the process. So, what we did is, we made for the double counting, we made them rows 

and columns, rows corresponds. So, hypothetically assume, that required family of subsets are 



known and then we created a matrix for that such that each row corresponds to a subset, l 

element subset, an l element subset from that family and then each column correspond to any 

given k element subset there, n chose k of them, there are n chose k columns. 

And of case, initially I made a mistake of working for an upper bound by saying, that ok, the row 

sum, there was no problem, that was F into cardinality of F into n minus l choose k minus l 

because each row contained, exactly we knew how many 1s will be there because given any k l, 

k l element subset, it will be contained in n minus l choose k minus l, k element sets. But the 

other way was not easy because you know we do not have all the n chose l subsets listed as rows, 

so therefore we do not even know what is this F. We just have a hypothetical property for that. 

So, for an upper bound we know, that each column can contain only at most k choose l once 

because it is a k element subsets. How many l element subsets can at most be there, that is what I 

tried first, so that only led to an upper bound and we show that it led to a trivial upper bond, that 

was not useful but still it illustrates the double counting argument. 

Anyway, whatsoever, but lower bound we need to get a lower bound for the, the number of 1s in 

the columns. Of case, it can be 0, of case, because a given k element subset, what is just an 

arbitrary family of subsets you have taken for the rows, then it can be even 0, but in this case this 

family had a property namely, that you take any k element subsets, at least one of its l element 

subsets will be in that family, that is why we know, that there is at least one 1 in it. So, therefore, 

if you add up the 1s column-wise, each column will contribute at least one 1. So, there was total 

sum, total number of 1s will be at least the number of columns. So, that is at, that is where we 

got n chose k. 

So, we show, that the cardinality of that family into n minus l chose k minus l has to be greater 

than or equal to k chose l, sorry, n chose k and we divide it and then we got a quantity and the 

way we gave the lower bound was by another ratio, but we showed that that ratio is the same as 

this in the end. That again we use the double counting argument when we gave a combinatorial 

proof. This was the summary of this last proof. So, this is a slight goof up in the presentation, but 

again, it is not much of a problem. 
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So, and then next one we want to consider is, so I quickly give another example of this double 

counting is again using this bipartite graph things and also, this is a very important topic for not 

giving you the full proof. So, this is the question we want to consider. 
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So, we have n, n element, n element universe and then we have some family of subsets. So, let us 

say these are the subsets, I am just writing it as S 1, S 2, S 3, some S n. So, this is a family of 



subsets, right. So, now, so that means some members of 1 to n will be here, 1 to n, some 

members of 1 to n will be here, some, these are subsets of 1 to n. 

Now, we want to select a representative from this thing, a representative from this thing, a 

representative from this thing, a representative from this thing and we should be able to say, that 

this representative is for this set. He may belong to another thing, but for instance, these are all, 

some say this is some groups of people, right, say it is possible, that so for instance these are 

people who, who can speak English, so these are people who can speak Hindi, these are people 

who can speak another language, so Tamil and so on. Now, it is possible, that one person can 

speak both English and Tamil, but so for instance, we, he selected as a representative of English 

speaking people, then you should represent them. You should not help the other, right, other 

community for, maybe in any discussions. You should represent it entirely this English speaking. 

So, we need distinct representatives’ work, it does not matter whether their representative 

belongs to another community, also it does not matter, but we want a distinct one for each of 

them. Sometimes it is not possible for that you can easily see. For instance, if there are too few 

people and too many sets, for instance if we collect all 2 raised to the n subsets of it, so suppose 

S 1, S 2, S 3, S n and say, we have S, this is S 2 to the power, so why should I put n, so it can be 

m, right, so this, this m can be 2 to the power n, means all possible to, to the power n minus 1. If 

you want to remove the empty set because empty subset, anyway, does not have any, person 

cannot get a representative for that one. 

So, now it is very clear that it is not n is large enough, of case, definitely 2 raise to n minus 1 will 

be greater than n, right and there are only n people and then one of them represents one, another 

one represent another one and finally, there will be, still there will be sets, which are not 

represented. 
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So, the question now is to know when can we have distinct representatives, that this is what the 

Hall’s theorem is concerned with. So, Hall’s theorem gives a condition, Hall’s theorem gives a 

condition, which, which gives its equine only condition necessary in sufficient condition for like 

being able to, so that will, that is necessary in condition for the existence of distinct 

representatives for all set, all subsets in the family, right. So, though we have put it as a distinct 

representative and like we have done in the last example, we can also see it as a problem in the 

bipartite graph. 

So, this is, as I saw about set systems, it is nice always to see it as bipartite graph. See, 

sometimes it can be, we see in the last case, we have n, n, all the n element subsets were, sorry, k 

element subsets were listed here and l element subsets were, the inclusion was captured in an 

edge here, what we can do is the universe itself, the members, the people, right, the members of 

the universe, they can be listed as, say this is 1, 2, 3, up to n, right, this can be listed as the 

vertices of one side, the sets of the family, this is the family, S 1, S 2, S m can be listed as the 

other side. Now, how will you, so put the edges. If this member belongs to this set, then try put 

edges. For instance, inclusion for instance, if this not inclusion, so what is a membership if for 

each element you can put a (( )) if that, that element is a member of that set. Also, for instance, if 

this particular set has an edge to this, if it contains it, so that is a matriculation also, so these 

edges can be put like this. 



Now, once you put these edges, so we have a graph, we have a graph, so it is a bipartite graph, 

right, and both sides of the bipartite graph represent something. So, now what do we want? So, 

we say, that I want one person to be assigned this thing, one person to be assigned to this set, one 

person to be assigned to this thing, one person to be assigned to this thing, right. If some persons 

are not assigned to any, it does not matter. What I want is, for each subset here in F we need a 

distinct representative, so this person should not be as if, it, if he is assigned to this, this person 

should not be assigned to anybody else. This is called a perfect matching of this side. So, ok, not 

perfect matching, sorry, this is called matching of this set, this set. Say, this is A and this is B, a 

matching of A, this matching, matching of A means, every vertex of A is matched by that 

matching, right. 

So, now the condition we want, Hall’s condition is concerned with giving a condition for the, is 

for the existence of such a matching, right, need not as, as we have explained it, need not happen. 

For instance, if m is too large compared to (( )), it will not be possible, right, because it will 

finish off one distinct representative, one representative given for this, one is given, one is given, 

finally after sometime all the members here will finish off, and then it is not possible to get. So, 

one of the case that is a trivial condition that we should have, at least as many number of 

elements in the universe as there are sets, then only we can get distinct representatives, but is that 

enough? Even that may not be always valid. So, if you, this essentially comes in the graph theory 

course, it is a very detailed discussion in graph theory books on this thing or also the NPTEL 

course on graph theory also discusses this problem. So, therefore, we would not get into further 

details. 
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But what I will just tell, what the Hall’s condition tells, so Hall’s condition says, so this is A, this 

is B. Now, if we take any subset of A, so you take a subset S of A. Now, we can see the 

neighbors of this S here, neighbors of this, this means any member here, which is, which is an 

edge into this, right. And count the neighbors, so this is called N of S, usually number of 

neighbors. If number of neighbors is always greater than S for any set you take here, right, non-

empty set you take here, if the number of neighbors is greater than equal to even empty set is ok 

because that will be 0, greater than 0, greater than equal to S, then we say that the Hall’s 

condition is met for this graph. Hall’s condition is met for, this is satisfied for this bipartite graph 

means, take any subset, there are 2 to the power S possible subsets you can take including that 

empty set. 

Therefore, each such subset, the number of neighbors N of S, cardinality of N of S has to be at 

least the cardinality of the set itself, then we say, that the Hall’s condition is satisfied. And Hall’s 

theorem says that if the Hall’s condition is satisfied, then it is possible to get a matching of it. We 

can get a distinct representative in that terminology of set system. For instance, if each vertex on 

the S, I corresponded to a subset of the universe, then this condition, Hall’s condition says if you, 

for instance, you know, for every subset the neighbors are actually the members of it, right. You 

take the union of this subsets for instance, this is S 1, S 2, S 3, then you take S 1 union S 2 union 

S 3, that cardinality should be greater than equal to 3, right. 
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For instance, here, so you can, so this is S 1, S 2, same, right, you can take say S 10, S 13, S 16, 

S 25, four subsets. Now, consider the union of S 10, S 13, S 16 and S 25 and find how many, 

how many are there in the union and there should be at least four of them, four correspond to one 

to this. There are four sets here, so at least four should be there, then only the Hall’s condition is 

met. You know, when the bipartite setting what happens is this S 10 is a vertex in the A side and 

its neighbors are the members in it, the elements of it, right. And the neighbors of S 13 are the 

members of the members, the elements of S 13 and similarly, the neighbors of this vertex S 13, S 

16 will be the elements of 16 and so on. 

Then, you may wonder why so. This, each of them have one element, at least we want it add up 

to four, not necessarily because it is possible, that what S 10 contains may be contained in S 13 

also. In fact, they can be same, right, or maybe there are two. Say, for instance, A and B are here, 

this can be A, this can be B, this can be another A, right. So, so for A, B, C, so for this can be C, 

so everything together, it is only A, B, C and C, you, if you take the union, right. So, we do not 

have four elements here, four sets does not guarantee that the union contains four elements. 

So, the Hall’s theorem says, but for any collection of subsets you take here and if you take the 

linear of it and then you, you find the cardinality of a union, if it is at least a number of sets in 

that union, then the Hall’s condition is met. And if the Hall’s condition is met, you are 



guaranteed to have a matching of the A sign, that means, you are guaranteed to have a distinct 

representative, system of distinct representatives, right. This is what we see. 

Now, I can see, of case, one should, you need a proof for that. Of case, we need a proof for that 

that you should probably get it from some graph theory course or textbook. So, I will not get into 

the details of the proof. 
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But here, I introduce these things, of case, this is an important thing, but I will not get into the 

proof of that, but rather I would think, it, I will give one special case of it and show, that the 

Hall’s condition is met by doing a double counting argument, namely the case of k regular 

bipartite graph, k regular bipartite graphs. What is k regular bipartite graphs? So, from the A side 

the degree of each vertex is exactly k for everything, for every vertex on the A side, the degrees 

and this side also it is k; this side also it is k. Now, it is clear that, yeah, for instance, we will start 

using the double counting argument to say, that the, the, the trivial condition is met, namely. So, 

if there are n sets here, there should be exactly m elements in the universe. Why, because here 

we are adding up the degrees. I think it is time, I will continue in the next class. 


