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In our previous class we have seen effect of standardization and how to find out different 

distances like Manhattan distance, Euclidean distance and Minkowski distance. Then I have 

explained how to select the variables. In this lecture we are going to see when you are collecting 

the data if you are missing some data, some data is not available how to handle that situation. 

Then very important concept of similarity and dissimilarity matrix. That is our agenda for this 

lecture. 
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First let us see how to handle the missing data. It is often happens that not all measurements are 

actually available. So there are some holes in the data matrix that is a missing value in the data 

matrix. Such an absent measurement is called missing value it may have several causes. The 

value of measurement may have been lost or it may not have been recorded at all by oversight or 

lack of time.  

 

Sometime the information is simply not available. For example, birth date of a foundling or the 

patients may not remember whether he or she ever had their measles, or it may be impossible to 

measure the desired quantity due to the malfunctioning of some instrument. In certain instances, 

the question does not apply or there may be more than one possible answer when the 

experiments obtain very different results.  
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So how can we handle a data set with the missing values? That is important question now in a 

matrix we indicate that the absent measurement by means of some code. If there exists an object 

in the dataset for which all measurements are missing, there is really no information on this 

object, so it has to be deleted. Analogously a variable consisting exclusively of missing values 

has to be removed too.  
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If the data are standardized, the mean value m of the fth variable is calculated by making use of 

present values only. The same goes for your mean absolute deviation, so mean absolute deviation 

that is Sf = 1 / n modulus of x1f - mf and so on xnf -mf. In the denominator, we must replace n 



by the number of non-missing values for that variables, but of course only when the 

corresponding xi is not missing itself.  

(Refer Slide Time: 03:20) 

 

In the computation of distances based on the either Xi or the Zi similar precautions must be taken 

when calculating the distances d of i, j only those variables are considered in the sum of which 

the measurements of both objects are present. Subsequently, the sum is multiplied by p and 

divided by the actual number of terms. In the case of Euclidean distances, this is done before 

taking the square root. Such a procedure only make sense when the variables are thought of as 

having the same weight. For instance, this can be done after standardization.  
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When computing these distances, one might come across a pair of objects that do not have any 

common measured variables, so their distance cannot be computed by means of above-

mentioned approach. Several remedies are possible: One could remove either object, or one 

could feel some average distance value based on the rest of the data. Or, by replacing all missing 

xif by the mean of mf that variable, then all distances can be computed. Applying any of these 

methods one finally possesses a full set of distances.  
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Then we will go to another topic that is dissimilarities. The entries of n-by-n matrix may be 

Euclidean or Manhattan distances. However, there are many other possibilities, so we no longer 

speak of distances, but dissimilarities or dissimilarity coefficients. Basically, dissimilarities are 

non- negative numbers that is d of i, j that are small, close to 0 when i and j are near to each other 

and they become large when i and j are very different. We shall usually assume that 

dissimilarities are symmetric and that the dissimilarity of an object to itself 0. But in general, the 

triangle inequality does not hold.  
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Dissimilarities can be obtained in several ways. Often, they can be computed from variables that 

are binary, nominal, ordinal, interval or combination of these. Also dissimilarities can be simple 

subjective rating of how much certain objects differ from each other from the point of view of 

one or more observers. This kind of data is typical in the social science or in the marketing.  
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Let us take an example then I will explain the concept of dissimilarities fourteen post-graduate 

economic students coming from different parts of the world were asked to indicate the subjective 

dissimilarities between 11 scientific disciplines. All of them had to fill in a matrix, like in table 4 

in the next slide where the dissimilarities had to be given as integer numbers, on a scale of 0 to 



10, where the 0 represents identical 10 represents very different. The actual entries of the table in 

the next slides are the average of these values given by the students.  
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It appears that the smallest dissimilarity is perceived between mathematics and computer science 

that value is 1.43 mathematics and computer science. This is our smallest dissimilarity whereas 

the most remote fields where psychology and astronomy psychology, astronomy. So this table 

represents dissimilarity matrix from that we can directly read, which is having lesser 

dissimilarity, which is having more dissimilarity. 
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If one wants to perform a cluster analysis on a set of variables that have been observed in some 

population. There are other measures of dissimilarity. For instance, one can compute the 

Parametric Pearson product-moment between the variables f and g or alternatively non-

parametric spearman correlation. Here the dissimilarity can be found with the help of your 

Pearson correlation or spearmen correlation. We know that the Pearson correlation is a 

parametric method spearmen correlation is non-parametric method. Because Spearman 

correlation is applicable only for ordinal data.  
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Both the coefficients lay between - 1 and + 1. Which one I am saying where our Pearson and 

Spearman correlation and do not depend on the choice of measurement units. We need not bother 

about the units because we are going to see the range of correlation coefficient is – 1 to + 1. 

Similarly, the Spearman correlation value also between -1 to + 1. That value does not depending 

upon what type of units of the data.  

 

The main difference between is that the Pearson coefficients look for a linear relationship 

between variables f and g, whereas the spearmen coefficient searches for monotone relations. So, 

this is formula for our correlation coefficient, so we call it as r the correlation coefficient we have 

studied this formula already. So the correlation coefficient row is this is nothing but co variance, 

co variance of x, y divided by standard deviation of x standard deviation of y. So this is in some 

other format this is x, y the correlation coefficient, not x, y here you can call it as f, g. 
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Correlation coefficients are useful for clustering purposes because they measures the extent to 

which two variables are related. Correlation coefficients, whether parametric or non-parametric 

can be converted into dissimilarities d of f, g for instance, by setting by this relationship. So 

dissimilarity between object f, g = 1- R that is correlation coefficient between f, g divided by 2. 

ith this formula variables with a high positive correlation receive a dissimilarity coefficient close 

to zero whereas the variables with a strongly negative correlation will be considered as very 

dissimilar.  

 

Why this kind of conversion is required the range of dissimilarity is between 0 to 1, but 

sometime what will happen the value of correlation coefficient between – 1 to + 1. So convert 

into to 0 to 1 scale we can use this transformation. 
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Now we enter into another concept called similarities. Previously we are explaining about 

dissimilarity and how we are going to study about what is similarities. The more objects and j are 

alike, so the larger will be similarity between s i, j becomes. Such a similarity s of i, j typically 

takes on values between 0 to 1 whereas 0 means that i and j are not similar at all, and 1 reflects 

maximum similarity. Values between 0 and 1 indicate various degrees of resemblance. Often it is 

assumed that the following conditions hold. So, S1 0 <= s of I, j <= 1, because the range of 

similarities between 0 to 1. S2 the similarity between i, i itself 1 the similarity s i, j = j, i  
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We will continue the concept of similarities for all objects i and j the numbers s of i, j can be 

arranged in an n-by-n matrix which is then called similarity matrix. Both similarity and 



dissimilarity matrices are generally referred to as proximity matrices sometimes as a 

resemblance. In order to define similarities between variables, we can again resort to a Pearson 

or Spearman correlation coefficient.  

 

However, neither correlation measures can be used directly as a similarity coefficient because 

they also take on negative values because we cannot take the value of correlation and Spearman 

correlation as it is because they may range between - 1 to + 1, but the similarity values between 0 

to 1.  
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So in that case, we have to go for some transformation, some transformation is in order to bring 

the coefficients into the zero-one range. There are essentially two ways to do this, depending on 

the meaning of the data and the purpose of the application. If the variables with a strong negative 

correlation are considered to be very different because they are oriented in the opposite direction, 

like mileage and weight of a set of cars, then it is best to take something like the following.  

 

You have to follow this transformation s of f, g = 1 + R of f, g what will happen here? We have 

added some constant so that constant will nullify the negative effect which yields the similarity 

between f and g = 0 whenever the correlation coefficient is - 1 because - 1 and + 1 becomes 0. So 

this take care that the similarity value comes between 0 to 1.  
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There are situations in which variables with a strong negative correlation should be grouped 

because they measure essentially the same thing. For instance, this happens if one wants to 

reduce the number of variables in a regression dataset by selecting one variable from each 

cluster. In that case, it is better to use formula like this. Similarity between f, g = the modulus 

value of correlation coefficient between f and g, which yields that the similarity between f, g = 1 

when the correlation coefficient is -1. We have to take only the positive values.  
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Suppose the data consist of similarity matrix, but one wants to apply a clustering algorithm 

designed for dissimilarities. Then it is necessary to transform the similarities into dissimilarities. 

The larger the similarity the similarity between s i, j between i and j the smaller their 



dissimilarity d of i, j should be. Therefore, we need a decreasing transformation. This is a very 

important result. So what it says that if you want to know the dissimilarity between two objects i, 

j that is nothing but 1 - similarity between i, j 
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Let us take a binary type variable for that let us find the similarity and dissimilarity. Suppose a 

contingency table for binary variable is given. There is an object i and object j you see that object 

i is 1 0 there are two possibility object j also 1 0. So the q represents where the object i also takes 

value 1 object j also takes value 1. This r represents q is the number of values here r represents i 

= 1 j = 0 this s represents number of values where i = 0 j = 1 t represents both i and j = 0. 

 

The row sum is q + r for when i =1 when I = 0 the row sum is s +t same thing the column sum s 

when j = 1 the column sum is q + s when j = 0 the column sum is r + t. So the sum of q, r, s, t 

that is nothing but your value p. 
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What is the meaning of this q, r, s, t? q represents the number of variables that equa1 1 for both 

objects i and j you see that q is the number of variables r is the number of variables that equal 

one for object i but that are 0 for object j. S represents number of variables that equals 0 for 

object i, but equal 1 for object j. So t represents the number of variables that equals 0 for both 

objects i and j. The total number of variables is p where p = q + r + s + t. 
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The dissimilarity between symmetric binary variable, so from the previous table. What is the 

meaning of Symmetric binary variable is example is gender suppose 0 Male 1 female. You can 

reverse the code also there would not be any problem on this. So that is example of Symmetric 

Binary variable. So for Symmetric binary variable, how to find out dissimilarity. So dissimilarity 



between i, j is it is r +s what is r+ s we will go this. So this one, the dissimilarity is this value r + 

s divided by sum of the all values r + s divided by q + r + s + t. 
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Then let us see what is the meaning of Asymmetric binary variable. A binary variable is 

Asymmetric. If the outcomes of the states are not equally important, such as positive and 

negative outcome of disease test. By convention, we shall code the most important outcome, 

which is usually the rarest one by 1. For example, HIV positive that is the rarest one we will 

code it as 1 and the other by 0 HIV negative. 

 

Given two Asymmetric binary variable the agreement of two 1s that is a positive match is 

considered more significant than that of two 0s that is negative match. Therefore, such binary 

variable are often considered as monary as if having only one state because we need not bother 

about the zero state, because zero state is that non-presence of HIV, because we are more 

concerned about presence of HIV where the state of one is more important.  
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Now let us see how to find out dissimilarity value between Asymmetric binary variable. The 

same table which I have given contingency table which I have given previous table I have given. 

So the dissimilarity between Asymmetric matrixes d of i, j. So we are considered about only r 

and s in this in the denominator there would not be t because we are not considering 0. So only 

we are writing q+ r + s. If it is Symmetric binary dissimilarity, the difference is there was a t 

element was there here. But here in the asymmetric binary dissimilarity formula there is no t 

element.  
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Even we have seen this relationship, that relationship called the Jaccard co-efficient. That is the 

similarity between i, j = 1 - dissimilarity. So similarity q divided by i, j where is q this one plus, 



we are bothered about only the pretense of 1 so q divided by q + r + s that is your similarity 

between i, j for a asymmetric binary variable. So if we want to know dissimilarity, that is simply 

the similarity equal to 1 minus dissimilarity between i and j. 
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Now let us take an example we will find out for Asymmetric binary variable how to find out 

dissimilarity matrix. This table shows there are different name is there Jack, Mary, Jim. There is 

a gender here gender is Symmetric binary variable. We are not going to consider this one 

because this is a different test fever, cough test 1, test 2, test 3, test 4. This is Asymmetric 

variable because where the presence of 1 is more important Y represents and P represents 1 N 

represents 0.  
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For this matrix, let us find the dissimilarity matrix between Jack and Mary. So I brought the table 

again we will let us find out the dissimilarity matrices between Jack and Mary. So for Mary, 

there are two possibility 1 0 for Jack that is under 2 possibility, 1 and 0. So let us count how we 

got this 2 so Mary also 1 Jack also 1 there are two possibilities there Mary this is 1 possibility 

this is another possibility. So there is a two count, so we have written it as 2. 

 

Then how we got this 1? Mary is 1 jack is 0 so that means this one where Mary is 1 Jack is 0. 

Now we will go this column where Mary is 0 Jack is 1 so Mary 0 is this one, I think there is no 

value for this. Let us see the last option that is Mary also 0 Jack is also 0, So this 1 2 this is 3 that 

is 3. So if you want to know the dissimilarity distance between Jack and Mary, so we know that 

the formula is so we will add this 0 + 1 divided by 2 + 0 + 1 so we got 0.33. 
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Similarly, now let us find how to find out the dissimilarity between Jack and Jim. So Jack is 

taken in rows Jim is taken as in the column. So first we will find out how we got this 1. So this 

case is Jack also 1 Jim also 1. So this category so Jack also 1 Jim also 1. I think there is only one 

possibility, so it is 1 how we got this 1, the Jack is 1 Jim is 0. So this value Jack is 1 presence Jim 

is 0 that is 1. So how we got this1 where Jack is 0 Jim is 1. So Jack is 0 yeah, this value Jack is 0 

no means 0 Y means 1.  

 

Let us see how we got this value 3 so Jack also is 0 Jim also is 0 so this 1 no this one 1, 2, 3 that 

is how we got the 3 values. So if you want to know the dissimilarity between Jack and Jim. So 

this is 1 + 1 divided by 1 + 1 + 1 so 2/3 it is 0.67. 
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Let us take another example the dissimilarity between Jim and Mary. So Mary there is two 

option 1 and 0. But Jim also there are two options 1 and 0 let us see how we got this value 1. 

Mary is 1 Jim also 1. So this possibility this one the second case Mary is 1 Jim is 0 this is one 

value. Mary is 1 Jim is 0 so there are two possibility. So that is where we got the value 2 how we 

got to this value 1 Mary is 0 Jim is 1 so Mary is 0 Jim = 1 that is this value.  

 

So how we got this 2 Mary is also 0 Jim also 0 so these two possibilities, Mary also 0 Jim also 0 

test 1 here also Mary is 0 Jim also 0. So if you want to know asymmetric dissimilarity between 

Jim and Mary it is 1 + 2 this value plus this one divided by this 1 +1 + 2 that is 4 so we got 0.75. 

So this is the way to find out asymmetric dissimilarity between different variables. In this class, 

we have seen how to handle the missing data for cluster analysis.  

 

Then I have explained the concept of similarity and dissimilarity matrix. Then we have studied 

symmetric and asymmetric binary variable and how to find out the dissimilarity between 

symmetric binary variables and dissimilarity between asymmetric binary variables. Thank you. 


