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Lecture – 50 

Clustering Analysis: Part II 
 

In my previous lecture, we have started about introduction to cluster analysis, and I have 

explained how to handle interval types of data. Then I have started about the importance of 

standardization. In this lecture we will see that what is the effect of standardization because 

sometime standardization may mislead your clustering structure and I will explain different types 

of distances computation between the objects. 

(Refer Slide Time: 00:56) 

 

Because for different types of data set, there are different ways to compute the distances, so that I 

will explain the many time when we collect the data. It is not necessary that we will collect all 

the data some time there may be a missing data. If the data is missed how to hold to handle that, 

that also will cover in this lecture.  
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Now let us see the effect of standardization I have taken one simple problem with a numerical 

example. This problem is taken from this book Finding Groups in Data: An Introduction to 

Cluster Analysis by Leonard Kaufman and Peter Rousseeuw; it is a John Wiley publishers. There 

are 4 persons and your age yet in terms of year and height in terms of centimeter is given. 

Suppose if you take age on horizontal axis and height on vertical axis, you can mark this all four 

persons A, B, C, D.  

 

So what you were able to understand that is a distinct cluster is there. Because A, B is one group 

one cluster C, D in another cluster. Now the same data let us standardize after standardizing 

again we will go for clustering let us see how it appears.  
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In figure 1 we can see the distinct clusters, let us standardize the data of table 1. For 

standardizing we should know the mean and standard deviation, standard deviation otherwise 

mean absolute deviation. So that mean of age equals to m1 = 37.5 just by adding all the ages and 

divided by the number of data set and the mean absolute deviation is not standard deviation it is 

mean absolute deviation of the first variable works out to be S1 = 2.5. 

 

How we are finding mean absolute deviation that variable minus mean for example 35 - 37.5 for 

second variable 40 – 37.5 we have to take only the positive value. There are four data set, so the 

mean absolute deviation is 2.5. Therefore, the standardization convert 40 to + 1 how we got to 40 

is converted standardized to 1 we know that this is x – mu divided by S. So x is 40 mu that is m 

is 37.5 divided by mean absolute deviation 2.5 = 1. 

 

And same way age 35 is standardized to -1 how we got the – 1, 35 - mean divided by mean 

absolute deviation. So it is - 2.5 divided by 2.5 it is - 1 the same way for the variable m2 the 

mean is 175 and mean absolute deviation for variable 2 is 15. So each variable in the second 

column also standardized for example 190 centimeter is standardized to + 1 and same way 160 

centimeters is standardized to -1. 
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The result data matrix which is unitless because below standardized is given in the table 2. Note 

that the new averages are 0 and the mean deviations equal to 1. So this table 2 shows that these 

standardized. Table for each variable is variable 1 and variable 2. Even when the data are 

converted into various strange units standardization will always yield the same numbers that is 

the advantage of standardization.  
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Now plotting the values of table 2 in the figure 2 does not give any very exciting result. So what 

do you have done? In the previous table we have the standardized values for both the variables. 

So when you plot it there are 4 points are appearing. So this points is not giving any useful result 

so figure 2 shows no clustering structure because 4 points lay out the vertices of a square. One 



could say that there are 4 clusters; each consisting of single point are that there is only one big 

cluster containing 4 points.  

 

Here standardization is no solution. So what we have seen many times when you go for 

standardization, the standardization may not give the useful result that is what this example 

shows.  
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Now let us look at the choice of measurements. Here the measurement means that units of that 

variable. What is the merits and demerits? The choice of measurement units gives rise to relative 

weight of variables, expressing a variable in smaller units will lead to large range for that 

variable, which will then have a large effect on the resulting structure. So what will happen if 

variable is in smaller units? So, that will give a larger effect in the; your clustering result.  

 

On the other hand, by standardizing one attempts to give all variables an equal weight in the 

hope that achieving objectivity. As such it may be used for practitioners who possesses no prior 

knowledge. So the benefit of standardization is that anybody those who are not having any prior 

knowledge about the problem also can do with the help of standardized variables. They can do 

the cluster analysis because there is a unitless.  
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However, it may well be that some variables are intrinsically more important than others in a 

particular application and then the assignment of weight should be based on the subject matter 

knowledge. Every time because standardization is giving equal weight some time some variables 

are more important. So for that variable with the help of experts, we can give a higher weightage 

for that variable.  

 

On the other hand, there have been attempts to devise clustering techniques that are independent 

of scale of the variables. There are many techniques people are trying to come with a different 

clustering model. 
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Distances computation between objects. The next step is to compute distances between the 

objects in order to quantify their degree of dissimilarity. It is necessary to have a distance for 

each pair of objects i and j. The most popular choice is the Euclidean distance. What is this 

Euclidean distance? The distance between variable i, j = xi1 – xj1 whole square + xi2 – xj2 

whole square up to xip – xjp whole square. 

 

When the data are being standardized one has to replace all x by z in this expression if you are 

standardizing instead of x you have to use z. This formula corresponds to the true geometrical 

distance between points with the coordinates xi1 up to xip and xj1 up to xjp. 
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See the Euclidean distance suppose if you want to move from point A to B see this is point A and 

B let us find out the concept behind the Euclidean distance. Suppose if we want to move if you 

want to point A to B you can directly you can fly from one point to because the birds will fly 

from A to B. So that distances called Euclidean distance. Let us consider the special case with p 

= 2 where there are only two variable. 

 

Figure shows two points with the coordinates xi1, xi2 and xj1, xj2. It is clear that the actual 

distance between objects i and j is given by the length of the hypotenuse of the triangle yielding 

expression in previous slide by virtue of Pythagoras theorem. So this formula is nothing but the 



hypotenuse. So this is as per the Pythagoras theorem so square of adjacent side and square of 

opposite side equal to square of hypotenuse. 
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Let us go to the next distance measures that is Manhattan distance. It is a another well-known 

metric is the city block or Manhattan distance. It is given by x modulus value of xi1 – xj1 + xi2 – 

xj2 modulus value only the positive values up to xip – xjp. Suppose this is city map if you want 

to move from point A to B right. There are two way one way is directly you can suppose we are 

if you are a bird or you are move if you want to go A to B you can fly. Otherwise, the flight goes 

from point A to point B.  

 

But if there is a fire suppose a fire engine it has to move. It has to follow a rectangular distance. 

So because there are different streets, so this distance is nothing but your Manhattan distance. 

You see that the distance or Manhattan distance will be larger than the Euclidean distance the 

green one is Euclidean distance. The blue one is nothing but the Manhattan distance.  
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Let us interpret the meaning of Manhattan distance. Suppose you live in a city where the streets 

are all north-south or east-west and hence perpendicular to each other. Let figure 3 be the part of 

street map of such a city where the streets are portrayed as a vertical and horizontal lines. So if 

you want to move from point A to point B, you cannot directly you cannot go by shortest path 

you have to take a rectangular distance. Another name for this Manhattan distance is rectilinear 

distance.  
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Then the actual distance you would have to travel by a car or fire engine to get from location i to 

location j would be xi1 – xj1 modulus value + xi2 – xj2 modulus value. This would be the 

shortest length among all possible paths from i to j. Only a bird could fly straight from point i to j 



thereby covering Euclidean distance between these points. So the example of the bird, which 

covers point A to B is the example for your Euclidean distance.  
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The mathematical requirements of a distance function, both Euclidean metric and Manhattan 

metric, satisfy the following mathematical requirements of a distance function for all objects i, j 

and h. The first property is D1 di, j > 0 d i, j >= 0 d i, i is 0 d i, j = d j, i d i, j <= d i, h + d h, j 

condition D1 merely states that the distances are non-negative numbers and D2 says that the 

distance of an object itself is 0 because i, i is 0. 

 

Axiom D3 is the symmetry of the distance function. The triangle inequality axiom D4 looks a 

little bit more complicated, but it is necessary to allow a geometrical interpretation. It says 

essentially that going directly from i to j is shorter than making a detour over object h. For 

example, suppose this is i this is j, and this is h so what says moving point i to j this will be 

shorter than moving i to h and h to j that is your triangular inequality.  
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Distance computation between the objects if d of i, j = 0 does not necessarily imply that i = j 

because it can very well happen that two different objects have the same measurement for the 

variable understudy. What is the meaning of this one is if the distance between object i, j = 0 it 

need not necessary that always it should be i = j. Sometimes there may be two objects which is 

not i = j their distance also may be 0.  

 

However, the triangle inequality implies that i and j  will then have the same distance to any other 

object h because d of i, h <= d of i, j + d of j, h = d of j, h at the same time d of j, h <= d of j, i + 

d of i , h = d of i, h which together imply that d of i, h = d of j, h. 
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The next measure of the distance is Minkowski distance. A generalization of both Euclidean and 

Manhattan metric is the Minkowski distance. It is given by d of i, j = modulus of xi1 – xj1 to the 

power p + xi2- xj2 to the power p and so on + xin – xjn to the power p whole to the power 1/p 

where p is any real number larger than or equal to 1. This also called the Lp metric for the 

Euclidean distance p = 2 and for Manhattan distance p = 1 as a special case. 
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Now let us take some example and calculate the Euclidean distance, Manhattan distance and M 

Minkowski distance. Let x1 = 1, 2 and x2 = 3, 5 represents two objects this is point 1 so call it as 

x1 this is point x2. The Euclidean distance between these two point x1 x2 is you see that it is 2 

square + 3 square, square root it is 3.61. The Manhattan distance between the two point is this 2 

+ 3. So this is your Euclidean distance, this is Manhattan distance.  

 

You see that the Euclidean distance is smaller than the Manhattan distance because in Manhattan 

distance you cannot have a direct route, you have to take only a rectangular route that will be the 

larger. So this line represents Euclidean distance move here then move here when you add that, 

that represents your Manhattan distance.  

(Refer Slide Time: 16:13) 



 

Let us take another example n- by-n matrix. This is one of the input for a cluster analysis for 

example, when computing Euclidean distance between the objects of the following table can be 

obtained in the next slides. For example, there are 1, 2, 3, 4, 5, 6, 7, 8. There are 8 persons their 

weight and heights are given. Now let us find out how to make n- by-n matrix, by calculating the 

distance between each persons each objects.  

 

So generally, if you want to know the Euclidean distance between B and E, for example, B and E 

that is nothing but 49 - 85 whole square. Otherwise, 85 - 49 because we are squaring it + 156 - 

178 total square you take square root that is 42.2. So the distance between B and E is 42.2. Like 

that for between A and B, A and C we can find out. 
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Do you see that n- by -n matrix the distance between in A and A is 0. You see that all the 

diagonal will be 0. The distance between A and B is 69.8 the distance between A and C is 2.0. So 

in my previous slides I have explained the distance between B and E is 42.2. So you see that this 

is symmetric see this upper triangle value is equal to your lower triangle value. So that is a 

replica that is a mirror image of this value.  
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Let us interpret this distance matrix. The distance between object B and E can be located at the 

intersection of the fifth row and the second column yielding 42.2. Now let us interpret that 

distance matrix. The distance between object B and E can be located at the intersection of fifth 



row and second column. That was this one I am going to previous slide. The fifth row 1, 2, 3 ,4 

fifth row second column this one 42.2.  

 

The same number can be found at the intersection of 2nd row and 5th column because the 

distance between B and E is equal to the distance between E and B, therefore the distance matrix 

is always symmetric. Moreover, note that the entries of the main diagonal are always 0 because 

the distance of an object to itself has to be 0.  
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Now we have shown only the lower triangle it would be suffice to write down only the lower 

triangular half of the distance Matrix.  
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Now let us see the selection of the variables, because before doing cluster analysis we have to 

see whether we have to select all the variables of the variables, which is relevant to our problem. 

It should be noted that a variable not containing any relevant information say the telephone 

number of each person is worse than useless because it will make the clustering less apparent. 

The occurrence of several such trash variable will kill the whole clustering. 

 

Because they yield a lot of random terms in the distances thereby hiding the useful information 

provided by the other variables. Therefore, such non-informative variables must be given you 

zero weight in the analysis, which amounts to deleting them. So any not important variable, you 

can give zero weightage so that that will not be taken into calculation.  
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So the selection of good variable is a non-trivial task and may involve quite some trial and error 

in addition to subject matter knowledge and common sense. In this respect so a cluster analysis 

may be considered as an exploratory technique. In this lecture we have seen the effect of 

standardization then calculation of different types of distances with the help of example. I have 

explained how to find out Euclidean distance, Manhattan Distance and Minkowski distance.  

 

Then formulation and interpretation of n by n matrix. Then I have explained this is one of the 

input for cluster analysis there are n objects, n variables, how to find out the distance between 

these two variables or objects. Then I have explained how to select relevant variables for the 

cluster analysis. 


