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Lecture — 45
Regression Analysis Model Building (Interaction) — 11

In this lecture, we are going to see if there are two independent variable. If they have some
interaction, how to incorporate this effect of interaction onto the dependent variable. Before
that I will explain with an example what is interaction, then I will construct regression model
for incorporating this regression. At this end, I will use the Python to run this interaction
regression model.
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Agenda
* Incorporating Interaction of the independent variable to the regression
model
* Python demo

The agenda for this lecture is incorporating interaction among independent variables to the
regression model and Python demo.
(Refer Slide Time: 01:07)



Interaction

+ |fthe original data set consists of observations for y and two independent
variables x1 and x2, we can develop a second-order model with two predictor
variables by setting z, =x,, 2,= x,, z;=x,%, 2,=%, , and z. = x,x, in the general
linear model of equation

* The model obtained is

y=Bt Bt B, + ‘35,1'% + ﬁ;_.\'i + floxx, +e

* Inthis second-order model, the variable z; = x,x, is added to account for the
potential effects of the two variables acting together.

* Thistype of effectis called interaction.

First, we will see what is interaction. If the original dataset consist observation for y and two
independent variable x1 and x2, we can develop a second-order model with two predictor
variables setting z1 = x1, z2=x2, z3=x1 square, and z4 is x2 square and z5 is the fifth
independent variable that is x1 and x2 in the general linear model equation. So, when you
bring this interaction, our regression equation will become like this, y = beta 0 + beta 1x1 +
beta 2x2 + square of the first independent variable x1 square plus the square of the second

independent variable x2 square and interaction.

In this second-order model, this is called as second order regression model, the variable z5,
that is x1 and x2 is added to the account for the potential effect of two variables acting
together. This type of effect is called interaction. So this term we say as interaction.

(Refer Slide Time: 02:19)

Example - Interaction

+ Acompany introduces a new shampoo product.

+ Two factors believed to have the most influence on sales are unit selling
price and advertising expenditure.

+ Toinvestigate the effects of these two variables on sales, prices of $2.00,
$2.50, and $3.00 were paired with advertising expenditures of 550,000
and $100,000 in 24 test markets.

Source: Statistics for Business and Economics,11th Edition by David R.
Anderson (Author), Dennis J. Sweeney (Author), Thomas A. Williams (Authar)




We take one example problem to understand how to do interaction into the regression model.
This problem is taken from this book statistics for business and economics, 11th edition. A
company produces a new shampoo product, two factors believed to have the most influence
on sales are unit selling price and advertising expenditure. So, there are two variables that is
going to affect our sales. One variable is unit selling price, another variable is advertising

expenditure.

These two variables are independent variable. The sales is the dependent variable. So, in this
problem setting, there is one dependent variable, two independent variables. To investigate,
the effect of these two variables on the sales, the prize of 2.5 dollar and 3 dollar were paired
with advertising expenditure of 50,000 dollars and 100,000 dollars in 24 test markets. | will
show you this dataset.

(Refer Slide Time: 03:24)

Advertising

Expenditure Sales

Price ($2000s) (1000s)
i 50 an
25 50 i
3 50 335
2 50 an
25 50 358
3 50 39
2 50 456
25 50 360
3 50 n
2 50 437
25 50 365
3 50 n
2 100 810
25 100 653
3 100 345
2 100 832
25 100 641
3 100 n
2 100 800
25 100 620
3 100 390
2 100 790
25 100 670
3 100 393

This dataset, you say that, there are 3 levels in prize, 2, 2.5, and 3. There are 2 level in the
advertising expenditure. One is 50, another one is 100. So that there will be a 24 different
alternatives. The last column is sales.

(Refer Slide Time: 03:44)



MEAN UNIT SALES {1000s)

Price
§2.00 $2.50 $3.00
“\\H(‘H\\in‘u‘ $50.Um ‘1_EIL “164‘ ?J2|
Expenditure $100,000 808 . 646~ 315
Mean sales of 808,000 unifs when

price = $2.00 and advertising
expenditure = $100,000

Now, we have made a summary of the previous table. What the summary says, when the
price is 2 dollars, when the advertising expenditure is 50,000 dollars, this 461 says the mean
sales. So, for example, in another sales, look at this one. When the price of the shampoo is 2
dollar, the expenditure is 100,000 dollars, this was the mean of all that combinations. So, the

mean sales of 888,000 units when the price is 2 dollars and the advertising expenditure.

How it was done where there is a; 2 is there and you have to look at the corresponding sales
value. The average of these four element is our (()) (04:36). Similarly, the cells is nothing but
the mean of that level and the corresponding variable. Similarly, how we got the 461. When
the price is 2, advertising expenditure is 50. Because the next one, it is going to the 100. So,

the average of this value is 461. Now look at this table.

What it says that by keeping the selling prices to 2 dollars, when you increase the advertising
expenditure, the mean value of the sales is increasing. Here it is increasing. The second case
by keeping 2005 dollar as the prize, when you increase the expenditure 50,000 dollar to
100,000 dollar what is happening here, your sales is increasing. Here although the sales is
increasing. This is one way. By looking at another way, when you find the difference
between the 50,000 and 100,000 dollars that we will show you in the next slide, what will
happen the difference, instead of increasing, it will start decreasing.

(Refer Slide Time: 06:18)



Interpretation of interaction

* When the price of the product is 52.50, the difference in mean sales is
646,000 -364,000 = 282,000 units.

* Finally, when the price is $3.00, the difference in mean sales is 375,000 -
332,000 = 43,000 units,

+ (learly, the difference in mean sales between advertising expenditures of
$50,000 and $100,000 depends on the price of the product.

* Inother words, at higher selling prices, the ef——=———"1 advertising
expenditure diminishes.

* These observations provide evidence of inter the price and
advertising expenditure variables.

This is the explanation for our previous slide. When the price of the product is 2.5 dollars, the
difference in mean sale is when it is 2.5 dollar, so the difference in mean sale is 646,000
dollar minus 364,000 dollars, this was your 282,000 dollars, 3 dollars, the difference in mean
sale is 43. So what is happening, the difference is mean sale is decreasing. Clearly, the
difference in mean sales between advertising expenditures of 50,000 dollars and 100,000

dollars depends on the price of the product.

In other words, at higher selling prices, the effect of increased advertising expenditure
diminishes. Actually what it has to do, when the price of the product increases, then we go for
increasing the advertising expenditure, the sales also has to increase, but it is not happening
so. So, what is happening when the selling price is increasing, the effect of advertising
expenditure on the sale diminishes. These observations provide evidence of interaction
between the price and the advertising expenditure variables.
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Interpretation of interaction

*Note that the sample mean sales corresponding to a price of $2.00 and an
advertising expenditure of 550,000 is 461,000, and the sample mean sales
corresponding to a price of 52,00 and an advertising expenditure of
$100,0001s 808,000.

* Hence, with price held constant at 52.00, the difference in mean sales

between advertising expenditures of 50,000 and $100,000 is 808,000 -
461,000 = 347,000 units. )

| am going to interpret this mean unit sale against advertising expenditure. Note that the
sample mean sales corresponding to the price of 2 dollars and an advertising expenditure of
50,000 dollars is 461,000, and the sample mean sales corresponding to the price of 2 dollars,
and the advertising is 808 dollars. I am referring to this 461 and 808. Hence the prize held

constant 2 dollars.

The difference in the mean sales between advertising expenditures 50,000 dollars and
100,000 dollars is 808,000 dollars minus 461,000 dollars, the difference is 347,000. We will
go to the next column.

(Refer Slide Time: 08:03)

Interpretation of interaction

* When the price of the product is $2.50, the difference in mean sales is
646,000 -364,000 = 282,000 units.

* Finally, when the price is $3.00, the difference in mean sales is 375,000 -
332,000 = 43,000 units.

* (learly, the difference in mean sales between advertising expenditures of
550,000 and $100,000 depends on the price of the product.

* Inother words, at higher selling prices, the effect of increased advertising
expenditure diminishes.

* These observations provide evidence of interaction between the price and
advertising expenditure variables.

When the price of the product is kept 2.50 dollars, the difference in mean sale is 282,000

units. Finally, when the price is 3 dollars, the difference in mean sale is 43,000 units. Clearly,



the difference in mean sales between the advertising expenditure of 50,000 dollars and
100,000 dollars depends on the price of the product. In other words, at higher selling prices,

the effect of increased advertising expenditure diminishes.

What it happens, when the price increases, when the advertising expenditure also increases,
the sales has to increase, but instead of increasing, it starts decreasing. So, the expenditure
diminishes. These observations provide evidence of interaction between the price and
advertising expenditure variables.

(Refer Slide Time: 08:57)

Mean unit sales (1000s) as a function of selling price

In (7] plt.scatter(tbli[ 'Price’],tbl1[ Sales(1009s)'], colors'green’)
plt.ylabel('scales sold')
plt.xlabel( x1’

f]: Text(0.5,8,'x1")
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First, we will do the Python code for that. | have imported the data, the prices 2, 2.5, 3 level,
there is advertising expenditure is 50 and 100. The sale is in terms of unit, that is 478 and so
on. When you plot this scatterplot, see that there are three different levels. What it says that,
whenever the price of the product is increasing, the sales it is not increasing. The sales you
see that there is a decreasing trend. It has to increase. Why it is decreasing, so there is no
effect of amount spent on expenditure when X1 increases.
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Mean unit sales (1000s) as a function of Advertising

.
Expenditure($1000s)
In [6]: plt.scatter(tbl1[ AdvertisingExpenditure($1080s)'],tbl1[ Sales(1008s)'], color="red")
plt.ylabel{ scales sold")
plt.ulabel(x2")
wt[b]: Text(0.5,8,'x2")
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So, this graph shows that there is effect of interaction. So this scatterplot shows between the
advertising expenditure, there are two level, one is 50,000 dollars, another one is 100,000
dollars. The y-axis is the number of scales sold.

(Refer Slide Time: 10:00)

Need for study the interaction between variable

* When interaction between two variables is present, we cannot study the
effect of one variable on the response y independently of the other
variable.

*In ather words, meaningful conclusions can be developed only if we
consider the joint effect that both variables have on the response.

=gt Bt B+ gy e

y = unit sales (1000s)
¥, = price (§)
x, = advertising expenditure ($1000s)

In our summary table and our scatterplot, we have realized there is interaction between x1
and x2. When interaction between two variables are present, we cannot study the effect of
one variable on the response variable y independently of each variable. In other words, a
meaningful conclusion can be developed only if we consider the joint effect of both the

variables having the response.



So, what is the joint effect is this x1 and x2. We have realized in that summary table, that
there is a interaction between both the variable x1 and x2. Here y is the unit sales, in terms of
units, x1 is the price, it has three level. x2 is advertising expenditure, it has two levels.

(Refer Slide Time: 10:54)

Estimated regression equation, a general linear model
involving three independent variables (z,, z,, and ;)

y=Byt Bzt Byzy + Pzt e

=X

hTh

iy
=

Now, the estimated regression equation, a general linear model involving 3 independent
variables, that is z1, z2, and z3. Here, the z1 is x1, z2 is X2, and z3 is this interaction variable,
that is x1 multiplied by x2. What we have to do, apart from x1 and x2, we have to introduce
another variable, that is product of two variable x1 and x2.

(Refer Slide Time: 11:21)

Interaction variable

*The data for the PriceAdv independent variable is obtained by multiplying
each value of Price times the corresponding value of AdvExp.

In [11]: 21 «tbl1| AdvertisingExpenditure(§1060s)"
2« thl1[ 'Price’]
3. 11'n

Now, we will create a new variable, that is z3, that is the product of z1 and z2. The data for

price advertisement of independent variable is obtained by multiplying each value of the



price times, the corresponding value of advertising expenditure. So, both variable z1 and z2
has to be multiplied, that will be our new variable.
(Refer Slide Time: 11:43)

New Model

(o MBI 1288 .40 0.0 AILAE 80485
R 19,6800 L 108 0000 16,703 2.5
n 175,0000 44547 3.928 0,801 fn.en 20790

il 60800 0.56) 10,790 0,000 105 4,985

Oeibus; B.645  Durbin-Matsen, 154
Prob(anibus) 0,726 Jarque-tera (J8) 0.565
Skests 0.335  Prob(28): 0.75
Kurtosis; 2,661 Cond, Wo, 4,5)et)

After multiplying, now this is our output model for our interaction. So look at the R-square.
R-square is 0.978, x1 is our one independent variable, x2 is another independent variable.
This x3 is the interaction.

(Refer Slide Time: 12:53)

New Model

Sales = =276 + 175 Price + 19.7 AdvExp — 6,08 PriceAdv
where

Sales = unit sales (1000s)
Price = price of the product (§)
AdvExp = advertising expenditure (§1000s)
PriceAdv = interaction term (Price times AdvExp)

So, for this how we can write the regression equation. -276+175 price, that is our x2, then
19.7 advertising expenditure, that is our x1. The third one is our interaction variable, that is
x3, that is -6.08. Look at the p value of f statistics, that is very low, the overall model is
significant. For all variables, x1, x2 and interaction variables, look at the p-value this one, all

are less than 0.05, so each independent variable is significant variables.



(Refer Slide Time: 12:46)

New Model

Sales = =216 + 175 Price + 19.7 AdvExp — 6.08 PriceAdv
where

Sales = unit sales (1000s)
Price = price of the product (§)
AdvExp = advertising expenditure ($1000s)
PriceAdv = interaction term (Price times AdvExp)

So what is the new model now. Sales equal to -276+175 price + 19.7 AdvEXxp — the price end
advertisement. This is our interaction term. How to interpret this.
(Refer Slide Time: 13:05)

Interpretation

+ Because the model is significant ( p-value for the F test is 0.000) and the p-
value carresponding to the t test for PriceAdv is 0.000, we conclude that
interaction is significant given the linear effect of the price of the product
and the advertising expenditure.

+ Thus, the regression results show that the effect of advertising expenditure
on sales depends on the price.

e — ]
Because the model is significant, the p-value for the F test is 0.0000 and the p value

corresponding to the t test PriceAdv is 0.00, we conclude that interaction is significant given
the linear effect of the price of the product and the advertising expenditure. Thus, this
regression results shows that the effect of advertising expenditure on sales depends on the
price.
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Transformations Involving the Dependent Variable

|
Y botbixithi,
Miles per L
Gallon  Weight )
B um Ty Oy \
i\ 92 113
\ EL 2180
2749 2448
133 2026
264 2102
239 2657
305 2106
181 326
195 V]
143 3607
209 2888

So far, we have done some transformations only on independent variable. For example, y =
b0 +b1x1 + b2x2. Suppose, X2 is a categorical variable, assume that. What you have done, if
x2 can have only two variables, say 0, 1 gender. So we have done a modification. We have
introduced a dummy variable and we have done the model. Now, there may be a situation
that your y variable also has to be transformed.

(Refer Slide Time: 14:23)

Model 1

9011008 te-packages\sc1py\StaLS\STats py: 1100 Useestarnlng: kurtosistest only va

0 Ragressica Rasults

MlesperGallon  R-squared: 0.9%
8. R-squired 0.0

ool 9t et toomit o (e eans)

const. 56,0057 5 AN 0.000 5.4 61,849
Nelght 0.0116 0000 1202 0.000 0.014 0.009

Onnibys 2,66 Durbin-Matson. Ll
Prob(Ganibus): 9.2 Jarque Bera (28): 0.95
Show: 0.600  Prob{28): 0.6
Hurtosts! 105 Cend W LA

Suppose, the miles per gallon, that is your y variable. This weight is your independent
variable. Suppose, if you do a regression analysis for this dataset, see that there is a negative
relationship. When the weight increases, the miles per gallon decreases. There is a negative
relationship for scatterplot. Now, when you look at the Regression model, the Regression
model, y is equal to 56.0957 — 0.0116. This is significant.
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Standardized residual plot corresponding to the first-order

In [8]: plt.scatter(yhat,E
it[8] ¢ematplotlib. collections.PathCollection at ex23f77872a58>
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Now, look at the standard residual plot. First, we will predict the residuals, then we will
standardize. Then, we will predict the y value. Now, we will draw a graph between predicted
y hat and standardize residual. When we look at this, you see that there is a conical
relationship. What is happening, whenever the value of x increases, the variance is not

constant. This is violating our model.

What is the model? When the variance or the error term should be same for all value of x, but
now what is happening, when the value of x is increasing, the variance also increases. So, it is
not fitting to our assumption of regression equation. We are going to take log of y, so the y is
there, so we are going to take log of y values, bO+b1x1. This is going to be the same. Our

independent variable will not be disturbing.

But for the dependent variable, we are going to take the log of; the purpose of taking log is
that the error term, instead of getting this conical shape, we may get a kind of a rectangular
shape. So, that means the variance of the error terms is going to be same.
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Model 2

In [12): ¥ « np.log(y)

In [13): nodel2 « sn.0LS(Y,x2)
Model2 - wodel2. fit()
print(Hodel2, summary())

OLS Regression Results

Dep. Varfable MidesperGallon  R-squared 0,94
Hodel 05 Adj. R squared 0.94
Method: Least Squares  Fostatistic: 161.2
Date: Thy, 12 Sep 2019  Prob (F-statistic): 9.04e-08
Tine: 15:34:13  Log- Likelihood: 17,005
No. Observations n oA .01
DF Residuals 10 8¢ 9.0
OF Model 1
Covarfance Type noarobyst

coof  5td ere t nt| (0.5 0.0%5)
const 450 0 5881 0.0 1.0 4.0
Height 0.0005  1.720-0§ 1).462 L0 0.001 0.000
Ounibus: 0,899 Durbin-watson: 2.0
Prob{Omnibus): 0.638  Jarque Bera (30): .79
Skew: 0.484  Prob()8): 0.617
Kurtosis: 2.1 tond, No. 1Adeedd

First, what you have done, | have taken log of all dependent variable, that is I call it Y. Now,
this log of Y is taken as the new dependent variable. After substituting this, you look at the
new variable, one is weight, the R square is increased, and F is good, the model is okay. Now,
we will go for the residual plot for this.

(Refer Slide Time: 16:24)

Residual plot for model 2

In [14]: E2-Model2.resid_pearson
£2

Qut[14]: array([-9.31630114, -1.42005518, 1.5623864 , 0.4837@101, -9.85371228 ,

L.60448776, -0, 29474868, -0.79674501, -0.1833577, 0.87474775,
-0.87956572, -B.58073364] )

In [15]: yhat « Model?.predict(x?)

yhat

out[15): 8 Lymn
1 3.465414
H 3.431840
LR W)L
4 3.509009
5 1.179268
] 3192817
7 3.468922
L] 1.967634
§ 1.914208
@ 1716076
11 La77e64

dtype: floated

When you go for residual plot against y hat, this is our standardize residual, so what is
happening.
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* The miles-per-gallon estimate is obtained by finding the number whose
natural logarithm is 3.2675.

+  Using a calculator with an exponential function, or raising e to the power
1.2675, we obtain 26.2 miles per gallon.

LogeMPG = 4.52 - 0.000501 Weight

LogeMPG = 4.52 - 0.000501(2500) = 2'26?5

Now, there is no conical shape, there is rectangular shape is appearing, but you should be
very careful while interpreting the answer because it is not actual y, it is log of y. So, when
you substitute the values into this, the miles per gallon estimate is obtained by finding the
number whose natural logarithm is 32.675. So what you have to do, suppose if you substitute

weight is 2500, we are getting the log of y value, that is miles per gallon is 3.26.

If you want to know the actual value, you take e to the power 3.26, that is why to bring you to
normal term, you have to take natural logarithm is 3.26 using a calculator or any exponential
function using our Python, we have to rising e to the power 3.26, you will get 26.2 miles per
gallon, that is your original y values.

(Refer Slide Time: 17:37)

Nonlinear Models That Are Intrinsically Linear

E(y) = Baby

E(y) = 50001

log £(y) = log fy + xlog §,

' =logEly). §y = logfy, and i = log,
. —_—
\

—
R




There are some more nonlinear model. How to do that one, I will explain. Suppose, there may
be a nonlinear relationship that the power is there, beta0 + betalx, so the expected value,
suppose if you substitute betaO is 500, it is 1.2 to the power x. So for this kind of model, you
take log of both the sides. It will become log of expected value of y. So log of betaO + log of
x log beta 1. Here the constant term is, this can be written y dash equal to betaO dash, betal
dash x.

So, the y dash is the log of ey, beta 1 is log of b0 and betal dash, log of betal. This equation
can be estimated with the sample of this Regression equation, but we should be very careful
while interpreting, you have to remember it has to be brought into the original term.

(Refer Slide Time: 18:37)
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In[12]: K plt.scatter yhat,E2

wt12]: ¢matplotlib.callections. Pathlallection at Gxbld7630:

1%
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Now, we are going to do the interaction among independent variable with y with the help of
this Python code. So | have imported, the file name is Tyler. So, this was our portion of our
file name. First, we should do the scatterplot. So, what is happening here, when the price of
the product is increasing, see that the y variable, it is the number of scales sold, it is
decreasing. So, this table is suggesting that there is a interaction effect between the prize and

the dependent variable.

Look at this. These are another dependent variable, that is advertising expenditure. This also
shows that whenever the advertising expenditure is increasing, the car sold is increasing, but
it is not linearly increasing because there seems to be some other variable, which is affecting
the advertising expenditure. That variable is nothing but the prize. From our scatterplot, plot

number one and plot number 2, we realize that there is interaction effect.



So the two variable that is z1 and z2 are multiplied. What is our z1 variable, that is our
advertising expenditure, our z2 variable is price, so new variable is z1 multiplied by z2. We
will do this one. Now, the third variable, that is new variable taken as another dependent
variable. Now, there are 3 variable, one is for advertising expenditure, another variable for

prize, the third one is interaction among these two.

So, when you run this model, we are getting all these three variables, that is x1, x2, and x3 is
our interaction variable. All are significant. So, we can say that there is interaction effect
between x1 and x2. See, our R square is better, 0.978, our fp value also very less, and
individual significance of each independent variable is also less than 0.05, also variables are

significant.

Now, in our class | have explained one more problem, that is how to do transformation of our
dependent variable. So, | have imported the necessary libraries with the data file is this one.
So, here the weight is independent variable, but the miles per gallon is dependent variable.
So, when you do the scatterplot between these two, there seems to be a negative relationship.
When you do a simple linear regression by taking x’s weight independent variable, y is the

miles per gallon, we are getting this one.

So even though the model is significant when you go for residual plot. What is happening
between standardize residual and predicted value? there is a conical shape is there. So, what
this implies that the value of x increases, the variance or the error term is not the same. It is
getting increased. This is violation of Regression model. To compensate this, we are going to
do the transformation, log transformation of our dependent variable. After log transformation

when you do again, there is a regression equation.

So, you look at this the third one, now the new dependent variable is the log of y, so the
independent variable. So, this one, we will go for a standardized residual plot. Now, what is
happening when you go for that, now there is no conical relationship. Then we can say that
the log of transformation of dependent variable is correct, you should go for log

transformation of our dependent variable.



In this lecture, we have seen how to incorporate if there is interaction among variable, how to
incorporate this interaction into our Regression model. We have taken one sample example,
when we are plotting the summary table, we have realized that there is a interaction between
two variables, then we have taken the product of the two variable that introduces a third
variable, then we have done a multiple regression model, we realize that the interaction is

significant.

In another problem, what we have seen in this class is, generally we do the transformation in
the independent variable, but sometimes, we need to do the transformation for the dependent
variable also. So what transformation we have done, we have done log of our y value. Before
doing log of y value, we have realized that the variance of the error is not the same. After
doing the log transformation, we have realized that the variance of the error term is same,
then we have accepted that taking log of our dependent variable is correct. Thank you.



