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Maximum Likelihood Estimation - II 

 

In the previous class, we have seen estimation of population parameter with the help of 

maximum likelihood principles. In this class, we will take some two examples. One is to estimate 

the population parameter of normal distribution. Second one is to estimate the population 

parameter of a regression equation. 

(Refer Slide Time: 00:48) 

 

At the end, we will have a demo by using Python. What is the agenda for this class is Python 

demo of estimation of population parameters for regression equation. Let us take one example. 

(Refer Slide Time: 01:00) 



 

Id is 1, 2, 3, 4. Example 1 is estimation of population parameter of a normal distribution. Let us 

explain basic idea of maximum likelihood estimation using a simple problem. Let us make 

assumption that variable X follows normal distribution. The value of variable is 1, 4, 5, 6, 9. The 

density function of normal distribution with mean mu and variance sigma square is given by 1 

divided by root of 2 pi sigma square e to the power –x – mu whole square divided by 2 sigma 

square for the value of minus. 

 

The range of x is between minus infinity to plus infinity. So in this equations, we going 

substitute these x values, even I am going to multiply that, then we are going to take log of that. 

Then, we have to partially differentiate with respect to x and mu and equate it to 0, then we will 

get the population parameter. 

(Refer Slide Time: 02:05) 



 

Suppose the data is plotted on a horizontal line, this way. Think which distribution either A or B 

is more likely to have generated the data. Pause the video, you can think. 

(Refer Slide Time: 02:21) 

 

The answer to the question is A, because the data are clustered around the center of the 

distribution A, but not around the center of the distribution B. This example illustrates that by 

looking at the data, it is possible to find the distribution that is most likely to have generated the 

data. Now, I will explain exactly how to find the distribution in practice. 

(Refer Slide Time: 02:48) 



 

Maximum likelihood estimate starts with computing the likelihood contribution of each 

observation. The likelihood contribution is the height of the density function. I will show you in 

the next slide. We use Li to denote the likelihood contribution of ith observation. 

(Refer Slide Time: 03:07) 

 

Look at this picture. The observation 1 has contributed up to this much height. The likelihood 

contribution of first observation is this much. The likelihood contribution of second observation 

is this much; similarly, for third, fourth and fifth. For example, this is the first one, is because 

there is x. Instead of x, we have substituted 1. For second data set, instead of x, we have to 

substitute 4. For third, 5, the next one 6, the next one 9. 

(Refer Slide Time: 03:40) 



 

Then, you multiply the likelihood contribution of all the observations. This is called likelihood 

function. We denote that by L. So likelihood function is the product of Li. This notation means 

that you multiply from 1 to n. In our example n = 5, so you have to multiply five times.  

(Refer Slide Time: 04:03) 

 

So that likelihood function, that is defined by with the help of mu and sigma, is the product of i = 

1 to 5, Li, when you expand this one, L1 multiplied by L2 multiplied by L3 and L4 and L5. So it 

has come from the normal distribution, we have assumed that it has come from the normal 

distribution. We know that probability density function of normal distribution is 1 divided by 

root of 2 pi sigma square e to the power minus. 

 



For first data set it is 1 – mu whole square divided by sigma square multiplication 1 divided by 

root of 2 pi sigma square for second data set e to the power – 4 – mu whole square divided by 

sigma square up to all data set. The last data set will be e to the power – 9 – mu whole square 

divided by sigma square. So the likelihood function depends on the value of mu1 sigma square, 

because look at this. So here, the likelihood function is in terms of mu and sigma square. 

(Refer Slide Time: 05:04) 

 

In the previous slide, we have found the joint probability density function for different value of 

x, we found the joint probability density function of normal distribution. So what we have to do? 

We have to take the log of that function, that partially we have to differentiate with respect to 

mu1 sigma and equate it to 0, then you will get the population parameter, that is mu1 sigma. So 

the value of the mean mu and sigma that maximizes the likelihood function can be found with 

the help of Python. 

 

At the end of the class, I am going to show one example for regression equation. The values of 

mean mu and sigma, which are obtained this way are called maximum likelihood estimator of 

mean mu and sigma. Most of the MLE cannot be solved by hand. That is the maximum 

likelihood estimate. Thus, you need to write an iterative procedure to solve with computer. That I 

will take one demo at the end of the class. 

(Refer Slide Time: 06:01) 



 

Now we will predict the parameter of a simple regression equation. When I am starting the 

regression, I have explained the parameter of regression equation was obtained by having this 

assumption called least square method, where the sum of the square of the error is minimized. So 

model for the expectation, fixed part of the model, so expected value of Y is beta 0 + beta 1x. 

The residual is actual minus predicted value yi – expected value. 

 

The method of least square, what we have done, we have found the values of the parameter beta 

0 and beta 1, that makes the sum of the squared residuals as small as possible. This method of 

least square is applicable only when the error term is normal. That is, residuals are assumed to be 

drawn from a normal distribution. Whenever this assumption is getting violated, we cannot go 

for least square method. 

 

We should go for some other method that is maximum likelihood estimate, because we know 

that the next class, we are going to study about the logistic regression, error term will not follow 

normal distribution. 

(Refer Slide Time: 07:19) 



 

So the maximum likelihood estimate can be applied to models with any probability distribution. 

That was the advantage of this maximum likelihood method. 

(Refer Slide Time: 07:27) 

 

Now, we will estimate the parameter of a regression equation. We are interested in estimating a 

model like this, where y = beta 0 + beta 1x1 + u. This u is error term. Estimating such model can 

be done using maximum likelihood estimation. 

(Refer Slide Time: 07:50) 



 

Suppose, that we have the following data, where x is given independent variable, y is given 

dependent variable. We are interested in estimating the population parameter beta 0, beta 1. Let 

us make an assumption that the error term follows normal distribution with mean 0 and variance 

sigma square. 

(Refer Slide Time: 08:13) 

 

We know that what is error? Error is actual minus predicted value. So the actual value is y minus 

predicted value is beta 0 + beta 1x. This means that y – beta 0 + beta 1x follows the normal 

distribution with mean 0 and the variance sigma square. The likelihood contribution of each data 

point is the height of the density function or the data point where y = - beta 0 – beta 1x, because 

nothing but we brought this minus inside. This was the example. 



(Refer Slide Time: 08:49) 

 

When you look at this, for the first data set, it is 2 – beta 0, because 2 when I go for first data set, 

the y value is 2, x value is 1. So it becomes 2 – beta 0 – beta 1. For second data set, y value is 6, 

6 – beta 0 -, x value is 4, 4 beta 1 and so on. So this height is the contribution of each observation 

on the likelihood function. So likelihood contribution in this example of the second observation 

is given by, second observation is y value is 6, x values is 4. 

 

So 1 divided by root of 2 pi sigma square e to the power – 6 – beta 0 – 4 beta 1 square divided by 

2 sigma square. So the density function u equal to, we can simplify this way. So we will go to 

next one for other data set. 

(Refer Slide Time: 09:46) 



 

We have done in the previous slide only for these values. Now we will expand that function for 

all the data set. So the product should go to i to n, L1, L2, L3 up to L5. See for first data set, this 

is 1 divided by root of 2 pi sigma square e to the power -2 – beta 0 – beta 1 whole square divided 

by sigma square. For second data set, the same thing 6 – 4, for third one is 7, 5, for the fourth one 

is 9, 6, for the fifth one is 15, 9. 

 

So this function is likelihood function. Generally, what we have to do? We have to take the log 

of this, then we have to partially differentiate with respect to beta 0, beta 1 and sigma and equate 

it to 0, then you will get the estimation of beta 0, beta 1 and sigma. 

(Refer Slide Time: 10:46) 

 



You choose the value of beta 0, beta 1 and sigma that maximizes the likelihood function. So 

what we are going to do? We are going to, for the same problem, with the help of Python, we are 

going to predict this beta 0, beta 1 and sigma with the help of data set, which we have 

considered. We will switch to Python. 

(Refer Slide Time: 11:06) 

 

Now we will see the application of maximum likelihood estimation for a regression equation. 

Before that, I have explained various theories. Now, we will take one example. I will explain 

how to find out or how to estimate the parameter of a regression equation using the principle 

called maximum likelihood estimation. The file name is, I have taken as MLE. I was importing 

the necessary libraries, import numpy as np. 

 

You see that this is a new one from scipy.optimize import minimize. I am going to import a 

function that will minimize a function, import scipy.stats as stats. So I have imported the data. So 

this is the Y variable is a dependent variable. There is a 5 data set. There is X. X is the 

independent variable. 

(Refer Slide Time: 11:58) 



 

For this X and Y, I have constructed a regression equation. What is that regression equation? 

You see that by using our least square method, I have constructed a regression equation. So when 

I go for the least square method, the regression equation is y = - 0.282 + 1.6176x. I am 

explaining this portion to you. This estimation was, we know that this was the y intercept; this 

was b1. 

 

So with the help of what we have done, we are going to predict beta 0 + beta 1 for x1 coefficient. 

So this is the actual value. We know that this sample beta 0, b0 can help to estimate the 

population beta 0. Similarly, the sample b1 can be used to estimate the beta 1. That is for the 

population. So this was the answer when we were using the least square method. You see the 

method is least square method. Now we are going to use concept of maximum likelihood 

estimation, then we have to verify this answer; whether we are going to get the same answer. 

(Refer Slide Time: 13:24) 



 

This is the answer. We got the y intercept is -0.2882 and b1 x1 coefficient is 1.6176. 

(Refer Slide Time: 13:32) 

 

Another parameter which is required for maximum likelihood estimate is, you have to predict the 

error of the standard deviation of the error variable. That is your error term. So for that, you can 

type e = modl2.residual, we get e; this is the error term. So we have to find the standard deviation 

of this error term. We got 0.06. This also we are going to predict. What we are going to predict? 

We are going to predict b0, b1 and this standard deviation of the error term using maximum 

likelihood estimation. 

(Refer Slide Time: 14:09) 



 

This was the code for parameter estimation, for regression equations with the help of maximum 

likelihood estimation, import numpy as np from scipy.optimize import minimize import 

matplotlib.pyplot as plt. So I am defining a function that is going to give a likelihood function. 

So lik parameters, m is the slope b is the y-intercept, sigma is nothing but the standard deviation 

of the error term. So for i in np.arange 0 to all the value of x, we are going to find out y expected 

value is nothing but mx + b. 

 

Then, this term is for estimating the log likelihood. So this term is nothing but when you go back 

previously, when you go back here, this is nothing but the whole equation. We are going to 

predict, that is why I used for loop. So for each I1, I2, I3, I4 up to I5, I will find out, then I will 

multiply it. That is why, this has come, this one. So this is nothing but that what I explained. 

Finally, the l will be returned. So this is our x value. 

 

This x is taken from here, 1, 4, 5, 6, 9. This is nothing but this x value. 1, 4, 5, 6, 9; y value is 2, 

6, 7, 9, 15. So like underscore model minimize, this is the function to minimize lik.np.array. So 

this is just, I am guessing the answer. What this first one says is slope, the second one says the y 

intercept, third one says the standard deviation of the error term. So I am going to use this 

method called; there are different methods. 

 



I will show you what are the different methods for minimizing l underscore b of gs underscore b, 

this is one method. When you run it, see this is the answer 1.61 minus, what is this? This one is 

your slope. This is your x coefficient. This is your y-intercept. This is the standard deviation of 

your error term. When you go back, we will verify this. See the coefficient of x is 1.6176; here 

also getting 1.6176. The y-intercept is -0.288. 

 

So here also getting y-intercept and other thing, we are getting the standard deviation of the error 

term is 0.604. So here also, see that this value also same. So what the point we are learning here 

is, the same problem can be done with the help of least square estimation method and maximum 

likelihood estimate method. In both the way, you will get the same answer. Now, we will take 

another example. This example, we have seen when I am teaching simple linear regression 

method. 

(Refer Slide Time: 17:33) 

 

That you can recall that auto sales example. An auto company periodically has a special week 

long sale, as a part of advertising campaign runs one or more television commercials during the 

weekend preceding the sale. Data from the sample of 5 previous sales are shown in the next 

slide. 

(Refer Slide Time: 17:54) 



 

So what we have seen the number of TV ads is taken as independent variable; number of car sold 

is taken as dependent variable. So for this data set, first we will do a regression model with the 

help of least square estimation. Second, we will do with the help of maximum likelihood 

estimation. We will compare the answer; both will be the same. So first we will do, least square 

method. 

(Refer Slide Time: 18:20) 

 

So I have imported the data. This was a TV ads and car sold. 

(Refer Slide Time: 18:26) 



 

When I do, you see there is a OLS, ordinary least square method, we are getting this is the 

answer. What is that this answer? Y = 10 + 5 TV ads. Here, you can say x1 is TV ads. Now for 

this term, we will find out what is the error term. 

(Refer Slide Time: 18:47) 

 

See for finding the error term, see the b0 is 10, b1 is 5. To find the error term, I am going to save 

in the object called e = modl2.residual e. So this was the error term. So if I find the standard 

deviation of this error term, we are getting 1.67. So we are going to predict this standard 

deviation of the error term and your y intercept and the coefficient of x with the help of 

maximum likelihood estimation. So there also, we will get the same answer. 

(Refer Slide Time: 19:20) 



 

What we have done? The same thing, because already I have defined the function, it will be easy 

for me, just you replace the various parameters. If 0th index is m, 1 is b, 2 is sigma, so this is our 

likelihood function. So this is my x value. This is my y value. This is the function to minimize. I 

will run this program after a few minutes. This is just I have taken the screenshot of the python 

program for your explanation purpose. 

 

You see that the final value, you look at this, this is your slope is 5, because this one. Second one 

is the y intercept is 10. See the standard deviation of the error term is 1.67. It is exactly what we 

have done using the least square method. Now I will go to Python environment. I will run and 

will explain and one more thing you have to remember this is my guessed value 2, 2, 2. While 

running this program, I am going to change this values, still we are going to get the same answer. 

This is just, I am guessing the value. You can give any value. At the end, you will get the same 

answer. Now we will go to the Python environment. We will do the program. 

(Refer Slide Time: 20:45) 



 

I have explained how to use maximum likelihood estimation to predict the parameter of a 

regression equation. I have shown the screenshot of the program in my presentation. Now using 

Python environment, we will run this code. I will explain how it is working. I have imported the 

necessary libraries, then I have stored my data in the file called MLE. So I have displayed this 

data. This data says, y is the dependent variable, x is independent variable. For this data set, we 

are going to construct a regression equation using least square method.  

(Refer Slide Time: 21:27) 

 

This was the output of least square method regression model. Here the y intercept is – 0.2882. 

The coefficient of x is 1.6176. So how can we write the regression equation? Y = -0.2882 + 

1.6176x. 



(Refer Slide Time: 21:49) 

 

Next one, this is y intercept. This is the coefficient of x1. Next, we are going to find out the error 

by using this command. That is dot resid. For this error term, we have to find the standard 

deviation of the error term. The standard deviation of the error term is 0.60488. Now there are 

three things which we have done. We have found the coefficient y intercept and the error term. 

Now, by using the concept of maximum likelihood estimation, you will verify this answer. 

 

Whether we are getting same standard deviation of the error, same coefficient, and same y 

intercept. I have defined a function; the function name is lik. So I have called the slope and y 

intercept and sigma i np.arange 0 lnx. I have predicted what is the y expected value by 

substituting different x value mx + b. So this l is nothing but the likelihood function. This 

likelihood function, I have explained this formula in my presentation. 

 

So I am going to run this for all value of x1, then I am going to return the value l. this function is 

going to return the value l. So I am going to minimize the likelihood function, because the error 

has to be minimized. So this 2, 2, 2 these values randomly I am guessing, what will be the 

parameter, that is m, b, and the standard deviation of the error term. So I am going to display this 

model. So this model says that my slope is 1.617. 

 



You see that when you do the OLS method also, the slope is 1.6176. The constant, see here 

constant is – 0.288. In OLS method also the constant is – 0.2882. Next we predicted the standard 

deviation of the error term, that is 0.604. Look at here also, we got the standard deviation of the 

error term is 0.604. Now what I am going to do? I am going to change this value. For example, 2 

I am going to give 3. This I will give 4. Let us see what value, we are going to get. 

 

Again, we are getting, there is no change in the answer. So this value, this np.array, this is our 

guessing value for our parameter. So at the end, we are getting the same answer. This is our 

example number 1. Now I will go to another example. 

(Refer Slide Time: 24:33) 

 

This example, when I am explaining linear regression, I solved this problem with the help of 

simple linear regression by using least square method. I will clear my output. Here also, we are 

going to do the same thing, what we have done for previous problem. We are going to predict the 

regression model using OLS, then we are going to check that answer with the help of our 

maximum likelihood estimation methods. 

 

So I am importing the library, then I am calling the data. This is the data set. The TV ad is the 

independent variable, car sold is dependent variable. Now I am going to construct a regression 

equation by using OLS, ordinary least square method. This answer is, the 10 is the constant, 5 is 



the coefficient of TV ads. So we can write y = 10 + 5 TV ads. Next, I am going to find out the 

error term. 
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So the error term is, this is the error term. Now I am going to find out the standard deviation of 

the error term. The standard deviation of the error term is 1.67. So now these parameter, which I 

have got with the help of least square method, I am going to get the same answer with the help of 

maximum likelihood estimate. I am calling the same function. So what is more important here, 

with this function is l = length x divided by 2, this star np.log 2 star np.pi. 

 

This I have explained in my slide, when there is a normal distribution, if you want to find out the 

parameter of that, we have to use this formula. That I have explained in my class. You can refer 

my previous slides there. This 2, 2, 2 is the guessing values. For example, I am going to do 5. I 

am going to change this number to 5. Now let us run it. You see that the 4.99 actually our answer 

is 5; we got 4.99, approximately correct. 

 

The y-intercept is 10, here also we got y intercept is 10 and the standard deviation of the error 

term is 1.67. So here also, we are getting 1.67. So this way, we have verified with the help of this 

Python program that whatever answer which you get with the help of OLS is the same as 

maximum likelihood estimation. Because this maximum likelihood estimation method for 

predicting the population parameter is so generic and most of the software packages, they follow 



this maximum likelihood estimate for predicting the population parameter. As I told you, there 

are different ways to minimize. Suppose, if you want to check the different methods, simply 

minimize, put this question mark, you will get different methods. 
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One method is see that Nelder-Mead, Powell, CG, BFGS, Newton CG, there are different 

methods. So what we can do, here there is a method. You can change some other value, then we 

will get the same answer. In this class, I have given an example how to use maximum likelihood 

estimation method for predicting the population parameter of a regression equation. I have 

explained the theory. I have taken two examples for that. 

 

For the two examples also, I have concluded that you can use OLS method, that is ordinary least 

square method and maximum likelihood method. In both the way, you will get the same answer. 

Then I have explained how to do the coding and how to run and get the answer using Python, 

because this class is based for the next class, which I am going to take, logistic regression, 

because the logistic regression, the method which you are going to use to predict the population 

parameter is maximum likelihood estimation. In the next class, by applying this principle of 

MLE, maximum likelihood estimation, we will use and estimate the population parameter of 

logistic regression. 


