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Maximum Likelihood Estimation - I 

 

In this lecture, we will go to new way of estimating the population parameter. That method is 

called maximum likelihood estimation. In our previous class, we have estimated the population 

parameter with the help of least square or we can say with the help of method of moments. This 

method of estimating population parameter has lot of advantages over that two methods. That we 

will see in this class. 
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The agenda for this class is to provide an intuition behind maximum likelihood principle and 

theory and examples. So what we are going to do, we remember in the previous class with the 

help of x bar, we have predicted the mean with the help of sample variance, we have predicted 

the population variance with the help of moment. In the regression model, we have used least 

square estimate. What you have done in this? 

 

The sum of the square of the error is minimized when we draw the best regression equation. 

Instead of that one, we are going to use another way of estimating population parameter with the 

help of maximum likelihood estimation. This is very simple. With the help of this maximum 



likelihood estimate, you can estimate parameter of any population, it may be any distribution. It 

may be binomial; it may be a Poisson. It may be an exponential. 

 

What is the assumption? We are having in the least square estimate is that error term should 

follow normal distribution. Whenever the error term not following normal distribution, the 

maximum likelihood estimate is the best way. That we will see in this class. 
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What is maximum likelihood estimation? The method of maximum likelihood was first 

introduced by R. A. Fisher, a geneticist and statistician in 1920s. Most statistician recommend 

this method at least when the sample size is large, since the resulting estimator have certain 

desirable efficiency properties. Maximum likelihood estimation is a method to find most likely 

density function that would have generated the data. 

 

So what we can do with the help of this MLE is that which distribution has generated the data 

that we can find out. Otherwise, this data set is suitable for what kind of distribution? But one 

assumption we have to have this maximum likelihood estimation is that it requires that one to 

make distribution assumption first. So in advance, we have to assume which distribution has 

generated that set of data. 

(Refer Slide Time: 03:01) 



 

Let us see the intuitive view on likelihood. See there are some data set there, in the bottom. See 

there are this data set. We want to know from which normal distribution this data set might have 

come. There are three possibilities; one is the green line, whose mean is minus 2, variance is 1. 

The another one is blue, whose mean is 0 and the variance is 1. The last one is mean equal to 0, 

the variance is 4. 

 

So the most suitable for this one is the blue one, because that covers all the data set. So the 

purpose of maximum likelihood principle is; suppose there are some data. This data has come 

from which distribution. So that kind of testing can be done with the help of this. Otherwise, this 

data set is suitable for what kind of distribution; the other way also. So this is most useful for 

estimating many population parameters. 
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We will take one simple example. With the help of this example, I will explain what is the 

application of this maximum likelihood estimation? This problem is taken from this book 

probability and statistics for engineering and sciences by professor Jay L. Devore 8th edition. It 

is Cengage publications. The problem says a sample of 10 new bike helmets manufactured by a 

certain company is obtained. 

 

Upon testing, it is found that the first, third, and 10th helmets are flawed; whereas the others are 

not. Let p is the probability of flawed helmet that is p is the proportion of all such helmets that 

are flawed. Define Bernoulli random variable X1, X2, and so on up to X10 by; we are going to 

use X1 equal to 1, if the helmet is flawed; if there is a defect. X1 equal to 0 if the helmet is not 

defective. Like that, if X10 value equal to 1, if the 10th helmet is flawed, 0 if the 10th helmet is 

not flawed, defective.  
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Then, for the obtained sample, say X1 = X3 = X10 = 1, because they are already given; only the 

first and third and 10th helmet have some defect and the other seven Xi’s are all 0. The values 

are 0. The probability mass function of any particular Xi is p power X1 – p to the power 1 – X, 

which becomes p if Xi equal to 1 and 1 – p when Xi equal to 0. Now, suppose the conditions of 

various helmets are independent of one another, because this assumption is very important. 

 

If there is independent, we can find out their joint distribution. This implies that Xi’s are 

independent, so that their joint probability mass function is the product of their individual 

probability mass function. 
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Since it is joint probability mass function, see that we have multiplied for all possibilities, pi into 

1 – pi by considering all possibilities. So when you simplify that p power cube into 1 – p power 

7. This equation is 1. Suppose, in that equation, this left hand side, this value is called maximum. 

This is a likelihood value. Whatever is in the left hand side, I will define it later, what is the 

likelihood value. The left hand value is called likelihood value. 

 

Suppose with the p = 0.25, then the probability of observing the sample that we actually obtained 

is 0.002086. So like that, we can supply different p values. Suppose, instead of 0.25, you supply 

p = 0.5, then the probability is 0.0097. You see that, when it is a 0.5, 0.25, 0.002, when it is a 0.5, 

it has become very low. So in between this 0.25 and 0.50, we are going to get the value of p that 

will maximize our left hand side value. 

 

For what value of p is obtained sample, most likely to have occurred? That was the question. 

What is that? For what value of p is obtained sample most likely to have occurred; that is for 

what value of p is the joint pmf; this one, as large as it can be; otherwise what value of p 

maximizes equation 1. That p value is nothing but your likelihood value.  
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Figure shows a graph of likelihood of that value of equation 1 as a function of p. So what 

happened in x axis, you have taken different value of p. Previously, just for one case, we have 

taken p value 0.25 and 0.50. See when it is 0.25, this was the likelihood value, 0.5, this was the 



likelihood value. So we are good to supply, draw a graph by supplying different value of p in 

equation 1 that we have to find out the likelihood value. 

 

This figure shows a graph of likelihood as a function of p. It appears that the graph reaches its 

peak above 0.3, when the value is 0.3; the graph reaches its peak, equal to the proportion of 

flawed helmets in the sample. Now what you are going to do? We are going to take log of this 

function. 
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I will explain; there was a reason for that. Graph of the natural logarithm of likelihood. Figure 

shows graph of the natural logarithm equation 1. Since the logarithm of g of u is strictly 

increasing function of gu, finding u to maximize the function g of u is the same as finding u to 

maximize log of g of u. So what is happening is, whether of g of u and logarithm of g of u is the 

same. This figure shows a graph of the natural logarithm of equation 1. 

 

Since log of g of u is strictly increasing function of g of u, finding u to maximize the function of 

g of u is the same as finding u to maximize log of g of u. So the u is same, whether it is g of u or 

log of g of u. 

(Refer Slide Time: 10:04) 



 

We can verify our visual impression by using calculus to find out the value of p that maximizes 

equation 1. Working with natural logarithm of the joint probability mass function is often easier 

than working with the joint pmf itself. Since the joint pmf is typically a product, so the logarithm 

will be a sum. That is the advantage of taking log of that. So what will happen previously in 

equation 1, we got pq multiplied by 1 – p power 7. I am going back here; this one.  

 

We are going to take log of this. When you take log of this, it will become, because there is a 

multiplication, so this will become log of p3 plus log of 1 – p to the power 7. So this will become 

3 log of p + 7 ln; this is ln; 7 log of 1 – p. 
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Next one is that functions, we have to see when the value become maximum? We know that in 

our school, we might have studied; you see to find out the maximum value, maxima-minima. For 

example, the maximum value, if you say dy by dx equal to 0; then d square by dx square will be 

less than 0 means that point will become the maximum. So this equation, this is the function of p. 

So we are going to differentiate that log function with respect to p. 

 

So when you differentiate this one, so 3, log of p is 1 by p, so 3 by p + 7 is a constant. Log of 1 – 

p is, this is differentiation, log of x equal to 1 by x. So 1 divided by 1 – p, again you have to 

differentiate this function. Differentiation of differentiation, so 0 – 1, so it will be -1. So 3 by p – 

7 divided by 1 – p. So this equations, we have to equate it to 0, because we know d of dp should 

be equal to 0. Then, we have to find out the p. So that value, the function will get maximized. 
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Equating these derivatives to 0 and solving for p, it gives 3 into 1 – p equal to 7p. So 3 equal to 

7p, so p = 0.3 is conjectured. So now what is happening? Previously, we have substituted 

different values. Now we are using the concept of maxima, we have realized that when the p = 

0.3, the function gets maximized. So it is called the maximum likelihood estimate, because it is 

the parameter value that maximizes the likelihood of the observed sample. 

 

So this p = 0.3 will be nothing but the; this is an estimate for the population. In general, second 

derivative should be maximum to make sure the maximum has been obtained, but here this is 



obvious from the figure. So actually we have to differentiate one more time and we have to see 

whether it has become negative or not, because by looking at the figure, it seems that that point is 

maximum. So what is happening; this value p = 0.3 is called the maximum likelihood estimate. 

 

So what is happening, the binomial distribution of the population parameter p, we have estimated 

it is 0.3. So the advantage of this maximum likelihood function is, it is helping to estimate 

parameter of any distribution. 
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Suppose, that rather than being told the condition of every helmet, we had only been informed 

that three of the 10 were flawed. Then, we would have to observe the value of binomial random 

variable X equal to the number of flawed helmets when you substitute 10X 10Cx p power x into 

1 – 10 – x. When you substitute x = 3, this is 10C3 p3 into 1 – p power 7. We do not bother 

about the coefficient 10C3, because that is not a function; that is just a constant. So what they 

say, the binomial coefficient 10C3 is irrelevant to maximization. So again, the p = 0.3. 
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Next, we will define, what is maximum likelihood function. There are two terms there; one is 

likelihood function, next one is maximum likelihood function. First I will say what is likelihood 

function, then we will go to what is maximum likelihood function. Let X1, X2, and Xn have a 

joint probability mass function or probability density function; call it as f of x1, x2, up to xn 

colon theta 1, theta 2 and theta m, where the parameters theta 1, theta 2 and theta m have 

unknown values. 

 

Here the parameter is theta 1, theta 2, unknown values where x1, x2, xn are the observed sample 

values, then this equation a is regarded as the function of theta 1, theta 2 to m, it is called 

likelihood function. So this is a likelihood function. So this function is likelihood function. The 

maximum likelihood estimates theta 1 hat, theta 2 hat, theta m hat are those values of theta i's 

that maximizes the likelihood function. 

 

So that f of x1, x2 up to xn colon theta 1 hat, theta 2 hat up to theta m is greater than or equal to f 

of x1, x2, x3 up to xn colon theta 1, theta 2, theta m for all values of theta 1, theta 2, and theta m. 

When the Xi’s are substituted in place of xi’s, the maximum likelihood estimates result. So what 

you have to do with that one? In the Xi’s we have to substitute xi’s that will be the maximum 

likelihood estimate result. So what we are doing here? 

 



We are finding joint probability mass function, then with the help of sample values, we are 

predicting the population parameter. 
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How will you interpret that one? The likelihood function tells us how likely the observed sample 

is as a function of possible parameter values. So maximizing the likelihood gives the parameter 

values, for which the observed value is most likely to have been generated. That is, the parameter 

values that agree most closely with the observed data. Otherwise, we can say in other way, that 

this data set is more suitable for what kind of distributions or what kind of models. 
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Now we will go for estimation of Poisson parameter. Suppose, we have data generated from a 

Poisson distribution, we want to estimate the parameter of Poisson distribution. The Poisson 

distribution is having only one parameter, because in Poisson distribution, it is an unique 

parametric distribution; it has only one parameter, that is where the mean and variance is same. 

The probability of observing a particular random variable P of X equal to e of –mu mu power X 

divided by X factorial.  

 

So joint likelihood by multiplying the individual probabilities together, so what we will do the 

first step is we have to find out the joint probability function. So e power –mu mu to the power 

X1 divided by X1 factorial multiplied by e power –mu to the power X2 divided by X2 factorial 

and so on multiply e power –mu mu to the power Xn divided by Xn factorial. So this can be 

written as product of e power –mu mu power Xi, because it is a product, there is an end time. 

When you expand it, so e power –n mu, because it will become up to n times, so mu to the power 

nX bar. Next, we have to take the log of this, we will see that. 
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Note that, the likelihood function that factorials have disappeared. We will not bother about the 

factorials, because that is not going to affect the result. This is because they provide a constant 

that does not influence the relative likelihood of different values of the parameter whether we use 

the constant or not, that is not required, because that will not affect our end result. It is usual to 

work with log likelihood rather than likelihood, because we have seen previously. 



 

When you take log of likelihood, the differentiation is easy. Note that, maximizing the log 

likelihood is equivalent to the maximizing likelihood. This also, we have seen in the previous 

slide. So this was the likelihood function. You take log of that one. So e power, when you take 

log of e to the power –n mu is –mu, because it is the product, in log it will become sum, sum nX 

bar log of mu. Now you differentiate with respect to mu. 

 

When you differentiate it and equate it to 0, then you are getting X bar equal to mu. So what is 

the result is, the sample mean is the best estimate to predict the population mean of a Poisson 

distribution. 
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Now we will go for another distribution that is estimation of exponential distribution parameter. 

Suppose, X1, X2, Xn is a random sample from an exponential distribution with the parameter 

lambda. Because of independence, the likelihood function is the product of individual pdf’s. 

Here also lambda e power –lambda x1 will extend it, lambda e power –lambda x2 up to, you 

have to multiply lambda e to the power –lambda xn. 

 

So when you simplify that, it will become lambda to the power n e to the power –lambda sigma 

of xi. When you take log of this, it will become n log lambda minus lambda e power x. Then this 

has to be equated to 0. 
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So when you equate it to 0, so lambda becomes lambda equal to n divided by sigma Xi that is 

nothing but the inverse of the sample mean. So this was the result. So what is happening is, now 

the inverse of sample mean is nothing but the mean of our exponential distribution. 

(Refer Slide Time: 21:24) 

 

Now we will go for estimation of parameter of a normal distribution. This was very interesting 

because we can say normal distribution is the father of all the distributions. Many time, if you are 

not knowing the nature of the distribution, you can assume that it follows normal distribution. As 

usual, the likelihood function for a normal distribution is, we know that the pdf, probability 



density function is 1 by root of 2 pi sigma square e to the power –x1-mu whole square divided by 

2 sigma square. 

 

So like that, this is term 1, term 2, up to nth term we can go for that. So term 1, that is when it is 

x1, when you substitute x2, x3, so you will get different n terms. So that is probability mass 

function. Joint probability function, so when you simplify that it is 1 divided by 2 pi sigma 

square to the power n-2 to the e power –sigma of xi-mu whole square divided by 2 sigma square. 

What will happen? When you take log of this, this is n by 2 log of 1 – log of 2 pi sigma square. 

 

So what will happen, log of 1 minus, because log 1 is 0, so it will become 0 – log of 2 pi whole 

square, because it is x power n. So –n by 2 n log 2 pi sigma square – e to the power, this one will 

come in that value itself, because 2 sigma square, sigma of xi – x mu whole square. Now what 

has to be done? This is the log value of likelihood function. This function, this equation has to be 

partially derivated with respect to mu and sigma square and equate it to 0. 
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Then, you will get the parameter. To find the maximizing value of mu and sigma square, we 

must take the partial derivatives of the previous function with respect to mu and sigma square 

and equate them to 0 and solve the resulting two equations. There are a lot of details, omitting 

the details, we will get this result. What does this result says? With the help of sample mean, we 

can predict the population mean. 



 

With the help of this one, look at this one; this term is the sample variance, we can predict the 

population variance. So this was the outcome of, you remember, this was the result of our central 

limit theorem also. We can prove that central limit theorem by using this maximum likelihood 

estimate. But one point you should be very careful, the maximum likelihood estimate of sigma 

square is not the unbiased estimator. 

 

Actually, we should look for unbiased estimator, but here it is not unbiased estimator. So, two 

different principles of estimation, unbiasedness and maximum likelihood yield two different 

estimators. In this class, I have started the intuitive meaning of maximum likelihood principle. 

Then, I have explained how to find out the population parameter of different distributions. First, I 

have seen how to predict the population parameter of binomial distribution. 

 

Next we have seen how to predict the parameter of Poisson distribution. Then, next we have 

predicted the population parameter of exponential distribution. At last, we have predicted 

population parameter of normal distributions. In the next class, we will take one example for 

predicting the parameter of normal distribution. Thank you very much. 


