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Multiple Regression Model - I 

 

In the previous class we have studied about simple linear regression, in this class we are going to 

discuss about multiple regression models. 
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The class agenda is I am going to explain what is multiple regression model then what is a least 

square method then multiple coefficient of determination. In the multiple coefficient of 

determination I am going to explain what is adjusted r-square also. Then what are the assumption 

in the multiple linear regression. Then I am going to test the significance of by using F test and t 

test. 
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What is a multiple regression model so multiple regression model is when there are more than 

one independent variable that is called multiple linear regression model. If it is only one 

independent variable it is linear regression model. When you take the expected value of this 

multiple regression model so we know that that assumption any regression equations that the 

expected value of error term is 0, so when you take expected value of y there would not be any 

error term that is that is a multiple regression equation. Here beta 1 beta 2 is the coefficient of x 1 

x 2 and beta p a coefficient of x p. 
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What is the estimation process for a multiple regression there is a multiple regression model y 

equal to beta 0 beta 1 beta 2 and beta p and x be an error term from this we can go for multiple 



regression equations where beta 0 beta 1 beta 2 are unknown parameters. To find out this 

unknown parameter from the population we are going to collect sample data for x 1 x 2 like this 

up to x p and sample data for y that is dependent variable. With the help of sample data we are 

going to construct your sample regression equation what is that compute to the estimator 

multiple regression equation that is y hat equal to b 0 + b 1 x 1 + b 2 x 2 and so on + b p x p 

where b 0 b 1 b 2 b p our sample statistics. 

 

So with the help of sample statistics we are going to find out the population parameter that is 

beta 0 beta 1 beta 2 beta p then there will do a significant test then we will see that whether the 

beta 1 beta 2 is equal to 0 or not equal to 0 after testing that we will find out what is the actual 

value of beta 1 beta 2 at the population level. This is the process of doing a multiple regression 

model. This is similar to the simple linear regression model but what we have done in the simple 

linear regression model only x1 and y1 was taken only one independent variable is there but here 

more than one independent variable that is only difference all other concepts are same. 
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So, what is simple versus multiple regressions. In simple linear regression b0 b1 bear the sample 

statistics used to estimate the parameter of beta0 and beta1 but in multiple regression the parallel 

is that the statistical inference process with b0 b1 b2 and bp denoting the sample statics are used 

to estimate the parameter of beta 0 beta 1 beta 2 and beta b. So, what is the meaning of this one is 



with the help of sample statistics b 0 beta 1 beta 2 we are going to predict the population 

parameter the beta 0 beta 1 and beta 2. 

 

In simple regression there was only b 0 was there beta 1 was there only one independent variable 

in multiple regression more than one independent variable there is only difference.  
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Least square method in simple linear regression also I have derived the formula for b 0 b 1 by 

having the assumption that when we draw a line the error term that is the sum of the square of 

the error has to be minimized. But the y hat there in simple linear regression y hat I was b 0 + b 1 

x 1 but in multiple regression this y hat I equal to b 0 + b 1 x 1 + b 2 x 2 and so on + b p x p,  p is 

the number of independent variable.  

 

So, all other procedure is same here also what we are going to do that there are but here it is a 

multi-dimensional picture we cannot draw a two-dimensional picture because we need it because 

there are more than one independent variable that is going to be a a multi-dimensional picture 

that we cannot explain with the help of a simple graph. 
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The least square estimate what happened to y hat equal to b 0 + beta 1 x 1 beta 2 x 2 up to beta p 

and x p because there would not be error term here because the expected value of the error term 

becomes 0. So, how to interpret the value of b 1 b 2 and b 3 how do you interpret the coefficient 

of b 1 is by keeping other variables constant if the x 1 is improved by one unit the y hat will be 

improved by b 1 units. It is a similar way for simple linear regression but here when you are 

interpreting one coefficient we have to assume that that we other coefficient for other 

independent variables are constant. 
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We will take an example this example problem is taken from statistics for Business and 

Economics is the other by Andersen. As an illustration of multiple regression analysis we will 



consider a problem faced by a tracking company the major portion of the business involves 

deliveries throughout the local area to develop a better work schedule the manager want to 

estimate total daily travel time for their drivers. So, they want to estimate this is going to be total 

daily travel time is going to be our dependent variable. 
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There are 10 assignments there are 10 a semi drivers x 1 equal to miles traveled y equal to travel 

time there is a connection between x 1 and y what is the meaning of that 1 when the travel time 

we will increase distance traveled also high. So, y is the dependent variable x 1 is independent 

variable. 
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I have brought the screenshot at end of this lecture I will run this quotes then you can understand 

it better when I will show that I will explain the screenshot import pandas as pd from stats model 

dot formula dot  api import Wireless that is ordinary least square regression models from stats 

model dot stats dot anova input anova underscore lm because this library will be used to see the 

ANOVA table for a regression model. 

 

Then import matplotlib dot pi plot as a plt the file name is which I have stored is it tracking that 

is an excel file I going to store this data into an object called df1, df1 equal to pd dot read 

underscore Excel that file name, so if you want to know what is the data set this is the data set. 
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So, in this data set there are 1 travel underscore time is dependent variable there are 2, 

independent variable one is x 1 and another is number of deliveries. The meaning of x 1 is miles 

traveled before going to regression first we ought to have an idea between this independent 

variable x 1 miles traveled and time dependent variable is there any connection. 
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So the first step is first you have to draw the scatter plot so import the matplotlib dot pi plot as a 

PLT I am drawing the scatter plot df1 x 1 is in the x-axis travel underscore time in y-axis green 

color so label is travel time this one, so what is happening that there seems to be some relation 

between this miles traveled and the travel time that means the obviously when the miles traveled 

is more the travel time also will be more. This is between one independent variable and one 

dependent variable.  
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Similarly we will take another variable number of deliveries as an independent variable then 

travel time as the dependent variable there also seems to be there is a positive correlation. Why it 



is required that if there is no correlation at all between that independent variable and dependent 

variable we need not do the regression analysis. 
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Now in this graph both the variable are taken together what is that vary the distance traveled and 

the number of deliveries this is the code for to show both variables in the same figure. So, what 

are I'm going to do first I am going to take one independent variable I am going to plot construct 

the regression equation then I am going to take both intermediate variables together then I go to 

construct a regression equation. The first taking for one independent variable this is a y hat equal 

to 1.27 + 0.0678 x 1 I will show you in the next slide how we got this answer. 
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So I am going to do a regression analysis that regression model I am going to say reg1 is equal to 

y LS formula the travel time is taken as the dependent variable x 1 distance traveled is taken as 

the independent variable. So, fit to 1 equal to reg one dot fit so print fit one dot summary so what 

is happening here we are getting the coefficient what is it coefficient the intercept is 1.2739 x1 is 

0.0678, so how we can write it y hat equal to 1.2739 + 0.0678 x 1 variable this is an independent 

variable with you see that the same answer we are getting here. 

 

So for here one more things I were to understand see the R square is 0.664 okay now the next 

one what I am going to do I am going to introduce another variable here after introducing the 

another variable I am going to see what is going to happen this r square. The r square says the 

goodness of the model the higher the r square the model is better what is the meaning of 66.4 

here was 0.664, 66.4% of the variability of y can be explained with the help of this model. 
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Now what happening that I am going to bring another independent variable that is number of 

deliveries so when you bring another independent variable I will show you that model you see 

that model equal to ils travel underscore time tilde sign x 1 + n underscore of underscore 

deliveries so this is two independent variable if there are three you can write it plus that variables 

this is the way to do the multiple regression in Python. 
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So, now what is happening here you look at the y intercept it is y equal to – 0.8687 + 0.0611 x 1 

+ 0.9234 x 2, here you can call it as x 2 is what is the meaning of x 2 number of deliveries okay 

so, what is this, this is important. We will verify this in the previous slide also we got the same 

thing – 0.869 + 0.0611 x 1 + 0.923 x 2 now look at this the previous r square now look at this 

now this r square after introducing new variable. 

 

After introduce a new variable the r square is previously it was 0.6 something now it is increased 

to 0.90 so adding a new variable as helped to improve the explaining power of this regression 

model. Then I explain there is one more term adjusted r-square because in many previous 

lectures I am saying that I will do the next lecture but I am not able to do that one now in this 

lecture I will explain what is the meaning of adjusted r-square. 

 

The other point you have to understand you look at the p-value for each independent variable. 

So, what is the null hypothesis for a year what is the null hypothesis H 0 equal to beta 1 equal to 

beta 2 equal to 0, so in all hypothesis for you look at the b values here see for x 1 it is a point 0 0 

so we have to reject null hypothesis. When you reject null hypothesis beta 1 is not equal to 0, 

that mean there is a relation between x 1 and y 1. 

 

Similarly look at the number of deliveries corresponding p-value is 0.04 that also less than 0.05 

so that hypothesis beta to 0 also at we rejected that means at a population level there is a the 



relationship is significant what is the meaning of that one is even at the population level between 

x 2 and y there is a significant relationship is there. 
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Relation among SST SSR in SSE we know that SST total sum of square equal to the regression 

sum of square + error sum of square, SST this I have explained in my previous lecture total sum 

of square is this way for your convenience I am drawing one more time this is your y bar this is 

your y hat so this is y, so this distance okay this distance is your SSR this distance is your SSE, 

so the total distance is SST. 

 

So this total distance is SST, so, what is SST? SST is y i - y bar whole square Sigma what is SSR 

y hat I  - y bar whole square what is SSE y - y hat whole square so when we have only one 

independent variable look at this here what is SST when you add this SST equal to summation of 

15.87 + 8.02 so it will come around 89 SST. You see the residual sum of square so what is SSE? 

SSE is 8.02 when there is only one independent variable SSR is 15.871 to get this regression 

model output you have to use this one print ANOVA underscore LM the or to call the first 

regression model. 
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The next slides we are going to bring another ANOVA table when there are two independent 

variables for that purpose and I want a score table equal to n our lm model one type one ANOVA 

table. Now you see that the SST is same SST is around 22 around 22 but look at SSE is 2.29  so 

error has been decreased. You see SSR, SSR is these two 15.87 + 5 approximately 20. 

Something so what is happening when you introduce a new variable the value of SSR is 

increased to 20 variously SSR only one independent variable SSR is 15. 

 

So after introduced a new variable the 5 unit of variants is increased and at the other point is 

previously when there are only one independent variable is the error term is 8.02. Now the error 

is reduced to 2.29 so that is the advantage of using more number of independent variable so that 

we can have more accurate model. 
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 Now you will see what is multiple coefficient of determination when there is a simple linear 

regression model we have called it coefficient of determination. Now there is a multiple 

independent variable we are going to call it is multiple coefficient of determination it is SSR by 

SST. So, what is R square SSR, SSR is when you add this to 15.87 + 5.7, 21.6. SST is when you 

are all three 22.2 approximately 23.0. 

 

So there is a 90.4% of the variability of y can be explained with the help of these two 

independent variable. So, the r square is increased so it is a good model when compared to 

simple linear regression model. 
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So, now we will go for another concept adjusted R square what is the purpose of adjusted R 

square. So, adding independent variable causes the prediction errors to become smaller, so we 

know that see SST equal to SSR + SSE so when you add independent variable prediction error 

become smaller what will happen this error will become smaller so what will happen this when 

SSE becomes smaller SSR will become bigger one because SSR equal to SST - SSE when SSE 

becomes smaller SSR become larger. 

 

So, causing R square to increase whenever you add any independent variable SSR will increase 

SSE will decrease due to that SSR will increase due to that the R square will increase. Many 

analysts prefer adjusting R square for number of independent variable to avoid overestimating 

the impact of adding an independent variable on the amount of variability explained by the 

estimated regression equation. 

 

So what is happening instead of using R square we are going for adjusted R square. The 

advantage of adjusted R Square is whether the added new variable is it is really as an explaining 

variable or it is a noise variable otherwise the added a new variable how much it is helping to 

explain the variance of the existing model. 
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So, what is a formula for adjusted R square s previously what was the formula for R square see 

that R square equal to SSR divided by SST explained variance divided by overall variance. So, 



this explained variance the regression sum of square can be written this way SST – SSR  SST - 

SSE because what is happening this SSR this SSR represents regression sum of square for all 

independent variables. So, when you add a new variable you cannot know the contribution of 

that new variable into the SSR we are going to split this SSR into two term that is SST - SSE so 

now this will become 1 - SSE divided by SST. 

 

But what we have to do we have to write the degrees of freedom because what is the meaning of 

adjusted is this adjusting for degrees of freedom. so, when SSE what is the degrees of freedom 

SSE the degrees of freedom is n - p - 1 what is the n, n is the total number of data set p is number 

of independent variable - 1 here it will become n - 2 divided by SST you write SST as it is. It is n 

– 1, so when you simplify this you will get this method. 

 

So here what is the n, n is number of observations what is the p it is number of independent 

variables and you substitute here R a equal to 1 - 1 - R square n - 1 divided by n - p - 1 when you 

expand this R square otherwise you write R square equal to SSR by SST you will end up with 

this relationship this is adjusted R square is 0.88. 
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You look at this that is the meaning of 0.8, so another importance of this adjusted r-square is 

sometime you see what will happen I am writing here R square adjusted R square what will 

happen whenever you introduce new variable the value of R square will increase adjusted R 



square also will increase. So, I will explain what is the meaning of R square and I just R square 

assume that there is a one dependent variable there are many independent variable that 

independent variable is x 1 x 2 x 3 and x 4. 

 

Now what I am doing here I am going to build a regression model. So, first what I will do first I 

will take y then I will write regression equation in terms of x1 so what will happen R Square 

increase and  will also adjusted R square. Now taking y is a dependent variable I am going to 

bring 2 independent variable R square increases adjusted R square also will increase. So, what 

will happen if the x2 is really helping to explain the variance of the y some time suppose say 

variable x 3 x 1, x 2 this x 3 variable is the noise variable. 

 

Noise variable means it will not help to explain the variability why it is going to disturb the 

existing relationship. So, what will happen R square will increase adjusted R square will start 

decreasing. So, this is the hint for us that the variable which you have added is not helping to 

explain the model instead of that it is deteriorating the existing model. So, x 3 should not be 

added that is the meaning of this adjusted R square most of the time. 

 

If the value of R square adjusted R square is similar that means that we have no need to increase 

any further variable into the model that means you have reached the good model. 
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If there is a gap for example R square is 0.9 adjusted R square is 0.3 that there is a possibility of 

adding more independent variable into the model. Now let us see adjust and multiple coefficient 

was this multiple coefficient if your variable is added to the model yeah that is the point which I 

am saying previous slide, if your variable is added to the model R square become larger even if 

the variable added is not statistically significant it is very important. 

 

The adjusted multiple coefficient of determination that is adjusted R square compensate for the 

number of independent variable. So, it is adjusted means it is adjusted for the number of 

independent variable otherwise adjusted for it is a degrees of freedom. If the value of R square is 

smaller and the model contains a large number of independent variable are just total coefficient 

of determination can take negative value. 

 

It is a very important point here the interpretation of R square and adjusted R square is not same. 

The R square is that how much variability of y is explained but the adjusted R square is not the 

same interpretation. What will happen many time adjusted R square may become negative okay 

you should be very careful on that. Then we will go for checking model assumptions so as I told 

you in the beginning of the class y equal to this is the regression model when you there will be 

error term when you go for regression equation there would not be error term because when you 

go for expected value of y beta 0 + beta 1 x 1 + beta 2 x 2 and so on. 

 

And there would not be error term because the expected value of error is 0. We will go for some 

assumption what is the first assumption the error term epsilon is a random variable with mean or 

expected value of 0 what is implication for the given value of x 1 x 2 and up to x p the expected 

or average value of y is given by this way you look at this when you go for expected value of y 

there is no error term. This equation represents the average of all possible values of y that might 

occur for the given value of x 1 x 2 up to x p by expected value of y. 
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We will go for second assumption the variance of epsilon is denoted by Sigma square and is the 

same for all values of the independent variable x 1 x 2 x p what is implications the variance of y 

about the regression line equal to Sigma square and is the same for all values of x 1 x 2 x p. if it 

is different we will call it is there is effect of heteroscedasticity. Why this point is required if you 

want to compare the variance of x 1 x 2 up to x p should be same then only there is a meaning 

for comparison. 

 

The third assumption is the value of epsilon are independent. What is implications the value of 

epsilon for a particular set of values for independent variable is not related to the value of epsilon 

for any other set of values. Another way the error terms are independent when you plot that error 

term there should not be any pattern whether it is increasing or decreasing pattern that is the 

meaning of this third assumption. Then fourth assumption the error term epsilon is normally 

distributed random variable reflecting the deviation between y value and the expected value of y 

given by beta 0 + beta 1 x 1 + beta 2 x 2 up to beta p x p. 

 

What is implications because of beta 0 beta 1 beta b are constant for given values of x 1 x 2 x b 

the dependent variable y also normally distributed random variable because what will happen the 

error term it should be independent but it should follow a normal distribution with equal variance 

if it is not equal variance then it will go to the second assumptions also get violated. 
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Now look at this graph of a regression equation for multiple regression analysis with 2, 

independent variable x 1 is in one independent variable x 2 is another independent variable. See 

this is the mean value of x 1 this is mean value of x 2 you see this is a plane. So, multiple 

regression equation is explained with the help of here a surface otherwise this is called a surface 

the reference model is a plane now the equation is not the line it is the plane. 

 

Otherwise they will call it is RSM also response surface model another name for regression is 

response surface model because now this is the surface. 
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 A response variable and response surface in regression analysis the term response variable is 

often used in place of the term dependent variable instead of saying dependent variable we will 

say the response variable. Furthermore since the multiple regression equation generates a plane 

or surface the graph is called response surface. In this lecture I have explained what is a multiple 

regression model? Then I have explained what is the connection between simple linear 

regression model and multiple regression model. 

 

Then I explained the least square model then I have explained what is the meaning of R square 

and adjusted R square? Then I have explained various model assumptions. The next lecture I am 

going to test the significance of beta 1 beta 2 and beta 3 with the help of F test and t test and also 

we will see a demo on Python programming to do a multiple regression, thank you very much.  

 


