Data Analytics with Python
Prof. Ramesh Anbanandam
Department of management studies
Indian Institute of Technology, Roorkee

Lecture No 3
Python fundamentals

Okay? We will continue our lecture. How to access different rows and columns, because, it is
very important applications.
(Refer Slide Time 00:33)

gy

Looking at Columns, Rows, and Cells

* Subset Rows by Index Label: loc

In [36] . pr‘i!lt(df.head())

country year pop continent lifeExp gdpPercap
Afghanistan 1952 8425333.0 Asia 28.801 779.445314
Afghanistan 1957 9240934.0 Asia 30.332 820.853030
Afghanistan 1962 10267083.0 Asia 31.997 853.100710
Afghanistan 1967 11537966.0 Asia 34.020 836.197138
Afghanistan 1972 13079460.0 Asia 36.088 739.981106

Bowro e ©

When the data file is very big sometimes you need to access only some rows or some columns
for your calculation purpose. That we will learn how to access a particular rows or particular
columns there is looking at columns, rows and cells. When you look at this see print df.head
when | use this command and getting there are different. There for example; the first column
says 0, 1, 2, 3, 4, country, year, population, continent, life expectations, gdppercapita.

(Refer Slide Time: 01:04)

get the first row

* Python counts from 0

In [37]): print(df.loc[0])

country Afghanistan
year 1952
pop 8.42533e+06
continent Asia
lifekxp 28.801
gdpPercap 779.445

Name: @, dtype: object

Suppose | want to get the first row as we know that the Python counts from 0. If you want to

know the first row you type a print df.loc, it is a location in square bracket 0. Will do that you
will get the details which are there in the first row.
(Refer Slide Time: 01:26)

S —

* #get the 100th row
Python counts from 0

In [38]: print(df.loc[99])

country Bangladesh
year 1967
pop 6.28219e+87
continent Asia
lifeExp 43,453
gdpPercap 721.186

Name: 99, dtype: object

So first if | want to know hundredth row so printed df.loc 99. We knew that python count from
zero. If 1 want to know 100th row you have to type 99. So it should be in Square bracket you can
see the details in the 100th row.

(Refer Slide Time: 01:42)

* get the last row

In [39]: print(df.tail{n=1})

country year pop continent lifeExp pdpPercap
1783 Zimbabwe 2087 12311143.0 Africa 43,487 469.789298

Suppose we want to know the last row in the data set. So print df.tail n equal to 1. If you type n
equal to — 1, it will not work, that we will see why if you want to know the last row simply type
to df.tail n equal to 1, you will get to know that what is the last two, So we will see that.

(Video Starts: 02:01)

Now we are going to use this command to see the last row that is a detail about the last rows.
Now we can subset a multiple rows at a time. For example; there will be requirement we have to
select 100th row, 1st row 100th rows and 1000™ rows. For that purpose you type this command
print df.loc. You see there are two square brackets 0, 99, 999, you will see what output where

getting. So type print df.loc. Yes, so we are able to see the 1st row, 100th row, 1000 row.

There is another way we can subset rows by row number by using this command iloc. Previously
loc, now we are going to use iloc. Suppose for type | want to get the 2nd row, if I type print
df.iloc 1. I will get the details about the 2nd row. Okay? Yeah, this is a detail about the 2nd row.
Suppose | want to know 100th row by using iloc command so go there. Yes? That is the details

about the 100th row. You see that if | want to access the last row by using iloc command.

So you can directly type print df.iloc in squared bracket - 1. So that will be the details of the last
row. So what you can do we can open our Excel file you can verify what was the title, the last
row and soon.

(Video Ends: 04:27)

(Refer Slide Time: 04:27)
—————— 2

With 1Xoc. we can pass i the =1 to get the last row—something we couldn’t do with Loc

See then important note here with iloc command. We can pass in the - 1 to get the last row, but
same thing that we could not do with loc. That is the difference between loc command and iloc
command.

(Refer Slide Time: 04:42)
A

* #get the first, 100th, and 1000th rows

In [44]: print df.iloc[[e, 99, 999]]

country year pop continent lifeExp gdpPercap
® Afghanistan 1952 8425333.@ Asia 28.801 779.445314
99 Bangladesh 1967 62821884.9 Asia 43.453 721.186086
999 Mongolia 1967 1149500.0 Asia 51.253 1226.041130

Suppose we want to get the first 100th and 1000th rows, using iloc command. So we are going to
type this print df.iloc 0, 99, 999. Let us see what answer we are getting.

(Video Starts: 04:58)

Yes? See, we have getting 1%, 100th and 1000 row.

(Video Ends: 05:21)

(Refer Slide Time: 05:21)
I 0 0 0

Subsetting Columns

* The Python slicing syntax uses a colon, :

* If we have just a colon, the attribute refers to everything.

*+ So, if we just want to get the first column using the loc or iloc syntax,
we can write something like dfloc(:, [columns]] to subset the column(s).

So far we are seeing subsetting rows. Now we will see subsetting columns, the Python slicing
syntax used a colon, colon represents all the rows. If you have just a colon that attribute refers to
everything. So if you just want to get the first columns using a loc, or iloc syntax. We can write
something like df.loc[: , which column we need to refer, to subset the columns.

(Refer Slide Time: 05:49)
e —

* fsubset columns with loc
note the position of the colon
#it is used to select all rows

The next slide | need to show that we are going to subset the columns with loc, not the position
of the colon. It is used to select all rows.
(Refer Slide Time: 05:58)

In [45]: subset = df.loc[:, ['year', 'pop']]
print subset.head()

year pop
1952 8425333.0
1957 9240934.0
1962 10267083.0
1967 11537966.0
1972 13079460.0

You see that, subset equal df.loc: , I want to see only two columns that is year and population. So

L I i e v

when you type this way you will get all the rows only two columns details that is year and
population. You will type this so when you type print subset.head. You can get the first 5 rows.
So you will see how it appearing.

(Video Starts: 06:26)

Subsets equal to Subset is object because from the df is the initial object which has all the details.
Now | am going to fetch only few columns from the df object that I am going to saved in the
name subset, subset is the object. So all the rows but I need only year column and population
column so | am going to type | want to see the first 5 rows, see that I am able to see 1% 5 rows,
only for 2 cells. That is year and population. This is the way to get only 2 cells from the 2
columns from the Big Files.

(Video Ends: 07:21)

(Refer Slide Time: 07:21)

* { subset columns with iloc
+ ftiloc will alow us to use integers
+ -1 will select the last column

In [51): subset = df.iloc(:, [2, 4, -1]]
print| subset.head()

pop lifeExp gdpPercap
8 B425333.8 28.801 779.445314
1 9248934.6 38,332 820.853030
2 10267883.8 31.997 853.100719
3 11537966.6 34,028 836.197138
4 13879468.0 36.888 739.981186

There is another example subset column with iloc, iloc will allow us to use integers - 1 will
select the last column. The same thing whatever we have seen in the previously so subset equal
to df.iloc:, represents all the rows. Then [2, 4, - 1, then we can see by using this command print
subset.head 1st5 rows.
(Video Starts: 07:46)
See that we are able to see the last column and the population column, life expectancy column.
You can open our Excel sheet you can verify whether we are getting the right answer or not.
(Video Ends: 08:26)
(Refer Slide Time: 08:26)

|

Subsetting Columns by Range

* #create a range of integers from 0 to 4 inclusive

In [52]: small_range = list{range(5))
print|small_range

(6, 1, 2, 3, 4]

Sometime there is another way for subsetting columns by using the command called range. First
will make range of numbers we are going to save that range of a number in object called small _
range, so small _ range equal to list range 5. Print small range will get 0, 1, 2, 3, and 4. Now this
small _ range, object can be used to access the corresponding columns.

(Refer Slide Time: 08:57)
S

* #subset the dataframe with the range

In [53]: subset = df.iloc[:, small_range]
print(subset.head())

country year pop continent lifeExp
Afghanistan 1952 8425333.8 Asia 28.801
Afghanistan 1957 9240934.0 Asia 30.332
Afghanistan 1962 10267083.0 Asia 31,997
Afghanistan 1967 11537966.0 Asia 34.020
Afghanistan 1972 13079460.0 Asia 36.088

So if I type a subset equal to df.iloc:, small _range I can get.

(Refer Slide Time: 09:04)
I @490

Ssw o = oo

Subsetting Columns by Range

* #create a range of integers from 0 to 4 inclusive

In [52]: small_range = list{range(5))
printismall_range

[) 1! 2! 3! 4]

1st column, 2nd column, 3rd column, 4th column and 5th column, so we will try this.
(Video Starts: 09:09)

Small _ range is an object, we are going to create a range. Suppose we want to see what small
_range is. So it is up to O to 4, that means 1 to 5. Now we are going to subset using that object
called small _ range using ilocation command. df.ilocation:small_ range we see that here we are
able to see 5 column that is a country, year, population, continent and life expectancy.
(Video Ends: 10:21)
(Refer Slide Time: 10:22)

I 0909090909090 0

Subsetting Rows and Columns
* #using loc

In [54]: # using loc
print df.loc[42, 'country']

Angola

So far we have seen subsetting only rows and columns. Now we are going to subset rows and
columns simultaneously. For example; using loc command so if you type print df.loc 42
countries. We can check in the 42 label in country columns. What is the cell name, there cell
name is Angola. Will try this.

(Video Starts: 10:47)

Going to see in that file in 42nd label in country column what value is there so that is an Angola,
Yes?

(Video Ends: 11:09)

(Refer Slide Time: 11:09)

* #using iloc

In [55]: print(df.iloc[42, @])

Angola

oowc
Yes, we can see what is in the using the same ilocation we can see in 42nd label in Oth column.
Now we can represent column also with 0 columns, what value it is, you will see that. You can
verify you have to get to the answer. You can open the Excel file. You can verify we are
correctly accessing the cell or not.
(Video Starts: 11:29)
Print df.iloc in 42nd label 0™ column what is the value it is Angola.
(Video Ends: 11:46)
(Refer Slide Time: 11:46)

I 0000

Subsetting Multiple Rows and Columns

* #get the 1st, 100th, and 1000th rows
from the 1st, 4th, and 6th columns

In [56]: print(df.iloc[[0, 99, 999], [@, 3, 5]])

country continent gdpPercap
@ Afghanistan Asia 779.445314
99 Bangladesh Asia 721.186086
999 Mongolia Asia 1226.041130

Next we can subset multiple rows and columns. For example; get the 1%, 100th and 100th rows

from the 1%, 4th and 6th column. So now we are going too simultaneously we are going to fetch

rows and columns and corresponding cells. So print to df.iloc 0, 99, 999. Similarly column labels
is 0, 3, 5. Let us see what answer.

(Video Starts: 12:13)

This accessing rows and columns are very important functions because nowadays data file comes
with a lot of rows and lot of columns. We need not use all the columns, all the rows for further
analysis. Sometimes we need only specific rows or specific columns. So these basic commands
will help you, how to access a particular rows and columns, that will be very useful when we do
further analysis using Python. Yeah? This is the value so that means 1st row, 100th row 1000"
row, 1st column and soon.

(Video Starts: 13:08)

(Refer Slide Time: 13:08)
|

* if we use the column names directly,
#it makes the code a bit easier to read
note now we have to use loc, instead of iloc

In [57]: print(df.loc[[e, 99, 999], ['country’, 'lifeExp’, 'gdpPercap']])

country lifefxp gdpPercap
] Afghanistan 28.8081 779.445314
99 Bangladesh 43,453 721.186886
959 Mongolia 51.253 1226.841130

And there is another way if you use the column names directly it makes the code a bit easier to
read. In terms of number and so you see number column. If you use for representing column, if
you use column name we can see what is there, so simply type the column name. So we use this
command, print df.loc 0, 99, 999. Then directly will type the column name country, life
expectancy, gdpPercap you see there is a square bracket here.

(Video Starts: 13:36)

That you have to do as the same that Life capital Exp, Yes? This is because country, life
expectation this is the easy way to because we cannot remember column name.

(Video Ends 14:48)

(Refer Slide Time 14:49)
I 0000 000

In [58]: print(df.loc[10:13, ['country', 'lifeExp', 'gdpPercap']])

country lifeExp gdpPercap
10 Afghanistan 42.129 726.734055
11 Afghanistan 43.828 974.580338
12 Albania 55.230 1601.056136
13 Albania 59.280 1942.284244

This was not only that instead of see suppose if you put a 10 column 13 that corresponding rows
will be displayed. So print df.loc 10 to 13, the 10th row 11th, row 12th, row 13th, row will be
shown and in columns country and life expectancy and gdpPercap so we will try this command.
(Video Starts: 15:11)

That means we can see the range of rows at a time, gdpPercap. You are able to see the 10th row,
11th, 12th and 13th.

(Video Ends: 16:17)

(Refer Slide Time: 16:17)
e

In [59]: print(df.head(n=10))

country year pop continent lifeExp gdpPercap
Afghanistan 1952 8425333.9 Asia 28.801 779.445314
Afghanistan 1957 9240934.0 Asia 30.332 820.853030
Afghanistan 1962 10267083.0 Asia 31.997 853.100710
Afghanistan 1967 11537966.0 Asia 34.020 836.197138
Afghanistan 1972 13079460.0 Asia 36.088 739.981106
Afghanistan 1977 14880372.9 Asia 38.438 786.113360
Afghanistan 1982 12881816.0 Asia 39.854 978.011439
Afghanistan 1987 13867957.9 Asia 40.822 852.395945
Afghanistan 1992 16317921.0 Asia 41.674 649.341395
Afghanistan 1997 22227415.9 Asia 41.763 635.341351

Okay? Next see print df. head we can see we can able to see 1%, 10 rows.

WO NV E W D

(Refer Slide Time: 16:23)
-

Grouped Means

* # For each year in our data, what was the average life
expectancy?
To answer this question,
we need to split our data into parts by year;
then we get the 'lifeExp' column and calculate the mean

The 10" row some time for each year in our data what was the average life expectancy. To
answer this question we need to split our data into parts per year and then we can get the life
expectancy column and calculate the mean.

(Refer Slide Time: 16:38)
I 00

In [68]: print(df.groupby('year')['lifeExp'].mean())

year
1952 49.057620
1957 51.507401
1962 53.609249
1967 55.678290
1972 57.647386
1977 59.570157
1982 61.533197
1987 63.212613
1992 64.160338
1997 65.014676
2002 65.694923
2007 67.007423
Name: lifeExp, dtype: float64

So what is happening there is a command which | go to use called groupby, we look at the data it
is not grouped. So when you use this command print df.groupby year,and life expectancy and
corresponding mean. The mean of the on the in the year 1952, the mean of the life expectancy

variable is 49.05. In 57, 51.09. We look at the data; it is not in this order. So the groupby by year

this command is grouping all the values, with respect to year. So we will see what is the answer
for this, we will verify this.

(Video Starts: 17:15)

When you open that Excel file you will see that the Excel file will be in some other form it is not
grouped by year, different years are appearing at different places. So this command that is a
group by will help you to group the data in year wise groupby. Yes, you see that you are able to
get 1952 the life expectancy was 49 years you see that when you look at this data. When year
increases the life expectancy year also increases due to advancement of medical facility available
and the standard of life is also increasing.

(Video Ends: 18:42)

(Refer Slide Time: 18:42)
I @4

In [61): multi_group_var = df.
groupby(['year', ‘continent'])
[['lifeExp', 'gdpPercap']].
mean()
print multi_group_var

lifeExp gdpPercap
year continent
1952 Africa 39.135500 1252.572466
Americas 53.279840 4079.062552
Asia 46,314394 5195,484004
Europe 64.,408500 5661.057435
Oceania 69.255000 10298.085650
1957 Africa 41.266346 1385.236062
Americas 55.960280 4616.043733
Asia 49.318544 5787.732940
Europe 66.703067 6963.012816
Oceania 70.295000 11598.522455
1962 Africa 43,319442 1598.078825
Americas 58.398760 4901,541870
Aeis

€1 €£3773 €770 26067¢

Now, we can form a stacked table. Stacked table is using the group by command. So you type
this multi _ group _ variable = df . \. See the \ represents to breaking the command we can use \.
Otherwise you can write straightaway also no problem. df.group by year, continent, life
expectancy,gdp per capita, then we can find the mean. Then we will get this output for that
means in 1952, in Africa, the life expectancies 39, in America 53, in Asia 46 in Europe 64 will
try this command.

(Video Starts: 19:28)

When we takes these command you will get an output, that is a stacked table. That is very useful

for interpreting the whole dataset, is kind of a way of summarizing the data in the form of table.

Multi_group. You see that now year wise. It is very, very useful command it is year by 1952,
some country Africa. What was the average year 1957 Africa. We see that if you look at only the
Africa data. 52 to 39 in 57 41, in 62 43, in 67 45, see that we can interpret this way, by looking at
the, this table. Suppose you have to flatten this.

(Video Ends 21:24)

(Refer Slide Time: 21:24)

* If you need to “flatten” the dataframe, you can use the
reset index method.

ety gopteccop
1ISS00 1282572466

205000 11990 522488
1442 1598 078028
0

If, you need to flatten the data frame. You can use this reset underscore index method, just to
type flat = multi _ group _ var . reset _ index. Then you see now the data is again. Now it is
flattened. The same data set, which was it in the table form now it in the simple learned form. So
we will try this comment.

(Video Starts 21:48)

This is what you are doing the data manipulation, because from the big data file, we have to learn
this kind of fundamental data manipulation methods that will be very useful, in coming classes.
So able to use reset _ index command to flatten the, that stacked table. See that now we can see
first 15 rows. Now it is data is flattened into the normal form.

(Video Ends 22:41)

(Refer Slide Time: 22:41)

Grouped Frequency Counts

+yse the nunique to get counts of umique values on a Pandas Series

In [83]: print df.groupby('continent')['country'].nunique()

continent

Africa 52
Americas 25
Asia 33
Europe 38
Dceania 2

Name: country, dtype: inté4

The next one is grouped frequency counts. By using nunique command, we can get a count of
unique values on the panda series. So when you type print df. groupby continent, country.
nunique, you can get unique values the new frequency. Okay, will try this command.

(Video Starts: 23:04)

Print, See Africa 52, America is 25, Asia 33. When you look at the data, again, you go to
excel,Excel data you can interpret what is the 52 means, what is the America 25 and soon.
(Video Ends: 23:49)

(Refer Slide Time: 23:49)
I 000000

Basic Plot

In [65]: global _yearly_life_expectancy = df groupby('year')['lifeExp’] mean()
print{global_yearly_life_expectancy)

year

1952 49.@57620
1957 51.507481
1962 53.609249
1967 55.678199
1972 §7.647386
1977 59.579157
1982 61.533197
1987 §3.212613
1992 64, 160338
1997 65 814676
2802 65.694923
007 67.007423
Name: lifexp, dtype; floatsd

Now, some basic plot a way to construct two things one is year and life expectancy. So we are

going to create a new object that is called Global _ yearly life _expectancy. By grouping year

and life expectancy, with respect to its mean. Then we are going to print it. So you are going to
get two values one is year. Next one is life expectancy. That is a mean life expectancy, you will
see this.

(Video Starts: 24:17)

There is a new object. The object name is called Global _ yearly _ life expectancy. Yes, see that
year, and supposed we want to plot it. We will see we are going to plot this data, how we are
going to plot it.

(Video Ends: 25:28)

(Refer Slide Time: 25:28)
A

In [66]: global_yearly_life_expectancy.plot()

[66]: «matplotlib.axes._subplots. AxesSubplot at @x229d38dd32e»

Simply, just that object name. plot. That automatically takes this was output, which I got it, in x
axis in a year, in y axis, average life expectancy. We will run this.

(Video Starts 25:40)

So, what this data says that, when the year 1950 - 2000 you see when the year increases, the life
expectancy also increases.

(Video Ends: 26:07)

(Refer Slide Time 26:07)

- |
Visual Representation of the Data

+ Histogram -- vertical bar chart of frequencies

+ Frequency Polygon -- line graph of frequencies

+ Ogive -- line graph of cumulative frequencies

+ Pie Chart -- proportional representation for categories of a whole
+ Stemn and Leaf Plot

+ Pareto Chart

¢+ Scatter Plot

Just we have seen only the simple plot, in coming classes, we will see some of the visual
representation of the data. We are going to see a histogram, frequency polygon, ogive curves,pie
chart, stem and leaf plot and pareto chart and scatter plot .
(Refer Slide Time: 26:21)

A

Methods of visual presentation of data

* Table
1Qr [2ndQtr [3rd Qtr [4th Qtr
East 04 274 o 24
‘West 0.6 386 4.6 3.6
‘M)rth 459 469 45 439

Suppose, this is the data, see what is there in East, west, north. In column first quarter, second
quarter, third quarter, fourth quarter.
(Refer Slide Time: 26:30)

Methods of visual presentation of data

* Graphs

@ East
B West
B North

0 -
1stQtr 2ndQtr 3rdQtr 4thQtr

Suppose the very easiest way is the graph. By using this is called bar graph, bar chart. Bar chart

is different regions are labeled as different colors. This is a method of visual representation of the
data. If you look at this, the eastern side in third quarter, there are more sales. Okay.

(Refer Slide Time: 26:53)
I @4

Methods of visual presentation of data

* Piechart

01t Qtr
B 2nd Qtr
W 3rd Qtr
W 4th Qtr

The another way to represent visually, the data is pie chat, is the first quarter, third quarter. You
look at this, third quarter, which is in blue in color. There are more sales. And most importantly
the pie chart, we can get pie chart only for categorical variable. The variable is continuous, you
cannot use bar chart, you cannot use pie chart. So the pie chart is used only for categorical
variable. That is for only count data.

(Refer Slide Time: 27:31)

Methods of visual presentation of data

* Multiple bar chart

dth Qtr

3rd Qtr W North

W West

2nd Qi W East

istQtr

‘“F'l

=S

20 & 60 8 100

The another one is the Multiple bar chart. This is another way to represent the data visually.
(Refer Slide Time: 27:39)

Methods of visual presentation of data

* Simple pictogram

e 2dar dor dhar

Another one is a simple pictogram.
(Refer Slide Time: 27:43)

Frequency distributions

* Frequency tables

Observation Table
Class Interval Frequency Cumulative Frequency
<2 13 13
<40 18 3
<60 25 56
<80 15 71
<100 9 80

See, this is the frequency table.

(Refer Slide Time: 27:25)
A

Frequency diagrams

Froguessy

Cumudative Fraquency
| | mFrepieney

0

]
1 | il =
| a0 L
5]

@ Currndatr Frequency
= - - | an |
o o . £ |
20 |
P © [l 1
=X <40 60 <B0 <100

— Freguenty

See, next one is frequency polygon. This figure is drawn from the previous table, which was
shown in the previous slide. So below 20 around 13,14. This represents frequency polygon.
When you connect the midpoint, you see that this is the. This is called frequency polygon. Then
the, this one is the cumulative frequency. It is not always, you cannot connect the midpoint, you
have to be very careful with the data is continuous, then only you can connect one this bar. The
data is not continuous, you cannot connect it.

(Refer Slide Time: 28:24)

Histogram
Class Interval Frequency
20-under 30 6 ; .
30-under 40 18 "
40-under 50 11 B
50-under 60 11 -
60-under 70 3 0 10 20 30 40 50 60 70 80
70-under 80 1 Yo

Next one is a histogram .The histogram was constructed from the given table. You see.
(Refer Slide Time: 28:30)

Histogram Construction

lass Interval Freg uﬂ/\ﬂ
& | ! \

2(Aunder 30

30qunder 40
4049mder 50

S04inder 60

604under 70

JFunder 80

0 10 20 30 40 60 60 70 80
> Years

The lower limit of the table values is going to in x axis. The frequency is shown in the y axis.
You see that this is data in continuous data. Okay, that was histogram. The purpose of histogram
is, the histogram will give you a rough idea what is the nature of the data whether, what kind of
distribution it follows. Whether it is following bell shaped curve, whether the data is skewed
right or skewed left.

(Refer Slide Time: 29:03)

Frequency Polygon

Class. Interval Frequency "

20-under 30 6 >

30-under 40 18 § °

40-under 50 11 g

S0-under 60 11

O0-under 70 3 e T e
70-under 80 1 010 20 30 40 60 60 70 80

Years

Next one is the frequency polygon which I have shown you. If, the midpoint of histogram are
connected then there is called frequency polygon. Because, the frequency polygon is used to
know the trend.
(Refer Slide Time: 29:20)

|

Ogive

Cumulative
Class Interval Frequency

20-under 30 6 %‘

30-under 40 2

40-under 50 3)

50-under 60 46 , ||
60-under 70 49 0 10 20 30 40 50 60 70 80
70-under 80 50 Yeary

Trend of the data. The next one is ogive curve. This is cumulative frequency curve .So what is
happening in the, for example 20- under 30, the upper limit of the interval is taken the x axis, the
cumulative frequency is taken in the y axis. For example, the first interval.20 - 30.So 30 the

upper interval is 6. For 40, upper interval is to 24, that is marked.

Because the advantage of this ogive curve is, supposed if we want to know below 16, how many

numbers are there, that can be read directly from the ogive curve. That is the purpose of ogive
curve.

(Refer Slide Time: 29:56)

Relative Frequency Ogive

Cumulative
Relative

Class Interval Frequency
20-under 30 A2
30-under 40 A48
40-under 50 70
50-under 60 92
60-under 70 98 0 10 20 30 40 50 60 70 80
70-under 80 1.00 Years

Next one is the relative frequency curve. Exactly similar to that now actual frequency that
relative frequency was taken.

(Refer Slide Time: 30:08)

Pareto Chart

1] 100%
" W
0 800
T T
[[
i 0%

0%
3 % g O -OZD
b1 0%
i 1%

+ " 1

Poor Shortin - Defective Other
Wiring Cdl Flug

Frequency
=

Okay. The next way to represent the data using pareto chart. The Pareto chart is having some
applications in quality control also. This is to identify which is more important, important

variable. Assume that, if you look at this Pareto chart. There are 3 axes one is frequency. In x

axis, different name is given poor wiring, short in coil, defective plug, other. You see there is

one more variable in terms of percentage.

For example, 1 am a quality control engineer, suppose my motor is failing so often. I want to
know there are different reason for failing of the motor. | want to know what are the main
reasons, due to which the motor fails. So what | have done. First | have go to frequency table,
that is due to poor wiring, the motor was falling for failing 40 times, frequencies 40. Due to short

in coil, the motor was failed 30 times.

Due to defective in plug, the motor was failed 25 times. Due to some other reasons the motor
was failed by say below 10 times. So the first technique is for drawing this one, we have to
arrange in the descending order of their frequency. So in x axis that values are taken. Then the
cumulative frequencies plotted on the, this axis. For example, how to interpret this table is. You

see, here this value corresponding this only 70.

So 70 % of the failure is due to only two reasons, that is poor wiring and short circuiting. So
what is the meaning of this one is, if you are able to address these 2 problems, 70% of the
failures can be eliminated. So the purpose of a Pareto chart is, to identify which is critical for us.
Generally it is called 80-20 principle. This is called the Pareto principle .That is 80% of the

problems are due to 20% of the reasons.

To similarly here, when you look at this, the cell here, need not always 80, see the 70% the
failures, only due to 2 factors that is due to poor wiring and short coil. So this is the pareto
chart.

(Refer Slide Time: 32:33)

I
Scatter Plot

Registered Gasoline Sales

Vehicles (1000's of 200 |
(1000's) Gallons)
5 60 %]00 Y
15 120 ¢ I
9 90
, |
15 140 1 w1 »

Registered Vehicles

7 60

The next one is scatter plot. The scatter plot is so far what ever seen only for one variable, the

scatter plot is used for two variable. In x axis registered vehicle, y axis the gasoline sales. So this
says the scatter plot says, when the number of registered vehicle is increasing the gasoline sales
is also increasing. So the scatter plot is used to know the trend out the data.

(Refer Slide Time: 32:59)
I @400

Principles of Excellent Graphs

+ The graph should not distort the data

* The graph should not contain unnecessary adornments (sometimes

referred to as chart junk)
+ The scale on the vertical axis should begin at zero
* Al axes should be properly labeled
* The graph should contain a title

¢ The simplest possible graph should be used for a given set of data

Some of the basic principle for excellent graph. One is the graph should not distort the data. The

graph should be very simple. It should not contain unnecessary adornments. So, so much
decoration in the graph is not required, the scale on the vertical axis should begin at 0. All axes

should be properly labeled. Weather should be x axis or y axis, it has to be properly labeled. The

graph should contain a title. It the simplest possible graph should be used for given set of data.
These are the basic principle of excellent graph.
(Refer Slide Time: 33:39)

I 0909090909020

Graphical Errors: Chart Junk

® Bad Presentation \/ Good Presentation

Minimum Wage Minimum Wage
mlsw: $1.00 4
@ 1970: $1.60

$

0
1960 1970 1980 1990

See when you look at this one. The left hand side it is a bad representation of the graph. What is
happening lot of animations, unnecessary pictures. The right hand side, it is a simple graph x axis
is taken as were year, in y axis it has taken the wage. So it is showing some trend. But when you

look on the left hand side it is not giving any idea. What is happening year with respect to wage.
(Refer Slide Time: 34:04)

Graphical Errors:
Compressing the Vertical Axis

® Bad Presentation v Good Presentation

Quarterly Sales ; Quarterly Sales
200 50

100 15

0 0
a @ o o al @ 03 a

Another one you look at the left side picture and right side picture. Both are the same data. But

what is happening. When here in th e left side picture the scale is 0 to 100, here it is 0 to 25 just

by changing the scale, we are able to get different interpretation. You see that when the when the
scale is increased. It looked like flat. If you are drawing in smaller scale. You see that look like
there's a lot of variations. So what is the learning is that we are to use proper scale to draw the
picture.

(Refer Slide Time: 34:40)

Graphical Errors: No Zero Point on the Vertical Axis

® Bad Presentation od Presentations

Monthly Sales S Monthly Sales
S 45
4
' 42
42 39
39 36
36 0
] FMAMI L EMAM J

Graphing the first six months of sales

The next one is the graphical error, no 0 point on the vertical axis. When you look at the left side
of the figure January, February, March, April, May, June, the month is given in x axis. Monthly
sales is given y axis. But the problem on the left hand side is it did not start from 0. The right
side is you see that the small Brake is given. So, that, even though, 0 to 36 there is no data, you

have to make a small break like this. So that, we can come to know it start from O.

So this is the right hand side is the right way of drawing the graph. This is the basic requirement.
In this lecture, what you have seen, how to access particular rows and columns by using basic
commands. Then we have seen the different visualization techniques, different theories of the
visualization technique. The next class will take in some sample data. By using the sample data

with the help of the sample data will try to visualize the data.

By having different tools like a pie chart, bar chart, pictogram, Pareto chart, simple graph. Thank

you, we will see you next class.

