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Lecture -19 

Iterated Hash Functions 
 

We are coming towards the end of our course. In this lecture, we will be studying some 

constructions of hash functions, and at the beginning we will look at a general strategy of 

constructing hash functions. Now the main problem over here is that. 
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We have a set x, on which we would like to define a function, which will take values to 

another set y. this set y is relatively small or just write finite, but this set is potentially 

infinite. Now we will assume that we have some access to function which are called 

compression functions; that is function from finite set, a large finite set to a smaller finite set, 

and we will call that function compress.  

Now the trouble is that this compress cannot work always, because as I said, potentially we 

can have the values of x larger than any previously determined value. So, we would like to 

build up a strategy so, that we can scale up this function to any length of x, and with a 

security condition intact. So, what we will be doing, is that we will say that, suppose 

compress is a good function, suppose compress is collusion resistance, second premature 

resistance and like that, and we would like to somehow use compress to build up a bigger 



function, a function on a bigger space, which will have the same security properties as 

compress that is our goal. 
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So, here we see that we have compress from 0 1 to m plus t going to 0 1 to, and we would 

like to have an h, which is starting from i equal to m plus t plus 1. So, one more, then m plus t 

and to infinite, so I write our goal here. 
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We need not write the set notation around infinity; that is the misprint just infinity, and i m 

plus t plus 1 0 1 raise to the power i going to 0 1 0 1 to l, where l is something, l may be a l, l 



may be m, or l may be smaller than smaller than m; possibly l is equal to n. Now our strategy 

has a pre processing step. So, once we get x as a input, we know that we have compress. So, 

let me wrote down compress on the blackboard.  

So, compress is equal to 0 1 m plus t goes from 0 1 m plus t to 0 1 m. and here x is an 

element in x; such that the length of x is a something greater than equal to m plus t plus 1. 

Now we can think of x as a sequence of symbols like this; x 1 x 2 x 3 x i x i plus 1 and so on, 

up to let us say ultimately some x k. So, first we would like to split up x into some small 

parts, because we want to use compress. So, we would like to split up like this, some segment 

of length t, then again another segment of length t and so on, but there is a problem, at the 

end, it is possible that the end of x will not match with a multiple of t. Therefore, we will 

have to some extra bits, which we will call padding of x. 
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There will be a public algorithm of padding that will put on after x so that it will be a multiple 

of t. Suppose after doing that we have got a string like this, which is y which is a multiple of 

t. 
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Now at this point I will clarify one symbol, if we have, if we say write something like this; 

this means concatenation. So, for example, if y 1 is equal to 0 1 0 0, y 2 is 1 0 0 1, y 3 is 1 1 1 

1, then y concatenation y 1 y 2 y 3 will give me 0 1 0 0, 1 0 0 1, 1 1 1 1 this is concatenation. 

So, we are splitting of y into sub strings of t. Now let us see how the algorithm goes. We will 

have a publicly available initial vector which we denote by i v. 
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So, we will put that i v over here, and i v will be of length m. So, let me remove this portion. 
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So, we will start from a vector 0 which will be initiated by i v, it is called an initial vector. 

This will available to everybody. So, I give this initial vector, and the length of i v in bits will 

be m. So, I put i v over there, and then after that z 1 will computed in this way. I will apply 

compress over z 0, concatenated with y 1. Let me draw y 1 over here, the y over here. So, y is 

y 1 concat y 2 y 3 and so on up to let us say y k, and as we have seen compress, is a function 

from 0 1 to the power n to the 0 1. So, m plus t to 0 1 to the power n. then this string is of 

length m, and this string of is length t; therefore, the concatenation of length m plus t. So, I 

can apply compress on it, and after a apply compress I will get z 1 which is length m. and 

after that we will go on recursively. We will apply compress on z 1 concat y 2.  

So, we are one by one, we are catching the initial segment of y. Now we catch y 2, and then 

we will write z 2. And then we will write compress z 2 concat with y 3, and write z 3. And 

predictably go like this, ultimately we will come to some y r; let us say that is the last 

segment. So, y r the previous value of compress z r minus concat y r, and we are getting z r. 

and after that there is a step which we may need, or may not need; that is depending on the 

size of the output set we may. 
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What we get over here is a string of length m; we can map it to something. it may be 

basically anything, but possibly l will less than m, or equal with some map, and we will get 

this h x equal to some g of sets of r, and we will take it as a hash value. The important point 

here is to note that we are using recursively the compress function, to go into a chain. What 

we have to prove, or what we want to happen, if this has to be a secure hash function, is that 

when we go into a chain like this, the properties of preimage resistant, second preimage 

resistant, and collusion resistant should not be disturbed, they should remain in intact. based 

on this strategy, we have a particular construction which is called Merkle Damgard 

construction. 
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I will discuss the steps of Merkle Damgard construction now. In the case of Merkle Damgard 

construction, we have a compress function from 0 1 raise to the power m plus t to 0 1 raise to 

the power m, and we assume that this function is collusion resistant. And we also assume that 

t is greater than equal to 1. And we would like to construct a function on x, which is union of 

0 1 raise to the power i; I running m plus t plus plus 1 infinity. Now the construction 

technique is slightly different from the general iterative construction. Here instead of 

breaking up into segment of t, we will break up the padded value of x into segment of t minus 

1. 
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So, we first have to determine that how much we have to pad, and what will be the pad. 
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So, in the first step we compute the length of x, and restore it in n. this is a length, and then 

what we do is that, we divide n by t minus 1 and take the sealing of the result. So, what we 

will get is something like this. Suppose length of x is up to this, and this is. So, let suppose 

this is n, and this is t minus 1. So, when we are dividing we will come up to these, some 

integer multiple times of t minus 1, and at the end, we will have a position here, which is the 

reminder this whatever numbers are, whatever many points are over here; that is the 

reminder; that is called d.  

Now wait a moment this is let us called a reminder, but what we were doing is that, we are 

dividing n by t minus 1 and then taking the sealing, and suppose this is equal to k. Then if I 

take k into t minus 1, I will go up to this point. I will overshoot the length of x. you can check 

that with small numbers. I am interested in this portion, and that is what we compute over 

here; k into t minus one minus n. If I do this I will get this position, and that is what I called 

d, and that is what we have to pad. So, then we go to a loop i equal to 1 to k minus 1, and 

then I put x i equal to y i up to k minus 1 is not k, up to this it will be k minus 1 into t minus 

1, and from here to the end will be k into t minus 1.  

So, what we were doing is that up to k minus 1, I am taking y i equal to x i I am just mapping 

them, and at the end at k, I am padding by d 0 values. So, I will be putting d 0 over here. So, 

that the padding algorithm for Merkle Damgard construction, and after that, at y we will have 



another extra segment; that is y k plus 1 that will be the binary representation of d. I will put 

the binary representation d at the end. So, for x, I will have segments of y y 1 y 2 dot dot up 

to y k, and then at the end I will have another segment, which is binary representation of d. 

Now after this we are going to the computation of the values. please remember that y i’s are 

of length t minus 1.  

So, I have to do a extra padding. So, in the initial case, I will put, the initial value will be 0 

concatenated n plus one times and then y 1. So, this whole thing is n plus t. my compress 

function works for. Wait a moment. Yes, this is m plus 1 and this is t minus 1. So, you will 

have m plus t, my compress function is from m plus t to m I will get z 1, z 1 is of length m. I 

will, wait a moment sorry it is like this I will construct this. This is z 1 is of length m plus t.  

So, I have got a string of length m plus t here, and then I will apply compress over z 1 to get g 

1, and g 1 is of length m. Now after I have got g 1 I go into a loop, from i equal to one to k. 

here I will put, I will concatenate c segments, I will have g i g i is of length m, then I will 

have a buffer kind of thing with one bit; that is one concatenate with one, and here I will put 

y i plus 1. I know that this length is t minus 1 this is 1. So, this is, total length is t, and this 

length is m. So, total length of this the each z i plus 1 is m plus t, and I will apply compress 

on this I will get g i plus 1. 

 We will keep on doing this and at the end I will put g k plus 1 as h x. at the end here I will 

come up to z k plus 1. We will also use y k plus 1 here and we written x. For this algorithm is 

Merkle Damgard. This construction is Merkle Damgard construction, but there is another 

variation of this, because we will note that here we are splitting of the inputs in segment of t 

minus 1 we have to assume that t is greater than equal to 2. If t is equal to 1 then we do not 

know what to do with this, because then we are we are splitting up the inputs sequence as a 

segment of length 0. We cannot do that. So, for that we have another algorithm is these one.  

So, here t is equal to 1. So, the compress function is a function from m plus 1 to 0 1 raise to 

the power m plus 1 to 0 1 raise to the power m, and we are taking the length of x as an n, and 

there is a particular way of concatenating and finding out y. First we will put two ones, then 

concat with f f x 1 f x 2 and so on; where f 0 is 0 and f 1 is 0 1. We will have to put like this. 

And once I do this, after that we will consider y as bid y’s.  

So, we will have a finite sequence of 0 ones y, and then we will construct a bid y’s, and after 

we do that, we will have an initial vector of all 0 of length m, and we will concat y 1 to it ,y 1 



is just length one. So, I use compress here, because compress is a function of function going 

from 0 1 raise to the power m plus 1 to 0 1 raise to the power m, and then going to the loop 

and ultimately we will come to the hash value. So, we have check some constructions general 

construction of hash function, and this is more or less that we will be doing in hash functions.  

In the next lecture, we will discuss some problems on hash functions, and some other 

problems from the previous lectures, but let us stop for the time being. 

Thank you 


