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Lecture - 12 

Complexity analysis of Euclidian Algorithm and  

RSA Cryptosystem Square and multiply algorithm 

 

Hello, in the previous lecture, we started discussing public key crypto systems, or so 

called asymmetric ciphers. And we started with the most famous public key crypto 

system, which is called RSA crypto system.  

Now in this lecture, we will continue the discussion on RSA, but we will be 

concentrating on the computational issues, because when we did RSA we said, fine this 

is how to get the keys, and this is how to decrypt, and we were seeing at each place, that 

there are certain computations that we have to do, which do not look very easy (Refer 

Time: 01:33). So, for example, let us go back to RSA, our starting point here is to very 

large primes. 

(Refer Slide Time: 01:39) 

 

The first question is that, how are we going to get these large primes; that is something 

that we will discuss in the lecture after this one. So, the first line will be discussed after 



this lecture, not in this lecture. But then there question that, if we have multiple two large 

primes, how easy or difficult it is to do that. Now for that we can start thinking for 

example, if you have a number, let us say 6. 

(Refer Slide Time: 02:24) 

 

6 is greater than 2 to the power 2, and less than 2 to the power 3. We know that if we take 

log 2 base 2 of 6. Then it is going to lie between 3 and 2. It will be a fraction between 3 

and 2. So, if we take the ceiling of log 2 base 2 of 6, then I will get 3, and this means that 

I need at least 3 bits to represent 6. So, if I have a large prime p, and another large prime 

q, then by log i mean log 2 base 2.  

So, log p ceiling, is the number of bits that we require to store p and log q ceiling, is a 

number of bits is required to store q, and they are large, I mean they are like probably 

600 bits long. And we are also assuming here is that, more or less p and q are the same 

order; that is to say they are of the same size; and therefore, we are also assuming that 

these two are same. So, I will be referring to this size by log p. Once we know this then 

we can get some idea of the difficulty in computation of the product p q.  

So, right now we do not have the idea of the difficulty of finding the primes, but let us 

assume that we have got primes. We have the primes, then you would like to multiply 



them, and what I claim is that; the multiplication will take around ceiling of log p, is 

square steps or elementary operations, plus something, or we can just say a small, 

probably a small constant multiple of this. Another that I am going to do in this lecture is 

to drop the ceiling sign. So, I will be simply writing log 2 to p and square, or I may just 

be writing log p square, and assuming that if I have not told; otherwise then log p is 

always base 2. So, we have to multiply. And we will see that if we have two numbers 

written in binary suppose 1 1 0 1 and 1 0 1 1; the question is, how to multiply. The 

answer is not difficult, which has multiply as usual multiplication.  

So, I will write 1 1 here, because 1 into 1 is 1, 1 into 0 is 0, 1 into 1 is 1, and 1 into 1 is 1. 

And then I cross out the left right most column and start from here this is a usual 

multiplication, then again it is 1 0 1 1. So, alright and then I cross out again this portion, 

now it is 0. So, I know it is 0 0; well after that 0 0, it is by 0. So, it is all 0s. So, 0 0 0 0 

then cross out this column, and I am going to get 1 0 1 1 ,and do this and then I have to 

sum.Now, how many times I have to sum, I have to sum the number of times number of 

bits that I have in this numbers. So, anyway I can sum them up and write the product; 

this is a product. the question is that how many comparisons did I have to make, and that 

is, this is a four bit long integer, four bit, and this is also four bit long.  

So, I had to make four into four comparisons in these steps, and I generated four rows 

and I will have to add them up, or I could have added on the fly and gotten this number. 

So, anyway the dominating part of this computation is four into four. So, I know that, I 

need something close to four into four many comparisons to make, and a little more. If 

we have in general two numbers, as we have seen here, that I can talk about the number 

of bits that are required to represent them. So, the multiplication can be done in roughly 

these many steps log 2 square. So, that is what I have written in the first line that is here. 

So, that is how to compute n. we have to anyway compute n to implement RSA, and 

after that we have phi n; and phi n is p minus 1 into q minus 1.  

It is reasonable to believe that p and p minus 1, they are of the same order, and they 

require the same number of bits if that is so, then for phi n we will require the same 

number of steps; that is log p square. and now we come to the computation of gcd, 

because we have to decide with a is co prime to phi n.  



Now in the algorithm, when I told that you have to find b and then you have to, which is 

co prime to phi n, and then compute a. and while writing, I am writing here for the 

complexity issues I am starting with a, and I am telling that I have to find b, both are 

equivalent anyway. So, I come over here. So, I have to decide whether a is co prime to 

phi n, or b is co prime to phi n as I said they are same. So, I fix a. So, I want to decide 

whether a is co prime to phi n, and to do that I have to compute the gcd of a and phi n. 

now before starting to calculate the complexity of gcd, computation of a and phi n. I 

would like to point out that this is exactly where, the security of RSA lies. So, we have to 

decide whether a is co prime to phi n. now what is phi n. 

(Refer Slide Time: 10:50) 

 

We know that phi n is equal to phi of p q, which is equal to p minus 1 and q minus 1. 

Now if we do not know the factorization of n, then we cannot get this value very easily. 

we can of course, get this value, by starting from 1, going up to n minus 1, because we 

know n, and checking each time, whether the greatest commander divisor is equal to 1 or 

not, and if it is 1 increment a counter. in that way we can get phi n, but if it is a, if n is a 

number, which is a product of two 600 bit primes, then it is going to be very large and 

the computation will not end.  

So I will not be able to know phi n, and if I do not know phi n then also the question is 



that, how will I know b? So, if I do not know phi n. So, this is where the problem lies 

with RSA; I mean in the sense that this is where the security of RSA lies, and this is the 

problem that is difficult to solve, but now we are assuming that we are the people who 

are setting the key. So, therefore, we know phi n. Now we know phi n. So, we have to 

compute the gcd. gcd computation is easy, gcd computation is done in school, and that is 

the technique that we will be using. So, what it is like? 
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So, suppose we take phi n equal to r 1 and a is equal to r 2, then what will we can do, is 

we start off with r 1 is equal to q 2 r 2 plus r 3. Then r 2 is equal to q 3 r 3 plus r 4. So, 

we can go on like this, and ultimately we will have the gcd. So, if we do it as we do in 

school, so it will be something like this. So, first I am taking r 2, I am dividing r 1 by r 2. 

So, I will get a quotient q 2, I will get something over here I do not know, but I will 

subtract and get r 3.  

And then with r 3 I will divide r 2 by r 3, then I will get a quotient q 3 and I will get 

essentially r 3. Of course, this is something that I know. I should not say that I do not 

know. So, this is r 3 q 3. So, of course, I can write it here; that is r 2, q 2 and I will get r 4 

and go like this. So, at one point of time I will come into some something like let us say r 

k, I will say that there is no remainder. So, r k minus 1 is completely divisible by r k, and 



this r k becomes the greatest common divisor, is the rule that goes on, and we also know 

that if we look at this rule. 

(Refer Slide Time: 14:58) 
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This successive remainders decrease in this chain strictly, and that is why we know that 

we come to a greatest common divisor. Now the question is that, how many steps we 



have to go through, to come to a greatest common divisor. Now, why it is important? 

Now if you look at the complexity of computation at each side, at each step we have a 

division. and we know that division can be done with the same complexity as 

multiplication, and we know that then multiplication is essentially equal to the, the 

complexity of multiplication is square of the number of bits involved in individual 

numbers.  

In this case is the largest number involved is phi n. So, that is p into q. So, the number of 

bits involved is going to be two times log of p. So, I know that each step I will need 

around two times log of p, at most many steps for multiplication, it is much less, but the 

question is how many times I have to do this; two times log of p square for 

multiplication. The question is how many times we have to do it.  

Now if it is kind of decreasing one by one, then it is going to be very large, because our 

numbers involved are very large numbers. So, for example, this one is potentially 

something which is 1 less than r 2 to 1. So, r 3 we know by division algorithm, that it is 

of course, less than r 2 and greater than equal to 0, but it can be just; of course, it can be r 

2 minus 1. it is possible, but then in this chain, it is quite possible that they decrease one 

by one, but this a; that is r 2 can be a very large number.  

Of course, because a is chosen at random from z sub p q. So, it is a very large number, 

but then we will have a many steps to go, and each step we have a square of a log, but 

anyway it may be as large as the number itself. And this is where we have a very 

interesting fact. There is a number theoretic argument which says that, we really are not 

going to go that far or that many times. It says that this algorithm terminates much faster 

than whatever we may think is a worst case, and that argument is here. So, let me explain 

this. 
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So, what we have done is here, is to cut a small portion of this sequence of calculations. 

So, we will do that over here. So, I will write on the blackboard as well. So, let us first 

look at the slides here at the beginning, and then we will discuss this. So, what do we see 

here is that r i minus 1 is equal to q i r i plus r i 1 of course, and then you have a cyclic 

shift r i goes to the left hand side; r i equal to q i plus 1 into r i plus 1 plus r i plus 2, and 

we know that this kind of inequalities will be satisfied that r i plus 1 is strictly less than r 

i and r i plus 2 is strictly less than r i plus 1. So, we first concentrate on this inequality; if 

you look at this inequality. 
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Let us write it over here is 0 less than or equal to r i plus 1, is strictly less than r i. 

Suppose this is r i and this is 0, and r i plus 1 is somewhere here, we do not know where 

it is right now, but there is of course, something we know; that is half of r i. So, one thing 

is certain, that r i plus 1 is either this side or this side. Let us assume that it is this side. 

So, that is what we have written here; that r i plus 1 is greater than half of r i.  

Now if that is so, then we come to the next step; that is r i plus 2 is equal to r i minus q i 

plus 1 into r i plus 1; that is of course, true, because I have got the second line. So, I am 

writing like this r i plus 2 is equal to r i minus q i plus 1 r i plus 1. Now the question is 

that, what is the minimum value possible for q, whatever be the division. Now of course, 

q cannot be 0, because if q is 0, then r i is equal to r i plus 2 which is not possible. So, q 

will start from one onwards. So, q is greater than equal to 1. So, I have got a difference 

here.  

I know that q is greater than equal to 1. If I put the smallest possible value of q, then I 

will get something large, something greater or equal to r i plus 2, and that is what we 

have got over here. So, r i minus r i plus 1 greater than equal to r i plus 2; the question is 

why? Because i know that q i plus 1 is greater than or equal to 1. So, if it is greater than 

equal to 1. If I put 1, I will get something greater or equal. So, this is r i minus r i plus 1. 



But now if you look at this, we already have assumes that r i plus 1 greater, strictly 

greater than one half of r i, we plug in over here, this chain continues, with a strict 

inequality here, because you have a strict inequality over there. And therefore, eventually 

you will come to a scenario like this; that r i plus 2 is strictly less than half of r i. So, I 

will write as strict inequality one half of r i and which is less than, which is equal to r i 

one half of r i.  

Now this means that if r i plus 1 is on this side, of the half of this range, then right half of 

the range, then r i plus 2 is strictly less than one half of r i. Now suppose r i plus one is 

on this side. If r i plus 1 is on this side, the argument is somewhat easier. So, we already 

know that r i plus 1 is r i plus 2 is strictly less than r i plus 1, and we are being told that 

this is less than equal to half of r i.  

So, combining these two things we will have the same result that r i plus 2 is strictly less 

than one half of r i; that means, in terms of binary representation of integers, the number 

of bits required to store r i plus 2 is one less than the number of bits required to store r i. 

So, if you jump two steps, you jump by half of the quantity the remainder, becomes less 

than half of the original, and the number of bits required becomes one. So, you will 

basically be going to, at most the number of bits, that are there, in the initial remainder; 

that is something, you know something that you get in the first line.  

And that remainder can never exceed the initial divisor; that is a, that is whose number of 

bits is bounded above by log p. So, you are not going to go more than log 2 base 2 p 

many times. So, this is something that we know. And then the people who know 

extended Euclidean algorithm know that this is enough.  

Each time we can store something and ultimately we can compute the inverse b, but we 

do not assume even that. We have seen in our previous lectures that, if I can do the chain 

once I can move backward in the chain, and find out the inverse, we have done it. So, 

maximum numbers of times I have to back and forth, is two times this and. So, that is a 

maximum number of times. So, that is a maximum of steps that I have to traverse. And 

each time, at each step I have to do a division, and that is something that I am not 

discussing in the lecture, but it is more or less well known, that division and 



multiplication required the same number of steps. 
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Therefore I multiply here by square. So, I have something like log p to base 2 q. instead 

of let us say, you may have some extra terms of over here that does not matter, it may 

have some extra terms, because of you know doing for few times and like that, but it will 

be a small constant. Now what was potentially possible is that if we go one step, step by 

step. So, potentially instead of log to base 2, this could have been p many steps, and that 

would have been a disaster, because then we would not have been able to, compute or 

decide the greatest common divisor, or compute the inverse, but we can do that. 
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So, in this slide, I have given a very rough and definitely over estimation of the number 

of steps. There are fast algorithms to compute multiplications, there are fast and some 

other processes, and therefore, we can make it faster, but we are sure of one thing that the 

number of steps, is not going to be more than a small constant times log p q. So, if we 

look at the RSA algorithm. 

(Refer Slide Time: 28:03) 

 



Now, we have come somewhat towards the middle. We have got. We have come up to 

just before the encryption. And the encryption is now exponential and taking the 

modulus. Now then here we are going to have problem again, because again a is a large 

number, b is a large number, and x is a large number. So, if I am raising x to the power b 

it is of hand it seems that is going to be, going to take quiet considerable time. So, now, 

we come to the complexity of exponentiation.  

(Refer Slide Time: 28:50) 

 

So, we have to compute; e k and d k both are exponents. For that we have another 

algorithm which is called square and multiply algorithm. 
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Now, I will discuss the square and multiply algorithm now, and in the problem sessions 

we will discuss; how to use square and multiply algorithm in details. But now square and 

multiply algorithm. our goal is to find out x to the power b, where x and b both are 

potentially very large numbers, and then reduce modulo n. 

(Refer Slide Time: 29:43) 

 



Here we should remember that x to the power b mod n, is congruent to x mod n to the 

power b mod n. So, it is immaterial whether we are doing modulus; that is we are 

reducing modulo in each step or afterwards, and one very reasonable thing that we can 

do is that, we can always reduce modulo n, and reducing modulo n essentially does not 

take much time, because it is one division. So, we can do that. But then what we do is 

that; instead b itself, we take the binary representation of b. Let us see how it will look 

like.  

So, we will have b, is equal to sigma i equal to 0 to l minus one of b i 2 to the power i. 

So, for example, if b is 9, then this is going to be i equal to 0 to 4, sorry 3 b i 2 to the 

power i, and let us try to find out b i . So, it is going to be b 3 2 cube plus b 2 2 square 

plus b 1 2 plus b 0, and where this is b 3 into 8 b 2 into 4 b 1 into two plus b 0, and it is 

not difficult to see that it is essentially 1 into 8 plus 0 into 4 plus 0 into 2 plus 1, this is a 

binary representation. So, this is how we are writing b, and then we introduce a one 

variable z, and this z is set to 1, and now we going to a loop.  

In this loop we start from l minus 1. So, in this case we will start from 3 go down to 0, 

and each time when we go in, we square z; initially z is 1, so we square it. We square z 

and take modulo n; because we are determining to reduce the size of the number we are 

handling at each step. So, we take modulo n, and after that we go here, and then we are 

checking this one. Here there is a misprint, it is going to be, it is not c i, but it is a it is b i 

that is fine. So, I will write this step over here. There is a misprint overt here. So, in that 

step it will be if c i is equal to 1 if c i is equal to 1, then z goes to z into x, and you can as 

well do mod n over there. So, I have said that we will keep on doing mod n. 
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So, please remember that it is not c i, but b i. So, what I am doing over here, is that 

whenever I am checking this, I am checking the I corresponds to this loop variable, 

whatever the I is said to be at checking this, and if this is one, I am multiplying x to z, 

and storing z over here and keep on going into the loop, down to 0 when i come to 0 i 

end there, and that z is my number. So, what I will suggest is that please try this 

algorithm; of course, by changing c i to b i. try this algorithm, after the lecture see 

whether it works or not, and we will study this algorithm, we will work out examples in 

the discussion sessions of this lecture series. So, that is end of today’s lecture. 

Thank you 


