
Course Name:Business Intelligence and Analytics
Professor Name:Prof. Saji.K.Mathew

Department Name:Department of Management Studies
Institute Name: Indian Institute of Technology Madras

Week:02
Lecture:08

ONLINE TRANSACTION PROCESSING | BI&A

Now, since we are dealing with designing databases, designing relational databases to
store and manipulate data in a structured way, let us take an example of a, say a
transaction, a purchase transaction. And so, in a B2B context, business to business
context. And let us try to imagine and then ask certain questions and see how a database
will be created for enabling the purchase transaction in a B2B context and then sort of
understand the steps involved. So, who are the stakeholders involved in a purchase
transaction? That is the first question to ask. Who or who, what? Or what are the objects
about which data needs to be captured in the transaction? It is another way of asking that
question.

What are the things, what are the objects or who are involved, what is involved or what
is the sort of entities we call, you know, in design level we call them entities. So in other
words, what are the entities? When we ask this question, we can imagine that a business
to business transaction starts with a customer, is not it? Every business has a customer, if
a business does not have a customer, there is no business. So we, let us use some
representations. So, let me draw some boxes.

So, here comes a customer, there is a customer. So, the label is a customer, a singular
noun. And this is an entity that I have represented, an entity. So customer is an entity.
And what does customer do? Customer places an order.

Therefore, there is something called order in a transaction process. Customer places an
order. And what else you can think of in a transaction? So, order is something that is
placed by a customer, but order has some things in it. Order has certain content in it.
What does an order talk about? And when you imagine that, you can see that an order
will definitely contains, will contain item.

Order is about what you ordered, that is the major part of an order. So, order we can say,
the business language can be order contains items. Now quickly, let us look at each of
these entities, customer, order and item. When you look at these three entities closely,
you can easily imagine that customer will have certain attributes, customer will have
certain understandable attributes, which are related to this particular context. We include



attributes of a customer, a customer which are relevant in this particular context.

So, for a customer, we know that a customer should, if it is a B2B, a customer is a
business entity. So there has to be some name, some address, telephone number, email,
GST, or whatever you want to add, which is relevant for a business transaction. There
may be a lot of other data about an organization or a customer, which is not relevant to
you, you do not have to include. So, it is about entity you can see, the thought process in
designing a database is you identify entities. Entity is a complex data element, which
consists of multiple attributes; multiple, but related attributes.

And that together define a customer. So, for example, if you instead of customer, I
change it to a student, what would be the attributes of a student? A student has a name, a
student has a address, email, cell phone, and so on and so forth. But that is from an
academic point of view. Suppose the student is getting enrolled in a gym, then what are
the relevant attributes, the student’s name, email, identification, all that is fine. Along
with that, they may also ask you for your height, your weight, and other dimensions of
your body, etc.

But you do not have to enter it in a business context like this. So we say relevant
attributes. So, and similarly, when you look through each of the entity and try to enter,
what are the relevant attributes. So, order, so order will have definitely a date. And when
you think of order, you see that there will be, in an order there will be multiple items, is
not it? Item 1, description, item 2, description, and so on.

So, you do not feel very comfortable because some things are repeating here. So, but let
us leave it there. So, when it comes to item, you know that item has a name, item has a
supplier. So, there may be a supplier ID or something that tells us that there should be a
supplier entity. We are not involving that here.

And what other attributes of the item, like the price of the item, stock, how many items
are there in the inventory and so on. So, you can add relevant items there or different
relevant attributes there. Now, so this is the first level, I will call this as the first level of
database design. This is the thing I want to emphasize, you will learn a little more about
databases in the next session. But here, how are we thinking to build databases, we are
having a very structured approach.

The structure is that in a particular context, we are trying to define what are the main
things about which data needs to be stored. So, we are thinking in terms of entities. So,
then logically, we think we see that customer is involved, order is involved, item is
involved. You can see that these are entities, entities meaning complex data elements. So,



entities consists of attributes.

So, these are multi, entities are multi-attribute things. It is difficult to find an equivalent
word for entity because it is defined at a very fundamental level. So, these entities are
discovered and their relationships are discovered. And now, we talked about data
integrity. So, we are missing something which should be added to ensure that each
record is unique.

Suppose there is a customer, a new customer getting added to a business. That customer
should be uniquely defined, that customer’s identity should be unique, that customer
should not be confused with another customer. So we cannot use name to define,
uniquely define a customer, you cannot even use address, telephone number could be
shared and email and GST number etc could be unique, but they are sort of, they have a
different purpose. So, typically what is done to make a particular record unique is to add



a unique identifier. So in this case, we add another field or another field called customer
ID and this will be known as the primary key or PK, primary key of this. For order, it can
be a purchase order number or just order number, item can be barcode or item ID.

So if a barcode is used, so then barcode is the primary key. So we can see that we have
added a unique identifier to each entity, ensuring that data entity will be ensured from the
entity integrity point of view. Now, we also talked about relational integrity. Now, look at
this relationship between different entities. Customer is related to order, order is related to
item. We have described what is the business relation, but we can define that in a much
better way.

For example, when we fill the order attributes, we missed something, which is very
important for an order. That is who placed the order, who placed the order, who placed
the order, a customer should have placed the order. So that customer has an ID. Now,
you can see that I am adding an attribute in order table, which is also present in the
customer table. I can extend this to capture this also.

Now, this particular attribute I added to the order table, which is borrowed from the
customer table is known as a foreign key or FK, foreign key. It is foreign key because it
is donated by an external entity. Now, what has happened now, you can see that since I
added customer ID, it is now related to a table. I am saying here that for every order,
there is a unique customer or an order comes from a unique customer. So there is one
customer who has placed the order, a customer can place many orders.

It is a one to n relationship, a customer can place many orders. So, you cannot put a
unique order ID in customer table, but you can put a unique customer ID in an order
table. And so therefore, this particular relationship has a foreign key involved. And
therefore, now you can see how the relational integrity is ensured. For example, if this
customer record is deleted from the customer table and order, a new order when you
place this you can see as a master table, so or a master entity.

So, if a customer's data is removed, then you can no more place an order with that
customer's ID because that customer ID is deleted from the master table. So, there is a
referential integrity that is ensured here. So, foreign keys are actually carriers of
relationships or a relationship between two entities is bonded through a foreign key, you
can see it here. So, I have defined something known as the cardinality or the level of
relationship between two entities here.

This is known as cardinality. And now, if you look at the relation between order and
item, can you have a similar cardinality? For a given order, how many items can be



there? An order can contain multiple items. For a given item, how many orders can be
there? An item can be present in multiple orders. So, therefore, this is a kind of n to n
relationship. And therefore, in database design, we say that this relationship should be
resolved. And for resolving this kind of relationship, you will introduce a third entity
called an associative entity.

And this can be called an order item table. And this will have the keys of both the tables,
order number and item number called a concatenated key or a combined key. And then,
instead of relating the tables here, you will relate, both the tables will relate to each other
through a third entity, which is having the keys of both the tables. The idea here is that
order number and item number, when you combine them, what are the unique features or
what are the unique attributes for a given order and given item? You can easily imagine a
quantity or a price or that kind of information pertains to a given order and a given item.
So therefore, the quantity and all aspects that are uniquely related to a combination of
both the keys will be entered in the third table.

In a way, we are actually trying to normalize these tables. We found that the item
description, item quantity description etc. are repeating here. Essentially, we are not
including them in the order table.

This is not the place for it. We are actually normalizing the table. You will get to know a
little more about normalization in the next session. So, I am not repeating it here. But
you remove it, item details are entered in the item table already. And item master is
referred to in the order item table.

So, you are trying to remove redundancies. How is redundancy removed? On the first
instance, when a customer places an order, the order contains the order details like the
order date and any other information that direct shipping, shipping date, for example, a
date has multiple characteristics here. One is the order date, other is the shipping date
and so on. So, all that will be in the order table. But order table also has the data who
place the order, customer ID, but does it mention customer ID followed by customer
name, customer address, telephone, email, GST, etc.

It does not have to come in the order table, because order table with a key customer ID
is already referring to that information from the customer master or customer table. It is
already entered once in the table. But think of a scenario, if you are using a spreadsheet
to store transaction data, every time you enter a customer ID, you have to enter the
customer data in terms of address, phone number etc. And then in, enter the details of the
purchase order. Suppose the same customer comes after say 1 month, you will be doing
the same way, you will be adding the customer name, customer address etc.,if



you are doing it in a very rudimentary manual way. You can see that that kind of
redundancy of repeating information would happen if you are not structuring data like
this. So in summary, the idea of relational databases is to structure large volumes of data
into a few entities, which contains a coherent set of attributes, which define together, is
related to a key called a unique identifier. And each entity within a schema, we can call it
a transaction schema, a schema, schema, this is a schema, because it is a set of related
tables. So in a schema, each table is having a relationship with one or more other tables.
So, customer is related to order through a key customer ID, which is a foreign key,
ensuring referential integrity.

And it also ensures that there is no redundant or repeating attributes within a table. So,
this is managed in a relational design of databases. So, that is the concept. So, that is the
thought process through which data bases, relational databases are defined or set up. So,
we will learn a little more about data bases and subsequently about querying databases
very soon.



So, we have seen so far that relational databases are structured and they store data in a
way that enables retrieval of data, very easy and intuitive. Now, we have also seen that
relational databases reduces redundancy. So, they reduce redundancy through a process
known as normalization. So, there are different steps in normalization. It starts with
reducing or removing repeating items from entity and then also ensuring that all
attributes are fully related to the primary key or there is no partial dependency, but there
is full dependency of each attribute to own the primary key. So, the first normal form, the
second normal form and the third normal form, Boyce Codd normal form etc you will
see in the next session separately, when we discuss database management and SQL
queries.

So, we move on from here to get an overview of databases, particularly databases used
in the online context is what is described here in this slide. So, the OLTP or online
transaction processing systems are databases which empower online transactions, in
terms of data storage and also other unique requirements for online processing. Think of
online reservations, for example, if you are using the IRCTC website, to reserve train
travel from point A to point B. So, suppose you are one person who is trying to access
that particular leg of travel from A to B, but you are sitting in, say in Chennai or in Delhi
or in Hyderabad and you are trying to access the IRCTC database, essentially to see if a
ticket is available or if a vacancy is available and if so, you are trying to reserve that
vacancy, but they along with you, there may be others who may be in different locations,
but trying to access the same resource, for the same date, same leg, same resource is
being accessed by others.

So, that is online multi-user environment. So, it is important for the databases to enforce
certain rules that there is no conflict among multiple users when same resource is
accessed. So, you need to have those properties for the database, only then they can
enable online transactions. So, in order to do that, there is a set of four important
characteristics that is known as ACID together. So, ACID is a very dangerous liquid, but
here in ACID as a property for online transactions is a very positive set of attributes. So,
atomicity, consistency, isolation and durability-these are the four characteristics that is
required for online transaction processing databases.

Atomicity ensures that it manages failures well. For example, if there is a failure,
suppose your system crashed or there is a power failure etc, when you are making a
reservation and suppose you made, you were making a payment at the end, but during
that step, there was a crash.Then as a user, you get into a mode of anxiety because you
worry if you lost your money, but you did not get the reservation done. But the atomicity
property will ensure that either a transaction is complete or it is not complete, there is no
intermediate level at which it will leave you. So, a failed transaction is a failed



transaction, you get the money back because the transaction was not complete. So, the
database ensures at the, because of the atomicity property that there is no transaction that
is left in the middle, but either it is failed or it is successful.

And the second property is consistency, where it ensures certain rules that you can
configure as a database expert or a user of database, you can say, when a date is
captured, it has to be captured in a date format.

If you enter date in a currency format, it is not accepted. So, these kinds of rules about
data and data types and other rules can be enforced by a database. And that also ensures
integrity of data. And then there is isolation, this is what I discussed in the beginning,
that for multiple users, when they access the same resource, database either logs that
particular record, so that it is not accessed by others, or it manages this kind of problems
in different ways, locking is not the only option, there are other options too, but that
property is known as isolation.

And the last property in asset property is durability, which where if a committed
transaction or a completed transaction is completed and committed against all failures.

So, and therefore, if you have booked a ticket, you know, there is no way that it can be
reversed, it is committed transaction. So, databases ensures that nobody tampers with the
records that have been created and these properties of the online transaction processing
databases ensures it. So OLTP, whenever you hear OLTP, imagine a database that
facilitate online transactions. Now, we come to the next important component that is a
part of the infrastructure for analytics, which is the data warehouse. Databases or OLTPs
are for transactions, they are not for analysis.

And it is always a good principle to be followed that you do not mix data analysis and
queries with data transactions or business transaction. Business transactions use OLTP
for data analysis have a separate database called data warehouse. So, as we saw in the
architecture of business intelligence, data warehouse is a central store, which acquires
data from different sources, different types of databases, depending on the nature of your
business and depending on the nature of your IT, but an organization has one data
warehouse, and that is the central idea. Although it can be debated, but a data warehouse
is what is commonly understood.

And that is a central asset to an organization. And data warehouse also has certain
properties in one philosophy or one architecture. Data warehouse design can be done
mainly by two approaches. One is the Inmon’s approach, other is the Kimball's approach.



But Inmon, W.H. Inmon is known as the father of data warehouse and he defined data
warehouse as a subject oriented, integrated, time variant and non-volatile collection of
data in support of management's decision making process. So, data warehouse is not for
transactions, it is to enable decision making. And it is one central entity and it has four
features, subject oriented, meaning each data object is stored subject wise, customer is a
subject, order is a subject, item is a subject, supplier is a subject and so on. So, it is also
having a table structure or a subject oriented approach and entity structure in the
design.And it is integrated. So, databases may be multiple and could be distributed, but
data warehouse integrates data from multiple sources into one store or one storage
mechanism. And that is the second characteristic.

And third is, it is time variant. It is not static, but it is a dynamic data storage system. For
example, customer transactions, when it is captured by POS systems in different parts of
a country but there can be one data center and one data warehouse which will receive a
predefined, relevant and summarized data or filtered data for permanent storage into a
data warehouse on a daily basis. All that raw data need not be stored in a data
warehouse, but you may capture, for example, the recency, frequency, monetary value,



bizocity score, these are the relevant data that you need to maintain in a data warehouse
for analysis.That will be periodically, it is a batch processing typically and frequency is
to be defined by the, at the time of designing the data warehouse. That is why it is called
time variant.

And the fourth characteristic is that it is non-volatile. What does, you know, you know,
volatile memories and non-volatile memories. A RAM is a volatile memory, when you
shut down the computer, what is stored in the random access memory is lost, whereas a
disk, an external disk where you store your data, that is a non-volatile memory because
that data is not deleted when you remove the power connection.

So, a data warehouse is non-volatile in the sense, it is not erased. It is a history of the
organization. It is like your memory, you do not want your memory to be erased,
although some bitter memories you want to erase, but they do not go off. So, it is like the
memory of the organization. So, data warehouse is the memory of the organization and it
is non-volatile. But a transaction database like the OLTP is not non-volatile in that sense.

You may delete data records after a period of time because you do not want to store all
the raw data forever. So, there will be some frequency at which such data will be
removed. It also depends on sometimes regulations, you need to retain certain
transaction records like the call detail data for a period of time, but it is not non-volatile.
So, subject oriented, integrated, time variant and non-volatile. And the particular
architecture that is shown here is actually about the data warehouse which is central.

And you also see something known as a data mart as part of this representation. There
are different data marts. As I explained earlier, data mart in this particular architecture is
a subset of the data warehouse, but not just a subset. It is a subset in the sense it will
have certain tables or certain views of a data warehouse contained in it, but it may also
have, that is the part of the data warehouse part, but it may also add external data. Some
external data like the census data, like certain survey data or whatever is relevant,
fundamental environmental data and so on, you know, econometric data.

So, all this depends on what kind of analytical requirements you have. So, that is a data
warehouse. So, marketing, data mart. So, marketing may have a data mart, finance may
have a data mart, operations may have a data mart and so on. So, it is a more specialized
data set for the purpose of analytics pertaining to that particular unit, that particular
function.

So, that is how data marts are defined. So, this is Inmon’s architecture, but there is a
competing architecture defined by Ralph Kimball and he, according to Ralph Kimball,
data marts, there are only data marts, a copy of transaction data, specifically structured



for query and analysis. And you can see that there are different units in an organization,
it is more like a federal approach, federated approach. This is more centralized. If you
are, it also depends on your IT architecture, certain organizations have a very centralized
IT architecture, certain organizations have federated architecture where each business
unit is independent to acquire and deploy its own information systems, its own
databases, but then, I am sorry, you build your own data marts, each unit builds its own
data mart from its OLTP or databases. And then an organization as a whole connects
these data marts through a bus, through a means, when the data marts are connected,
then it becomes, the connected data marts becomes a data warehouse.

As a whole, when the data marts are integrated, it becomes a data warehouse. So, this is
more like a bottom up approach. You build data marts and then build data warehouse.
Whereas in Inmon’s representation, you first build the data warehouse, and then divide
that into data marts, it is a top down approach. But these are two approaches to building
data warehouses. And keep in mind, the purpose of a data warehouse and the data marts
is not business transaction.

It is not part of an application that conducts transactions for your business, but it is a
part of the analytics program of your business. So, I do not have to spend much time on
these slides, because I have explained what each of this means. What subject oriented
means is data warehouse is organized into tables, subject wise, subjects meaning a
customer, product, sales, etc. You can imagine the corresponding tables.

Data warehouse is integrated that it carries data from multiple sources. It could be your
email server, it could be your transaction server. Or if you have flat files, still have
legacy systems. So, there may be wrappers that convert flat files into database format.
And you may be actually connecting with those data sources as well. Then data
warehouses, time invariant, and it is generally not deleted, depending on the policy.

And or it may actually carry data for a long period. That is understanding. And then data
warehouses, sorry, data. Here we discuss data warehouses time variant, and therefore, it
is constantly updated. And here we say that not it is non-volatile, in the sense data is not
deleted, but data is stored for longer period of time. And we also define a data mart as a
smaller, more focused or specialized data warehouse or it is a mini warehouse. Data mart
typically reflects the business rules of a specific business unit within an enterprise.



It could be a business function as well. So, normalization is something that you are going
to see in more detail in the next session. So, there we will appreciate what is the first
normal form, second normal form, third normal form, and fourth normal form, Boyce
Codd normal form and so on. And always keep in mind that there is a trade-off between
storage space and efficient data processing. What is the trade-off? The purpose of
normalization is to reduce redundancy, to reduce redundancy of storage.

So, it actually makes storage more efficient. But when you have to query, if there is
some redundancy, the queries can be faster. Otherwise, you will have, you know,
inefficient queries or more time required to process queries. So, that is a trade-off
between normalization and query efficiency. And therefore in, you will see when we
discuss OLAP, there is denormalization often done in certain schemas to make queries
more efficient, queries more efficient because they are getting results faster is more
important than redundancy.



So, we say some redundancy is fine so long as queries are responded to quite fast. So,
that is a trade-off between query and normalization.


