Course Name:Business Intelligence and Analytics
Professor Name:Prof. Saji.K.Mathew
Department Name:Department of Management Studies
Institute Name:Indian Institute of Technology Madras
Week:11
Lecture:41

ANN TRAINING | BI&A | Prof. Saji K Mathew

ANN Training

Target

Now, today we see a bloom or a you know big buzz of Al, but you can see that Al or a
neuron was sort of discovered in the 40s and in the 50s there was improvements, but
only today we are actually seeing a big boom. And why is it so? The representation of a
neuron was done much earlier or neuron structure was discovered much earlier. What
delayed? Gradient descent algorithm or these kind of algorithms were actually in the 80s
that, they evolved. So, the training algorithm, sorry in simple words the structure of
neuron was actually discovered, but the training algorithms to become effective, it took

much longer time. You can see about 40 years when the gradient descent kind of
algorithm or its variance actually came and of course, it is in the current era that we see
large volumes of data with computing power.

It is good to have algorithms, but you also need to have computing power to use large
training data to train this algorithms. So, you see that has become possible today. Now,
ANN training can be explained using this slide or this graph, picture. So, the idea here is
to illustrate how training happens.

You can see that there is a black box here, which is the neural network. The ANN is a
software which is designed and as a structure it exists. Now, our aim is to train this
network for a purpose and assume, here in the neural networks it is shown that it has d
tuples or the size of the data is d. And each data may be actually consisting of multiple
attributes. It is ok.

So, let us not really use this, in order to avoid confusion, let me actually use an input x1
here ok. I am inputting an x1 and suppose it is the stock price which we are going to
discuss soon. Stock price of an asset say 10 years ago. I have 10 years data, say of IBM
or Infosys and it is daily data. So I picked a date, which is 10 years ago.

I have a collection of data, but I am putting x1 as a starting point. And I am inputting x1
to the neural network which is a black box, just do not worry about what is inside . I
want this neural network to learn to predict, my purpose is I want to design a neural
network and train it so that it predicts future stock prices. So, when I give x1 as the input,
what should be my target? I have collected historical data of stock prices, 10 years data,
starting from a date that is 10 years back.

I am starting with a historic date. My objective is to train this network so that it learns to
predict. So, I am going by tuple by tuple or data by data. And my objective is that the
neural network should constantly adjust its weights.

With each time I input the data, it should adjust its weight so that what, an error, there is
some error here, right. What is that error? This is the output, neural network will produce
some output. And there is some target. What is the target? When I am giving x1 as a
target, sorry as the input, what should be the target? The next day's data.

Let me call it x2. Because my data is x1 to xn, 10 years data. So, this is historical data
starting at some point of time 1. When I give x1 as the input, what the network should do
is, give me the output of x2, x2 is the predicted output.

So, therefore, I am telling the neural network, look when x1 is the input, you should
output x2, not o, ok. There is a difference between o and x2 which is e, which is e, the
error. Error is 0-x2, right. There is an error and you can see that the error is something
that is fed back. We call it, another term for this is back propagation or BP.

BP algorithms are, they are called. Gradient descent is a type of back propagation
algorithm. Back propagation meaning, the error is propagated back into the network to
adjust weights. And we just saw what is the method by which the weights are adjusted. It
actually look at the squared error and calculates the differential weight vector to readjust
its weights.

So, the quantum of error determines the adjustment that is required. The error is 0, no
adjustment required. And therefore, the purpose of training is to constantly reduce this
error. And when the network receive all the n inputs, it has been adjusting its weight to
minimize the error each time.

So, one way of adjusting the weights is to adjust the weights n times. And then continue
this iteration again. In multiple iterations, n times you did it, do it again do it again. So,
that the weights actually get finally adjusted till the error actually the total error comes
down or gets minimized. And that is the process of ANN training.

And I have explained it for a forecasting problem. This is a forecasting problem because

the purpose is to forecast the next data in time. Next data point in time, that is
forecasting.Ok. Now, we are slowly moving from understanding how neural networks
function to understanding how neural networks could be applied, how neural networks
could be applied to solve problems.

So, we have treated neural network as a black box so far. But it is important to
understand neural networks or the network aspect of the neurons a bit more before we
apply it. So, the purpose of this diagram is to explain how neurons connect together as
layered networks. Layered networks. And this is a category of layered networks known
as feed forward, in the sense there is no feedback from the output to the input.

It is only in one direction and this is the type of neural networks that is used for
forecasting problems. So we are looking at this closely. This could also be used for
classification.

Feed-Forward Neural N/w topologies

\ /
\
..

So, first of all I said neural networks is layered. What do you mean by layer? Look at
the first neural network. It is a layered network meaning it has more than one layer. How
many layers are there in this network? There are two layers. This is input layer, this is
output layer. So, for any neural network, there should be two layers. There should be two
layers, input layer and output layer.

And it becomes a network because they are connected. The neurons from the previous
layer are connected to the neurons in the next layer, you can see that. Therefore, it
becomes a network of neurons with multiple layers. Now question number one, how
many neurons in input layer? This is a design question. How do you design neural
networks? How many neurons in input layer? Here four.

What is the basis for determining how many layers should be there? The number of
neurons in the input layer is equal to the number of inputs or the number of variables.
Number of x variables or number of input variables, number of input variables that
solves one problem. Second problem, how many neurons in the output? How many
neurons should be there in the output? Depending on how many output variable is there.
If it is y equals f x and y being only one variable, there will be one output, output
variable. But we see in one network, there are three outputs.

Are there cases when there are more than one variable or one output, which is that case?
We discussed that already, in one of the problems where there is more than one output or
more than one class, right classification. You have multiple classes, could be two or
could be three. So if there are three classes class labels, there are three outputs right. So
therefore, it depends on the problem. Therefore, depending on the problem you decide
how many input variable, how many output, sorry, how many input neurons, how many
output neurons.

Now coming to the second diagram you see, well this is solved, this is solved, but do
you see something different here? There is input neuron, there is output neuron, there is a
layer in between, there is a layer in between, such a layer would be called a hidden layer.
A layer between input and output is a hidden layer, correct. And now we ask this
question, why do you need hidden layer? Ok, why do you need hidden layer? Hidden
layer is useful in data analysis to capture non-linearity. If you have non-linear data, then
in order to capture non-linearity, hidden layers are useful. It is like going back to our first
discussion or original discussion on the choice of models.

We discussed a tradeoff between flexibility versus prediction error, flexibility versus
prediction error. So, what was our observation? Flexible models actually fit well the
data. And particularly when the data is non-linear you need to have some flexibility, so
that the bias or the error is less. But when you increase the flexibility, there is also a
tradeoff with prediction error. The model over fits and therefore, it is not desirable to
have a highly flexible model because it leads to more variance.

And therefore, there has to be some tradeoff between bias and variance, in the choice of

models. So, non-linearity is a problem and you need hidden layer, but the number of
hidden layers is by, is like choosing the degree of a polynomial. You can go for a very
highly non-linear polynomial like the second order, third order, fourth order etc. It
becomes more non-linear, but then the problem is of over fitting and therefore, that is not
recommended.

So therefore, the question of how many hidden layers? How many hidden layers is a
question of determining or solving the bias versus variance problem or too much of
flexibility increases prediction error, too less of flexibility fails to capture non-linearity.
Therefore, there has to be, you know reasonable non-linearity in the model. So, generally
you say 2, 3 hidden layers is what pragmatically one could actually use and then
determine how the model performs. It is also empirical, you can try different number of
hidden layers and see empirically how the model performs and choose a right number of
hidden layers. Essentially hidden layers capture non-linearity.

So, how many layers? Not too many, so that the model does not over fit. The other
question 1is, you see that there are 2 neurons in the hidden layer here. We are also curious
to know how many neurons should be there in a hidden layer. For input layer, go by
number of variables input variables, output layer go by number of output variables,
number of hidden layers, how much of non-linearity you want to capture, not you know
like no hidden layer versus 2 or 3, that is also solved. How many neurons, there is
heuristics or thumb rules available.

There is a research paper that I recommend you to read from the journal of neural
computing which is used, is a paper published way to describing the design of neural
networks for the purpose of stock price forecasting. So, I am referring to that paper. So,
there is a heuristics recommended in the paper, that is number of neurons in hidden layer
is equal to n 1X n 2. What is n 1? Number of neurons in the input layer, n 2 is the
number of neurons in the output layer, square root of the product of this, that is a
heuristic, not that just like your elbow rule, it is a heuristics. It is something that you can
use to assess not exactly, but you can actually use it as a recommendation.

So it is a heuristics rule, practically useful. So, sometimes when you multiply n 1 and n
2, for example, here it is following 4X1=4, square root of 4 is 2. So, this is fine, the
design is based on this thumb rule, but do you see that thumb rule here? That is not
followed here, but meaning you can actually try, I will try 2, I may try 3 also, 3 neurons
in the hidden layer and see if the model is performing better or worse. So, you can try
different possibilities, this seems to be very much of, you know the thumb rule, but this
is fine, this is fine. So, these are broad guidelines available in the design of neural
networks.

What we are doing here is that we are designing a network, in terms of choosing number
of input neurons, number of output neurons, number of hidden layers, number of neurons
in the hidden layer and another choice is, the choice of transfer functions. We saw that at
the output of each layer, there is a transfer function, output of each neuron, there is a
transfer function. When we represented a neuron we saw a neuron does a computation
and output is determined also by the, is also determined by the transfer function. So, the
choices are there are linear transfer functions, sigmoid or hyperbolic, squashing, linear,
threshold and so on, like a step function. So, the recommendation based on the paper
that we are discussing now, is the output transfer function .

When we are using it for time series sort of an application, the output transfer function
should be linear. For other layers, you can choose non-linear transfer functions like the
sigmoid and these are choices that you can make or you can try different transfer
functions and also test the performance of models. So, this has to be kept in mind when

you develop feed forward neural networks for applications that we are discussing in the
class. Ok, one more thing before we move on to understand the design, the application of
neural networks for time series, there is a way that we can code neural networks or, you
know in codify them. Codify means I will write this neural network as a 4 1 network,
when you say 4 1 network, this is a 4 1 network.

How do I code this? This is a 4 6 1 network. Number of digits represent the number of
layers, number of digits represent the number of layers, very easy coding scheme.
Number of digits equal number of layers and each digit represent the number of neurons
in that layer. This is input layer, 4 input neurons, 6 hidden neurons, 1 output neuron and
1 2 3, 3 layers ok, that is how you codify a neural network. So, in papers or in text book
you will see neural networks will be referred to as a4 3 1 network or a 4 2 1 network etc,
you should immediately be able to decode what does that mean.

