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CLUSTERING TECHNIQUES Part 2

Now, yeah one concern for us here is, how do we have a measure of distance between
clusters. So graphically, this diagram illustrates how the distance between clusters can be
measured. There are three measures available, three common measures, single linkage,
complete linkage and centroid distance. And looking at the colors, you understand what
principles are used. Single linkage means the red line, the distance between two clusters
is the distance between the nearest objects in the clusters. Each cluster has a given
number of objects, the small circles, the gray circles are actually objects that belong to a
particular cluster, the circles are the clusters.



And based on distances they have been formed into clusters. There are three clusters
here and you can see in single linkage, it is a shortest distance or the distance between
the nearest objects. And in complete linkage you take the farthest distance, you go in the
pessimistic way, that is a maximum distance that exists between two clusters. And then
there is also a centroid distance, a centroid distance which is the distance between
centroids of the clusters. And what is a centroid? So, here it is a scenario of V1 versus
V2, it is only two attributes or two variables, that is the simplest case.

So you can actually place the clusters in a two dimensional space, but you can imagine
when the number of features go up it actually becomes a multi-dimensional space or a
hyperplane. So that is, you have to imagine, you cannot actually easily represent that in a
two dimensional space which I have, because clusters with multiple, more than two
attributes would be in a hyperplane. But this is for illustration. So here you can see that
suppose one object, this has a value x1, y1 or V1, V2 as we say, these are the coordinates
and suppose this is x2 and y2. And let us assume that there are only two objects for
simplicity.

What would be the centroid of this cluster with two objects? What would be the
centroid value? Nothing but the centroid will be somewhere here which is having the
coordinate (x1+x2)/ 2, (y1+y2)/ 2. That is the centroid, that is the centroid, the average
value, the average point. So you average the attribute values and that is the centroid. So
when you increase the number of attributes, it is the average of each attribute, each
attribute of the object averaged is the centroid of that cluster. The term centroid will be
often used in clustering and you should know what it means.

It is the average and as soon as you think of average or mean, you should also know that
average would be influenced by the outliers. Suppose one object was here and another
object was here and they got grouped into one. It gets influenced by the outliers. So that
should be kept in mind when you actually use the term centroid. So centroid distance is a
sort of compromise between the complete linkage and the single linkage, basically to
measure the distance between clusters.



Now in one shot or in one slide, if I am making an attempt here to give you a picture of
different clustering algorithms. So that you can also compare, how they are similar or
different. So it is not given this way in a textbook but this is one way to sort of
understand different clustering algorithms and what principles are used in the clustering
algorithm. So you can see that there are 1, 2, 3, 4 categories of clustering algorithms.
This, by looking at different sources of information I have compiled this.

So, but the most widely used clustering techniques are the hierarchical clustering and
the partitioning clustering. But hierarchical and partitioning are two categories. Within
them, there are different types of clustering methods. So the clustering technique which
we just discussed, as a simple example, that is a type of clustering technique which is
called agglomerative. Agglomerative meaning you start with the shortest distance or you
start from the bottom and build upwards, that is agglomerative.

There is also divisive clustering which is also a hierarchical clustering where you start
from the top. You start with the longest distance and then come down by division, by the
method of division, that is known as top down clustering not very popular, not very
highly used. Agglomerative clustering has different sub techniques. Agglomerative is a
subcategory and within them, within agglomerative there are different methods. One is



agglomerative with single linkage, in the process of building clusters, you know that you
have to also calculate distance between clusters.

So an agglomerative can use a single linkage or a complete linkage or composite
measures. Centroid is one where you average and then find the distance between
clusters, that is a centroid method I just explained to you. There is also average linkage
which we just used in the agglomerative clustering method we used. So just finding the
simple average. You know in the example, I illustrated it was average similarity of all
objects within the clusters.

We can use centroid distances, once a cluster is formed, the centroid of that cluster to
another object or another cluster can be used as a measure. Then it is agglomerative
clustering with centroid as the measure of distance. And there is a very widely used
technique within agglomerative clustering known as Wards method. The popularity of
the clustering techniques depends on the usefulness of the solution. How good solutions
you get.

So in practice Wards method is very useful and usually yields useful solutions in the
sense, usefulness is by the minimum error and also minimum, highest discrimination
between clusters. So Watts method is highly used and in Wards method, you use sum of
squares of similarity within clusters. It is not just the average but it is the squared sum of
errors that is used. The squared sum of errors that is used to calculate the within cluster
distance, you know the total within cluster distance.

Ultimately when you build cluster, you need to have a measure of total within cluster
distance. And this can be estimated by different methods or this not estimated, this can
be computed by different methods. So, and so you see that all the methods are listed
here of which Wards method uses the squared sum and usually Wards method yields
very useful solutions. And there are of course explanation for it, I am not entering there,
I am just giving you a sort of picture or a broad view of different clustering techniques
and how they differ and which are yielding good results. Wards method and moving to
the next category, this is category 1 and this is category 2.

So the category 2 is also widely used, the partitioning technique and within partitioning
technique there is K-means, M-medoids and K -Modes. These are three techniques
available in the partitioning technique. I will explain the medoids and the modes towards
the end, as to how they are different from K-means. But k-means is a widely used
clustering technique. Wards method and K-means are widely used and in some problems,
you first use Wards method and arrive at certain number of clusters and then
subsequently use partitioning technique. So suppose you use Wards method, you have an



initial solution and initial solution means, suppose you formed four clusters and each
cluster has a centroid.

Each cluster will have a centroid. Now in partitioning technique, you start with
centroids. You start with random seeds or random points in space and then you assign
each object to those random points, based on the distance of each object to those random
points. So in K-means, instead of starting with the random points, one could start with
the centroids that is obtained from Wards method. This is a another improvement in
method, suggested in literature.

There is a comparison of clustering techniques in one research paper. So I am just
explaining one method that is followed in research for clustering. There are also density
based and grid based techniques which are covered. I explained to some extent in your
textbook but I am not actually using those in this session or in this class the other
techniques that are available for clustering.

So broadly, hierarchical and partitioning. Now hierarchical, I actually give you a sense
of how hierarchical clustering works from bottom up. Now before we step forward, now
we have to use algorithms and obviously you know when you use a software like Python
or R for clustering, you can choose the algorithm. There will be, choice of algorithm is



up to the researcher or to the analyst. And our idea is to understand how different
algorithms work.

What are the principles? So hierarchical is one type and then there is partitioning type
of clustering. But irrespective of which method you use, there are certain basic measures
that you require. One of those basic measures for any algorithm to work is a measure of
distance between objects. Not distance between clusters. In distance between clusters,
we saw there is single linkage, distance based on centroids etc. complete linkage. That is
for distance between clusters. Now for cluster solutions to be formed, you need to
calculate distance between objects. And we saw Euclidean distance as one distance,
measure of distance between objects when the values are continuous. You can use it for
integers, you can use it for rational numbers. But when it is categorical or when it is
categorical variables or even ordinal data, you have a challenge in using Euclidean
distance. Because you cannot, in categorical variables you may have numeric categories
but they are not considered as numbers. They are only labels. Numbers used as labels.
For example 0 and 1, yes is 1, no as 0. Does not mean that you can simply do averaging
of those values. How many 1s are there, you know. Or what is the average number of 1s
etc. We can have that but they are not, they are labels. They are not numbers to be used
in algebra.

And therefore you have a challenge how to work with different data types. How to
work with different data types. So let me give you an overview of working with different
data types in clustering. So to start with, what is a measure of distance? Measure of
distance is a value of the distance between two objects based on their attribute values.
So suppose there is v1 and v2 here, v1 and v2 here.

So you try to find the pairwise differences and try to sort of sum them up, to have an
average, to have an overall value of distance. That is what we are doing. So there is also
this notion of distance and notion of similarity, as I said it is inverse. So there is
similarity of object i and object j which is 1-dissimilarity between objects i and j or
1-distance between i and j. It is same as 1-distance, because distance is an inverse
measure of similarity, i, j.



When you here notate i and j keep in mind i and j are objects. i and j are objects. And
each object has multiple attributes. And how to measure and structure the distances? So
you have a data matrix typically. A data matrix consists of rows and columns.

Each row, you know that each row is a record or a tuple and number of rows is n.
Meaning what? This is data size. The size of the data is n. There are n number of
records. There are n respondents or n objects or n records. n is equal to number of
objects. Each record is an object. Assuming that each record has originated from some
one, some object. It consists of the features of certain objects. So therefore what are the
features or attributes? They are in the columns. A given object has how many features or
how many attributes? p number of attributes.

Each individual or each object is characterized by p attributes. So therefore you can say
it is a n p matrix. x n p. It is an n p matrix that would actually capture your whole× ×
data. So column stands for the attributes or the features and rows stand for the different
objects or different records.

And that is how you represent a data set and interpret a data set which we use for



clustering or a classification exercise. And now when you have to extract the pairwise
distances between objects, for example the distance between object x1 and object x2,
that is the distance between d(2,1). Distance of this object and this object, that is d(2,1).
That you can calculate using some measure like Euclidean distance and that forms the
first element of the diagonal matrix. And you know that in a diagonal matrix, you can
actually capture all the pairs.

All the pairs can be captured in a diagonal matrix and therefore that becomes the
dissimilarity matrix. And this is how you can actually represent the data set and the
distances. And we have seen this already in our example. All right. Good.

Now measures of distance. This is a whole chapter in Han and Kamber and again I am
summarizing this in one slide for you to understand or to give an overview of measures
of distance when the data types are different, when the data types are different. The
easiest type of data to work with is, of course the continuous valued data or the metric
data and each data type has a definition which is available in your textbook. I am not
getting into those details. But here in metric data or continuous valued data you have
measures of distance which are, which can be generically represented or measured using
Minkowski distance.



Minkowski distance is a generic formula for calculating distance between objects. And
what is the generic formula? It is, there are two objects i and j. i is a object, j is an
object. And both i and j has, how many number of attributes? P number of attributes.

There are P number of attributes. So pairwise distance xi1 xj1. There is a first attribute
distance. Second attribute distance. Third attribute distance.

What happened? And pth attribute distance or difference. These differences are
calculated. Then you can, of course find the absolute value and if you are going to square
it, you do not need the absolute value. But in Minkowski distance you can say you can
actually have the qth degree. So Minkowski distance is generic formula. You can
actually take the qth order or qth degree of the difference and then, of course when
square root it, you can actually find the qth root of that sum of distances.

So you can see that Euclidean distance is a special case of Minkowski distance where
q=2. When q=2, it becomes Euclidean distance. And when q=1 that is Manhattan
distance. In Manhattan distance when q=1, it should be a absolute value of the
differences.

Otherwise you have a problem. The pluses and minuses would finally lead to a value
which is, which may not be the ideal value of the actual distance. And therefore you
take the absolute value of the differences. And that is known as Manhattan distance. So
both Manhattan distance and Euclidean distance are special cases of Minkowski distance.
So in literature when you come across something called Minkowski distance, keep in
mind there is a q value that you have to assign.

The q is the root. And the value of q will determine whether it is Euclidean, Manhattan
or otherwise or higher degrees. And both Euclidean and Manhattan are commonly used.
So this is about the data, that is continuous value. But suppose you have ordinal data.

Ordinal data is a special type of data. For example low, medium, high. You can
actually put values 1, 2 and 3. They have an order. They have an order. The only
difference is that the distance between 2 and 1 need not be the same as the distance
between 3 and 2.

There is no fixed interval between these differences, this fixed interval between the
numbers. And therefore when the interval is fixed, it becomes interval data. So that is
the difference between ordinal data and interval data. But an approximation that is done
to work with ordinal data in clustering is to use standardization, wherein you convert an
ordinal data into a continuous value data.



And then you do, you use the same measures as in metric data. For example, suppose
you have a scale of say 1 to 3. 1, 2 and 3 are your ordinal data points. Like low,
medium, high, 1, 2, 3. So what you do is suppose some somebody responds with a value
2. That value 2 is converted or standardized using a ratio or it is actually found as a ratio
of the span.

The span is the highest value which is maximum value, that is (3 -1) /(2-1) or upon (2
-1). ( 2 -1)/ (3- 1). That becomes a ratio which is substituted for the value 1. The value 1
will be standardized into a ratio. And once it is standardized, you use the metric data
measures for finding the distance.

This is one approach. In minus rank, r i x n minus rank, total number of ranks possible
minus the rank is there. Yeah, yeah, yeah, yeah. Total number of ranks. No, yeah, yeah,
you can say total number of ranks.

That is suppose it is 5, then the denominator will be 4. 5- 1, 4. And r is the actual
response that is obtained. If he is in the second rank. If he is in the second rank, then it
is. And if suppose number of ranks are 3, then (2- 1) /( 3- 1).

That is the value that corresponds to that rank of 2. Then you are actually converting
that into a metric data. That is the effort here. This is one approach that is given in
literature. And then there is for binary and categorical.

Binary is a special case of categorical. For binary, there is a common measure or a
well-known measure known as Jaccard coefficient. Jacquard coefficient, you can read
further in your textbook. It explains and also gives examples. You have a contingency
table like, with two axis, vertical and horizontal to represent number of similarities. So
when you compare two objects i and j and there could be, say a p number of, there are p
number of variables.

P number of attributes. P number of attributes between i and j. And assuming all of
them are binary, binary attributes. Then when you compare i and j there may be a
number of similarities. When i=1, j is also 1.

The count could be a. When i is 1, j is 0 that is b. When i is 0, j is 1 that is c. When i is
0, j is 0, that is d. So each of them are counted. You know as you count the true positives
and false positives and so on. And Jaccard coefficient is defined by a divided by, that is
number of similarities in terms of 1s, divided by a+ b+ c. a+ b+c does not make it p. It is
less than p. What it has not considered is d. Any intuition as to why Jaccard formula or



Jaccard coefficient or Jaccard index, you know it is called by different terms. Why
Jaccard coefficient is indifferent to d which measures number of similarities with respect
to 0. You can also add d.

There is another measure which is not Jaccard coefficient, where you also add d also.
You can also have a measure a+, in terms of number of 0s. It could be ( a+d)/( a+c+d).
That is also a measure of similarity between i and j. You can, you have all these different
measures but in Jaccard coefficient you do not actually consider d.

In certain context, you know Jaccard coefficient is useful in certain context. Not that
that is only measure. Any intuition? 0s and 0s.

Both of us have 0s. It does not matter. I do not want to, I am indifferent about it. That
is a good thing. That is a good, that is the best example to give. There can be other
examples. Suppose it is in medical diagnosis.

And what matters is, in comparing two patients whether they have similar symptoms.
But when you do not have sickness at all, that is the large number of people. Two people
with those who do not have symptoms. There is no point in comparing.

We only want to compare those who have certain sickness. In which case, only the 1s
matters. The 0 case is not important, not relevant. So therefore d is a count of irrelevant
similarities which we do not want to consider. So in those context, Jaccard coefficient is
useful. I am not saying that is only coefficient, but this is widely used.

The fourth case is of course, the pure categorical variables. Not just binary but
categorical data. In categorical data, you know that there are p number of variables. And
one measure for similarity between two objects, i and j with p number of categorical
variables is p-m. m is the number of similarities, number of times i and j have similar
values, same value. Suppose you have three categorical variables. One could be say age
bracket, other could be income bracket, third could be, say geographical location. So m
you count for number of times, there is a match between two objects. For example, you
two are in the same age bracket, then m becomes 1.

You two are also in the same income bracket, m becomes 2. But you are from two
different places, then that is not counted. So p is 3, then it becomes (3-2) / 3. That is
your sort of similarity value for a categorical pair of, not pair, categorical set of
variables. So this is another measure.

So you have a data set of n number of objects, n number of records or n number of rows.



And you have p number of variables, for each object has p number of attributes of
variables. Now the challenge is, the final challenge could be that out of the p a few are
metric data variables, others are ordinal and even a few others are binary like the gender
or, gender need not be binary. But assume that there are some variables which are binary
and some are categorical. Then you have a challenge because at the end, you need to
have one measure of distance between objects.

You have to have one measure of distance between objects. So there are methods to sort
of or you can actually have a algorithm which is explained in your textbook to combine
each of these cases and to have a composite measure of distance. The algorithm should
first detect what is the data type. First is detection of data type, then apply the
corresponding formula and you can see that in each of this formula, the measure gets or
the value gets converted, the attribute value gets converted to a continuous value data.
And then you can apply one of the measures of the continuous valued data to find, for
example that is the case with ordinal and categorical.

So, sorry, that is the case with ordinal. Metric and ordinal actually gets converted to
metric. Binary and categorical actually gives a value of the distance already, i and j
which is again a sort of measure, a standardized measure of similarity between the two
objects with respect to the binary part of the attributes. Then you sum them up. So that
is the way, a composite measure of distance is used in calculating distance between
objects. Because we are all going to use data sets which consist of multiple data types.
And therefore we need to be aware how this distance, a measure of distance works for
objects with multiple data types.

This is an overview. This is covered in one chapter in your textbook. So I am trying to
give you an overview. Excellent point. Once you get this, instead of taking the absolute
values, you standardize it.

That is a normal procedure in clustering. We will standardize before we cluster. So that
it does not get carried away by the absolute values. It is all distance. This is inverse of
similarity.

What do you measure is inverse of similarity. Jaccard coefficient is a measure of
similarity. That is true. Because it is counting number of items which are similar. So
this is, you can see this is similarity. There also there is challenge when you actually add
them. You may have to inverse it.

So the formula, the final formula can be fairly complex taking into consideration all this.
Good point. This is similarity clearly mentioned but this is distance, this is distance



which is dissimilarity. This is also similarity.

Actually when the value is close to 1, this is very similar. That is what we are saying.
No? This is p-m. So this becomes dissimilarity. Is my statement correct or wrong? So
when m=p, what happens? 0.

0. So, what is that case? p=m means both are very similar. So, it is again an inverse
scale. So I am actually wrong, you are right. You can see the notations closely, which I
did not observe closely. You see it is actually clearly mentioning it as distance.

It is a measure of distance. Whereas it is clearly mentioning it as similarity. Therefore
this scale is inverse, this is inverse, this is inverse. This is also distance. Good that you
noticed it.

This is distance, this is distance, this is distance and only this one is similarity. Jaccard
coefficient is similarity. Good. Now let us take up the case of a clustering technique
which is different from the hierarchical clustering. So I am taking you to a method
which is here.

First we discussed the agglomerative with, yeah, with this case. This was the example



that we discussed. But now we are going to discuss a very different method. That is
what you have to keep in mind. This is not hierarchical clustering. This is partitioning,
clustering by partitioning.


