
Course Name:Business Intelligence and Analytics
Professor Name:Prof. Saji.K.Mathew

Department Name:Department of Management Studies
Institute Name: Indian Institute of Technology Madras

Week:03
Lecture:10

NORMALISATION

Next, we are moving into a very important topic in SQL which is known as
normalization. So, what is normalization? Normalization is a process of designing a
database effectively that we can avoid data redundancy. For example, see this table on
the right. There are so many information in that, but if you see the yellow part that is
there on the right side, you will see that all the data is being repeated unnecessarily. Just
because it is related to the part on the left, it is being repeated. So, what we can do is, we
can form this yellow part as a separate table so that only it is repeated once or twice and
we can just reference it to the white color table, wherever it is needed.



In order, instead of writing it, maybe if there are 100 records, we will write it 100 times.
Imagine a situation where there are lakhs of records. So, if we are mentioning it lakhs of
times, would not it take so much storage? So, that is why we are doing the process of
normalization, wherein we split this big table into multiple small tables so that we can
just reference it to the original table wherever we need, instead of having this data
redundancy. So, the main advantages of doing normalization in SQL is to avoid
insertion, many kind of anomalies.

For example, insertion anomaly, deletion anomaly, updation anomaly etc. So, what is
data redundancy? In some columns, there are same values for multiple records. That is
known as data redundancy and in order to avoid this data redundancy, we perform
normalization.

So, see this students table. In this, there is data redundancy. Which is the data redundant
part? It is the part in red color. So, there are multiple students, Akon, Bkon, Ckon, Dkon,
four students and all of them belong to the same branch. So, is it really necessary to
mention their branch along with their names? So, if there are four students, it is not a big
matter but if there are lakhs or lakhs and lakhs of students, then mentioning this
computer science for each and every student, that is kind of a not a very logical thing to
do because it is going to take a huge chunk of data from the storage. So, what we do is,
so this data redundancy also has issues, multiple issues that is insertion anomaly. For
example, if a new student comes, say name is John, so we are inserting this John's record
in this table.

So, what we will do, say he also belongs to computer science department. So, again we
have to mention the branches CSE, HOD as Mr. X and also the office telephone number,
everything we are mentioning again and again. So, say we have to insert 100 more
students, then the repetitions will become 100 times which is known as the insertion
anomaly.

Next one is deletion anomaly. It is the same thing wherein you are deleting all students.
Say the students have passed out or something and you are deleting the students
information, then what happens? The branch, the HOD name, the office telephone
numbers which are correspondingly written along with the student names also get
deleted, is not it? If there are 100 students and we delete the 100 students names, then all
the data, all the records itself get deleted. So, what we are losing is, we are losing all the
entire data just because we want to delete a student's names. So, that is what is called as
deletion anomaly.

Then there is updation anomaly. Say the HOD is changing for a particular branch, say Mr.
X becomes Mr. Y. So, what we have to do? It is not possible to change in one place. We
have to update all the students.



If there are say 1000 students, we have to go and change in each and every record that
Mr. X has changed to Mr. Y which is kind of a headache. So, even if one row gets
missed out, then it becomes a modification anomaly or updation anomaly. So, what is
the solution for this anomalies or data redundancy problems? That is what is known as
normalization.

So, normalization is the solution for avoiding all these data anomalies, I mean data
redundancy anomalies. So, by normalization what we mean is, we split these initial table
into logical independent but related tables or data. For example, we had this old student
table wherein the branch HOD name, branch telephone number, everything was getting
repeated along with each student's records. So what we do is, we split that old student
table to new two tables. First table is student table and next table is branch table.

So if we mention that branch name, HOD name and branch telephone number once in
that new branch table itself, we can just reference it to the new student table whenever
we need it. So, see the right side. This is our normalized form. So the first table is
student's table. In student's table, we have roll number, name and branch.

So say, Akon is from CSE. So what we will do is, CSE will be the primary key in the



branch table. So whenever we want to get the branch details of Akon, we will just query
using the CSE as the foreign key. So that will go and fetch all the details from the
branch table. So suppose if you want to know the HOD's name, what we will do of
Akon, what you will do is, you can just perform a simple query wherein you can
reference the branch name as CSE and take the information from the branch table, so
that you know that is performed very effectively.

So in database normalization, what we are doing is, we are splitting the relations or
tables in multiple smaller tables with well-structured relations. So what is database
normalization? It is a process of decomposing relations with anomalies to produce
smaller and well-structured relations. So basically, what we are doing is, decomposing a
big table into multiple smaller tables. So there are multiple normal forms as we call,
multiple stages of decomposition.

So the first normal form says that there should not be any multivalued attributes.We will
see all these in details. I am just reading it out as of now. The second normal form states
that all partial dependencies should be addressed. Third normal form states that all
transitive dependencies should be addressed or there should be no transitive
dependencies. So there are multiple higher forms of normalization also, but we are not
going into all those.



I think we will stop with Boyce-Codd normalization or which is known as 3.5NF. So it
is intermediary between third and fourth normal form. So if you are interested in learning
about the higher normal forms, you can go back and read but we will be discussing first,
second, third and 3.5 which is also known as Boyce-Codd normal form.

So we will be seeing that in the next slide. Before that, I would like to ask you, what is
the trade-off for a normalized data as well as a denormalized data? Why are we actually
normalizing the tables? Just take a minute and you know, come with an answer of why
we are actually doing the process of normalization. Normalization is actually performed
in order to efficiently utilize the storage space. But do not you think referencing multiple
tables, it will take so much time and data processing will be becoming very lengthy if we
decompose this into multiple tables? You guessed it right.

That will happen. That is why there is a trade-off between normalization and
denormalized data. So while normalization efficiently utilizes the storage space,
denormalized data, it will perform the data processing more efficiently. So it is just a
trade-off and you have to decide how much to normalize and where to stop. So the first
form of normalization or what we call is 1NF. That is what we are going to look now.



So as I already told, in first NF, there should not be any multivalued attributes. So if your
database is not even in the form of 1NF, then we call it a poor database design. So at
least the minimum criteria for a proper database is, it should be at least normalized in
1NF format. So what is 1NF? 1NF states that there should not be any multivalued
attributes. For example, each record or each field, so there will be multiple records under
each field.

Say the column 2 in the table that is having 2 values, that is X and Y. So if our table
should be in 1NF format, that should not be the case. It should be either X or either Y.
There should not be any multivalued attributes. So what we do is, see the table below.

The first one is student's table. So in student's table, the subject column, it has
multivalued attributes. For Akon, the subjects he has taken, it is 2 subjects. So both are
mentioned in the same field, same record.

So that should not be the case. We have to split it into 2 records. That is how we
normalize in the first normal form. So the normalized table is there in the right side,
which is we are splitting 101 Akon OS and the second row is 101 Akon CN. So this is
how we normalize a table in 1NF. So if a table is in 1NF, all columns should have values
of the same type.Each column should have a unique name and the order in which you
store the data, it does not matter. So basically, there should be no multivalued attributes.

We will go into 2NF. So for every advanced NF format that we are going, the previous
NF or the previous normal form should already be satisfied. For example, if we are
going to normalize in 2NF, the 1NF should already be satisfied.

So for a table to be in second normal form, it should already be in first normal form and
the second criteria is that it should not have any partial dependency. You will be
wondering, what is a partial dependency. So partial dependency exists when for a
composite primary key, any attribute in the table depends only on a part of the primary
key and not on the complete primary key. What does this mean? We will see this
example in which I will show what is partial dependency. We already discussed what a
primary key is.

Primary key is a key which can uniquely identify each row of the table. For example, in
the student table, we can say the score table. We can take student ID plus subject ID as
the primary key because if you take the student ID, it is having repeating the same
values. It cannot uniquely identify the whole table. Similarly, with subject ID, it is also
repeating.

There are two 1s and two 2s. So it is also not able to uniquely identify the table. So



what we do is we combine both student ID as well as the subject ID and combine it to
make it the primary key of the score table. So that is what we have done. But see the
teacher's name. Teacher's name is depending only on the subject ID. Teacher is
dependent on what subject he or she teaches. It is not dependent on who he teaches.
There will be multiple students. So teacher's name is not dependent on student name.

It is just dependent on subject ID. So we have the primary key which is subject ID plus
student ID and there is the teacher who depends only on the subject ID and not on the
student ID. So teacher is depending only on the part of the primary key and not on the
whole of the primary key. So what is this called? This is what is known as partial
dependency and this partial dependency should not be there if we want to normalize the
table in the form of 2NF.

So what is a dependency? I just forgot to tell before this. So what is a dependency?
Before discussing dependency, we will see what are primary and non-primary attributes
or what we call as prime and not prime attributes.

Prime attributes are those attributes which are present in the primary key and non-prime
attributes are the attributes that are present in the, that are not present in the primary key.
For example, see the score table. What is the primary key? Student ID plus subject ID is
the primary key. So student ID is a prime attribute. Subject ID is a prime attribute. And



what about marks and teacher? Both are non-prime attributes. So a functional
dependency is when a non-prime attribute completely depends on the primary key. That
is known as a full functional dependency. But the teacher is depending here only on the
subject ID and not on the student ID. So the teacher field is partially dependent on
primary key and not fully dependent on primary key. So this is known as partial
dependency.

So as I discussed, partial dependency should not be there if we want to normalize our
tables in the form of 2NF. What we will do? How do we normalize usually? You
guessed it right. We will move this teacher's name and create it as a separate table. So
that is what we do. So to remove the partial dependency, we can divide the table, remove
the attribute which is causing the partial dependency and move it to some other table
where it is fitting well. So that is what we do. So that is the case of partial dependency
and 2NF.

Now we will move on to 3NF. So just repeat in your mind what I have taught till now.
First one was 1NF. So in 1NF, there should not be any multivalued attributes. In 2NF,
there should not be any partial dependency. Now we have come to 3NF. 3NF means
what? It is an advanced form of 2NF. So what did I say earlier? It should already be in
2NF in order to achieve 3NF. So the first criteria for 3NF is, it should already be in 2NF.
Second criteria is that it should not have any transitive dependency.

So we will see what is a transitive dependency. Transitive dependency is when there is
an attribute in a table which depends on a non-prime attribute and not on a prime
attribute. So I already discussed what a prime attribute is. Prime attribute is nothing but
those attributes that are part of a primary key. So non-prime attributes, they are not part
of the primary key.

So see the score table in the left side. What are the primary keys? Primary key is a
combination of student ID plus subject ID. We have combined both because each one
was not able to uniquely identify any row in that table. So we have combined both. And
see the total marks.

In our school time, there will be so many exams. There will be practicals, there will be
sessionals, there will be end term exams. So the total marks, say end term would be 100
marks, practical would be 20 marks. So the marks dependent on the exams name. So
there is a column in the score table called marks which is dependent on exam name alone.
Is the marks dependent on student ID or the subject ID? No, right.

So total marks which is a field in the score table, it is a non-prime attribute and it is
dependent on another non-prime attribute. It is not even depending on prime attribute.



So that is what is known as transitive dependency because total marks is depending on
exam name and exam name is depending on the primary key. So it is kind of a transitive
dependency that is happening and it is not directly depending on the primary key. So
again what we do? How do we normalize it? We will just cut it off from the, you know,
we just form a new table with just exam name and total marks and then reference it to
the main tables or score table.

So that is how we usually do. So we form a separate exam table with the columns exam
name and total marks. So the main idea is that all non-prime attributes should be
depending only on prime attributes. So in transitive dependency, it is all non-prime
attributes are depending on a non-prime attribute, which should not be the case. That is
why we are normalizing it.

I hope you are not that much confused because we are going to 3.5 normal form or what
is known as Boyce-Codd normal form. Before going into Boyce-Codd normal form, I
will just like to revisit what I have already discussed before this. So I taught what is
functional dependency. What was a functional dependency? Functional dependency is
when a non-prime attribute is dependent on prime attribute alone. So that is what is
known as functional dependency.



What is a partial dependency? Partial dependency is a case where a non-prime attribute
is dependent on only a part of primary key and not on the whole of primary key. So it is
just depending on a very small part of the primary key. So that is what is partial
dependency and in which normal form was partial dependency to be removed? Yes, it is
second normal form. Then the third one that we discussed is transitive dependency in
which a non-prime attribute is dependent on another non-prime attribute. So a
non-prime attribute is deriving another non-prime attribute which should not be the case.

So every non-prime attribute should be dependent on primary key or the prime attribute.
So that was the problem with the transitive dependency and in third normal form,
transitive dependency we have normalized and it was not allowed. So what is
Boyce-Codd normal form or what is known as 3.5NF? What are the criteria for that?
Basically the first criteria is that the table should already be in 3NF and the next one is
for any dependency A derives B, A should be a super key.

That is A cannot be non-prime attribute and B being a prime attribute. Now you will be
getting confused. How can a prime attribute depend on a non-prime attribute? It is
always the opposite case. How can a prime primary key or a prime attribute be
dependent on some other non-prime attribute? So that is what is to be avoided in BCNF
normal form.

So let us take an example in this. Here we have a college enrollment table with 3 fields
which are student ID, subject and professor. So what is the primary key here? It is
student ID plus subject which is the primary key here. Suppose in this example I want
you to assume that one professor is teaching only one subject. Let us say that Saji
Mathew sir is teaching only business intelligence and analytics in this class. So
professor is dependent on, I mean subject is dependent on what? If I tell you I want to
know this professor who is teaching BIA, then you would obviously answer it, it is Saji
sir.

So it does not need any additional information. That means that subject can be derived
from the professor name itself. So subject is a prime attribute but this prime attribute can
be derived from the non-prime attribute which is the professor. So that is when the
Boyce-Codd normal form kicks in. So it should not be the case. There should not be a
case where a prime attribute derives itself from the non-prime attribute.

So as you guessed, what we are going to do? We are going to normalize it such that
such kind of discrepancies are avoided. So we split this college enrollment table into two
tables which is student table and professor table. So in student table, there will be
student ID as well as professor ID which is a foreign key because professor ID is the
primary key in the professor table. So there will be two tables, student table and



professor table. Student ID is the primary key in student table and PID is the primary key
in professor table.

So whenever we want to know the professor name, we can just do that using student ID
itself. Say we can retrieve the professor name of the student whose ID is 3. So what we
do is we see the corresponding professor ID and go and get the data from the professor
table itself.

So that is how we normalize in BCNF form or what is known as 3.5 normal form. The
next topic is we will be seeing a case, which is a Shopsense retail case and then we will
be implementing some of the things that we have already discussed. Thank you.


