
Advanced Computer Networks
Professor Neminath Hubballi

Department of Computer Science and Engineering
Indian Institute of Technology Indore

Lecture 06
IP Table Lookup: Trie based Data Structures

(Refer Slide Time: 00:19)

Now, the question that we ask is, is it the only optimization that you can bring? Are there any

other optimizations that are possible in this structure? The answer is Yes. And that brings us to



the discussion of what we call the multi-bit trie, where the notion of matching more than one bit

is taken and then streamlined and I am trying to alter the data structure a little bit.

And in each iteration, when I do the reference, I am going to match a fixed number of the bits.

Remember, in the previous case, when I was trying to match, the multiple bits are matched only

when there is the skip value and the segment and I got some numbers precisely greater than 0.

Other than that, only one bit is actually getting matched. So, for example, here and here, you are

actually doing only a one-bit match. So, I am going to extend by having a structure with a fixed

number of bits matched at every iteration. So, let us motivate how this is actually done and what

exactly the data structure looks like, and what is the performance of that with an example.

So, let us try to take this set of prefixes, as usual, P1 has got the default route *, P2 is let us say

00*, P3 is 11*, P4 is 1110*, P5 is 1111*, and P6 is 11110* and P7 is 11100*. So, these are the set of

prefixes that I got, basically seven of them.

And now, I want to construct an optimized structure where more than one bit are matched; let us

say I am going to match two bits at a time, so in every iteration, I am going to match at least two

bits. When I traverse from point X to Y, I am going to match the two bits, if I decide to go with

the three length, then at every iteration and every label is going to indicate the 3-bit comparison.

So, now how do I actually do this? let us try to construct the data structure, multi-bit trie

structure, and let us say I am going to match two bits in every iteration. So, I am going to have a

table that looks something like this: it has got four entries, so 00 is one possibility, 01 is another

possibility, 10 is another possibility, and 11 is another possibility; I am going to write in this one

what prefix is actually going to be matched for these values.

So, for example, if I get an IP address, which is starting with, let us say 000, what I am going to

do this is the destination IP address, there is something else beyond this, I am going to take the

first two bits and go to this table and ask what is the given these two bits, what is the best prefix

match that I can find from among these seven of them 00.

So, there is one which is P2, just saying 00* there are two of them, P1 is also match that is * is

anyway going to match P2 is going to match because it is starting with 00* and P3 is not match

because it are is starting with 11*. So, that is not it is you have got these two possibilities, either



P2 or P1, and the given the how the routing is done, the best match and the longest prefix that

matches that is going to take the priority over the other things.

So, in a nutshell, what I am trying to say is P1 is actually a superset of prefix P2, whatever P1

includes it includes 0 it includes 1, it includes 00 it includes everything is matched. P2 is actually

a subset of that. So, whatever is the best is P2 is the best then I am going to take it on that.

Now, P1 is not having a prefix of length two, P2 and P3 have got a length of two. So, I can so

every time something starts with 00, I can actually go and directly say that P2 is the best match.

Every time, the destination IP address starts with 11, I might say that P3 is the best match on a

similar note and now anything which is starting with 01, anything that is starting 10, we do not

know.

So, that will actually be the best match that I can find for these two is the P1. So, I write P1 here,

and then P1 here. So, one way to think of this is I am going to first consider all the prefixes of

length of two length 2 whatever is there. And then if something is not having length two, then I

am going to expand that.

So, for example, P1, is going to include the 00 case, 01 case, 10 case, and 11, all of these are

actually matched. But among them, P2 is actually matching 00, I am going to strike out to 00

from P1’s case, and P3 is matching 11, and I am going to strike out 11 from this set. And then for

the remaining cases, I am going to write P1 as the prefix.

So, this is the prefix, this column indicates the prefix, the best prefix for those two bits that is

matched and the next column in this case in this table, indicates the pointer. So, remember, there

are some more prefixes which are longer than length of two, we need to accommodate all of

them.

So, the way to do it is, if any of the prefixes which are of length more than two bits here, that we

are going to, I am going to have it in the second level structure, one level structure, 2 bits case is

done.

So, if your match is only two bits, then at the first level I am going to complete, and if the other

prefixes are of length greater than two, then I need to accommodate at the second level. So, in

order to do that, what we will do is, we are going to find out if any of the prefixes which are upto



length two are a superset of the other prefixes which are of a length greater than two.

In this case, 11* is actually a superset of P4, which is 1110*, which is also a superset of P5, which

is 1111* and similarly P6 and P7. So, in effect, P3 is actually superset of P4, P5, P6 and P7, it

includes everything that P4 includes it matches everything that P5 includes, and so forth.

(Refer Slide Time: 08:03)

So, in order to do that, what I am going to do is I am going to have a pointer from this location to

the next level. And again, I am going to match two bits in this case. So, one for the 00 case, and

second for the 01 and 10, and 11, these are the four possibilities, now look for the those prefixes

which are of the length four or less than that, that I am going to accommodate here in this case P4

and P5.

Since P3 is a prefix of P4 and P5, two bits are matched here. And the next case is the next two

bits, 11 is matched, I need to find out 10 11 followed 10 is where? here it is the here I am going

to write that this is the case of P4 and 11 followed by 11 two 1s are matched here and the second

two 1s is going to match here and this is the case of P5. So P5 two 1s followed by two 1s are

taken care here and here.

And now for the 11 followed by 00, 11 followed by a 01, what is the match? 11 followed by 00 it

does not exist even the P6 and P7 are not the cases. So, for these two cases, we do not have that.

what is the best match I can have if the destination IP address is 11 followed by a 00 and P4 is



not the right match, P5 is also not the right match, what is the best match that you can find out is

the P3 which is already there in the first level trie so in order to do that, I am going to mark these

as blank ones.

So, there is no additional prefixes that are matched for using these set of the values. Whatever

you found out in the first case itself is the best match that you have found out. Now, length for up

to length four are taken care.

P2 is not the superset of any of the prefixes here, I am going to mark this as blank this as blank,

this as blank and only P3 is a prefix of P4 and P5 that we note here. And similarly, these two also

will not have any expansions.

Now, the prefixes up to length four are taken care. And now there are prefixes which are greater

than length four so, which in this case P6 and P7 which are of length six, I am going to write what

is if P4 is a prefix of something if P5 is prefix of something that I need to extend further.

So, P6 says 1111, which is we are right now here and then followed by a 0*. So, in order to do

that, I am going to have a pointer here and then construct another line and write all four

possibilities 00, 01,10 and 11. The pointer is pointing to this table. And what it says is, it is a

length five.

So, again, you do the P6 if we expand P6 will include what all 11110 and I want a length of

multiples of two, so this includes, the six bits can be 0, or it can be 111101*. So, these 2 cases, so

either the last bit 2 bit can be 00, or 01. These two cases, P6 includes so I am going to write P6

here and P6 here.

And this is the last, we have, I am going to mark all of these pointers as blanks, and this is blank,

this is blank, because 11 followed by 11 followed with 10 is the best match that you can find out

is the P5 in this example case, so that they can care. And similarly, if P4 is a prefix of something

else, so then again, we need to accommodate that as well.

So, in this case as P4 is 1110, triple 1 followed by 0 is P7. So, I am going to have a table here.

And then the again the four cases 00 01 10 and 11, and this is again, you do the expansion of P7.

So, those 2 cases P7 would involve triple 1 followed by 0, and another 0, and then a * : triple 1

followed by double 0, and then 1 and then a *.



So, two 1s in the first level, two 1s in the second level, and then 10 in the second level, and then

two 0s, this is going to be with P7, and then 01, this is going to be also matched with the P7 these

all pointers and the other in this table are blanks.

So, this is how I construct the multi-bit trie. So, in effect, what I am trying to say is, you decide

how many number of the bits I am going to match in one comparison. If the processor that exist

in the router is able to do multi bit comparisons in one go, you actually decrease the height of the

trie.

Let us say I am going to do three bit comparison, I am going to do two bit, I am going to do four

bits, eight bits, whatever it is possible, you do all of them thereby you considerably reduce the

height of trie.

So, you can think up with the extension of the previous case, all that we did is formulae in every

instead of doing a variable number of the bit comparisons at every node in the previous case, all

that I am saying is at every level node I take the fixed number of the bits and do a search in this

table and you can even hash it and then in one iteration you are going to get what is the

corresponding node and then you traverse this trie and wherever you find a blank pointer that is

the best match that you can find for that particular destination IP address.

So, for two bit multi bit trie this is the structure so I can also very well do it with the three bits as

well. So, let us try to do that for the same set of the sequences how the three bit trie would look

like.

(Refer Slide Time: 14:53)



So, if you do with three bit trie then what is the case? You are going to have 8 number of

possibilities and at every iteration I’m going to do a 3 bit comparison 000, 001, 010 and 011, and

the next one 100 and 101 110 and then finally 111 so, 8 possibilities are there. Again, the table

would have 2 parts, first part for the prefix and second one for the pointer. And then out of this,

you actually try to match what is the best possibility that you get.

So, in the previous example, if you find a 000, that is best matched with P2, I am going to write a

P2 here. If it is 00, followed by a 1, then also in this case, the P2 is the best match, I am going to

write here P2. And if it is 0 followed by 1, then in among these setup the prefixes, what is the

best match * is the best match you point, so I am going to write P1 here, and if it is 0 followed by

11, then also * is the best match that you can find.

So, then I am going to write P1 here, and 1 followed by double 0, none of these prefix matched,

then the best match that you can find is the default route that is the P1, now write P1 here 101 will

also have best match that you can find is the P1 that I am going to write here.

So, double 1 followed by * is there that is P3 and that can be 0. So, I am going to write P3, here.

110 is P3. And 11 followed by 1 can also be matched with P3. I am going to write P3 here. So, all

these cases will have pointers as well. But only P3 is actually prefix of something else that we

understood. 00 is none of the prefixes which are greater than length 3, or having the subset of

this, P2, and even so I am going to omit that. So, these 2 cases are there.



So, I am going to now have a second-level structure, so remember, what is the longest prefix

length we got P5. So, if I do 3-bit comparison at a time, then the 6 is the next level. So, in two

levels, I am going to be able to finish the entire comparison, the second level will have options

from 000, 001, 010, 011, 100, 101, 110, and then 111.

So, this is the prefix first column and then the pointer. IP address is 111000. So, for triple 1

followed by triple 0, P7 is the best match that you can find out among the set of prefixes, and for

triple 1 followed by double 01 again, the best match that you can find is P7. Similarly, this is

going to be P4, this is going to be P4, this is going to be P6, this is going to be P6 and this is going

to be P5 and this is going to be P5.

So, the longest prefix that we got is of length 5. So, we are at level 2 and 3 bits at a time. So, 6

bit cases are taken care and all of these actually pointers are having the values. Let us say decide

to match key bits at a time and I got to 32 bits possibility 32 divided by k bits which is 4 then the

you need to construct this structure for up to length 8, and then you will be able to find out the

match.

So, the larger the length of the match in one go, if I decide to do 16 bits and then in only 2 levels,

I will be able to do it again but that comes at the expense of the table size growing. So, at each

level we will have 216 entries so that is not desirable. So, there is a trade off how many number of

the bit comparison that you can do and what would be the height of the total structure that you

get.

(Refer Slide Time: 19:52)



So, with that background in mind, let us try to understand what is the performance of this multi

bit trie? What advantage that it brings? So, the first thing is what is the node structure. So, I have

got a table in the first place and each table has got k number of the pointers and 2k number of the

entries. So, at every level, you will have got where k is the length of the match that you are going

to do in one iteration, in one go I am going to do the k bit matching.

So, accordingly, if you use a linked list, then you can create a structure that has got 2k number of

the entries and then those many number of the pointers, that is one possibility or you can use the

kind of the HashMap or the algorithms where in order of one you can find out which actually

prefixes 3, in this case, k bits are matched, and then accordingly, you can take the pointer. So,

that is the alteration that is done.

And in terms of the space, how much space you require, 2k number of entries in one table, and

then those many number of the pointers. So, the size of the table so, which is 2k, each node has

got the 2k number of the entries, which is going to accommodate all the possibilities in that

structure. And the lookup operation is now speed up by k times, if w is the length, 32 bit IP

address are there.

In each iteration, I am going to match 2 bits or 3 bits, 4 bits, whatever it is, and w the total

number of the memory references, the number of the pointers that will travel is reduced by k

times because every time you take one pointer, you actually match k number of the bits and the



next time you go you again match the k number of the bits.

So, w/k is the total number of the lookup operations that you do. And again, as usual, the update

operations will also take w/k number of times, in the worst case, you will traverse the entire w/k

number of tables, that is, the height of the trie, and then you are going to add a new entry in the

table. So, that is the performance of this multi-bit trie.

So, let us summarize what the optimization that we discussed first is, we took the prefixes and

then constructed the binary trie, which is actually doing one-bit comparison at a time. And then

in the worst case, we said that for IP version 4 address, you require 32 number of the memory

references and the pointer references.

So, that is going to be a little slow, we try to optimize that we brought up another variant of the

binary trie, which is path compressed trie, which is doing some kind of variable number of the

bit comparisons at every node, depending upon whether the intermediate nodes are compressed

or not that we indicated by adding a couple of variables inside the node structure, which is the

segment length and the skip value.

And then we went one step further and then said that instead of doing the variable number of the

bit comparisons at every iteration, I am going to do a fixed number of the bit comparisons at

every level. So, be it 2 bits, 3 bits or 4 bits, then we said no we came up with this data structure,

which is the multi bit trie.

So, we argued that if your processor is able to support these k bit comparisons in one go, then

the lookup speed is going to be k times faster than the binary tries baseline performance,

although it is not exactly k times possible but on average you will get the k times, why it is not

exact because in multi-bit comparisons you also need to read that in one when we visit in a

particular node, you need to find out what is, you need to read 3 bits of the input and then do 3

bit comparison which may not be exactly as much fast as the one bit reading and one-bit

comparison.

But on average you get k times the honest improvement over the binary trie. So, with this we



will stop at this point of time. In the next class, we will see what the other possibilities that exist?

Are there any other optimization that I can do for the lookup operation?


