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Today, we will look into another of the protocol innovations that came into light because of the

internet or HTTP workloads called QUIC, QUIC also pronounced QUIC, is a general purpose

Transport Layer Network protocol that was initially designed by Jim Roskind at Google. And it

started to take shape and got implemented around 2012 and deployed in the early versions of the

Chrome.

And as it grew, the experimentation broadened. And many of the web browsers, including the

MS Edge started to adopt it. And now, we see it supported by almost all of the browsers that we

use today. So, it is important to understand a bit of background on why there was a need for a

newer protocol called QUIC. And what are the key things that it tries to address, at least in brief?
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So, to understand that we need to know like what was the early internet like and what were the

key protocols that existed. And when we look at the transport layer, it is primarily the two of the

key protocols that shared the majority of the traffic. And when there was an analysis done in the

early 2000s, about what was the network traffic look like.

And it was observed that more than 90% of the traffic was TCP, while rest of the 10% was

shared amongst UDP and other kinds of protocols. So, TCP being a prominent chunk in the

internet at the transport layer. And the popularity was so because it tried to provide reliable

communication over the best-effort internetwork or the IP layer. And it essentially built the

congestion control and flow control, which were quintessential to ensure that multiple of the end

users can reliably connect and access the services over the internet.

And the other variant that was prominently used for majority of the services was the UDP, which

basically was meant for very short, independent message kind of communications where you do

not care as much about the loss, but you would be happy to retry and get the service done. So,

wherever you saw the potentials for low overhead, and pattern of query response, would directly

gel in this kind of a pattern.

And that is where we saw the use of DNS, DHCP that tried to adapt UDP. While most of the

Internet services were packet loss, and congestion were a common phenomena they adopted for

TCP to ensure reliable data transfer. And what eventually happened was this ossification of the



protocol around a transport layer where all the applications that we can think of be it the web

services email or have them try to rely on one or the other variants of TCP.

And this is where another way to look at it was a protocol ossification that happened around

TCP. And it was not that TCP was the best fit. But it was amongst all the services that you could

rely on for reliable transmissions, it served the key purposes.

(Refer Slide Time: 03:11)

Hence, if we see TCP, the key characteristics that it provided was to ensure that it would provide

for multiplexing and demultiplexing of the services. That means at the end hosts, we could run

multiple of TCP connections and ensure that different applications use the same TCP stack but

with different port numbers so that you are able to get the services done for different

applications.

So, I could run the mail service, I could run the web browser, I could run the FTP service, all of

those could underlying use the same transport stack, and you would essentially multiplex and

demultiplex the streams when you process it through the IP and get it to the other end. And most

importantly, as we see that IP layer is best-effort service wherein there is no guarantee that the

packets that you transmit would eventually make it to the other end. So, you need at the controls

of reliability, how would you ensure that the other end is existing, listening for the connection

and that is where the 3-way handshake protocol of TCP played a major role.



And then you may have diversity in terms of devices, which may have different rates at which

they would serve. So, you will need a flow control that ensures that the data that is delivered

does not overflow the receiver and ensure that both are in sync with respect to the data exchange

without trying to lots unnecessarily over-transmit and full the buffers.

And also the ordering of the delivery which ensures that the stream of bytes are correctly

received at the receiver regardless of whatever the packet loss happened then receiver is able to

get back the ordering which the packets are intended to work; made it all essential for TCP to be

serving for majority of the applications.

And likewise, in a network, when we speak of conditions that can happen sporadically, you also

wanted the mechanism to react to those conditions which were incorporated in the TCP. And this

made a very strong case as for why TCP dawned majority of the Internet services to be the

underlying transport protocol.

(Refer Slide Time: 05:07)

However, at the TCP, it has it is own set of challenges. So, if we think of when we are transacting

for a very small connection, and we see that in order to make the transaction, we need the TCP

handshake to go through that means the 3-way handshake of the TCP that is SYN, SYN-ACK,

and ACK packet exchange between the sender and the receiver is a mandatory precursor to

ensure that we can even start before we start exchanging the data.



And this in many times, was a major issue because if you see that I am trying to exchange

information on a one-gigabit link for just half around few kilobytes, then I will be done in few

milliseconds. But this TCP handshake through which the service that I am trying to connect is

around 10 to 20 milliseconds apart, then I am spending at least almost one full round trip to get

this initiation done.

So, I am adding a lot more penalty in getting the service done. While the UDP on the other hand,

we saw that it would just transmit the packets without caring whether the service is up or not. So,

you will see that you do not have any overhead in handshake, but you do not guarantee that the

service on the other side is there to even process your request. That was the other side of the

challenge.

So, there were many works that came in the light of how to address this 3-way handshake

approach. And one of the nice works is in CoNext 2011, that was TCP Fast Open. And it tried to

analyze and say what is the real overhead that we really see with TCP. And it was shown in this

plot here saying you are doing a simple Search kind of a query, you are paying around 15 to 20

percent of the overheads that are coming for the initial handshake while the Image Thumbs that

are going to be put or the Map Titles that you are getting your photos, in most of the requests the

code request includes the 3-way handshake overhead while the other requests where you avoid

the handshake overhead, you will see that it reduces by more than 60 - 70 percent overheads.

And this meant that whenever you are transacting for small queries over internet, you are paying

a very high penalty.

Besides when we add the overheads that are necessary for ensuring that you have an encrypted

channel that is built by the use of TLS, you need additional handshakes to happen between the

client and server to negotiate the cryptographic parameters and exchange of the certificate so that

the two parties can trust and negotiate the keys through which they can send the encrypted data.

And this further worsened the overheads that you would see that would add up or pile up for

having this connection setup. And with TLS handshake, we are typically talking about almost 2

to 3 additional RTTs before we even could send or make a request. Hence, this was some way to

be looked at to see how we can minimize these overheads.
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And the other aspect to think of when we see of TCP is if I am currently connecting to any of the

websites, typically we expect multiple of the different kinds of data that are being glued would

be downloaded even if I am going for a simple web page, you have the HTTP connection,

HTTPS connection. But that would essentially require you to get the HTML page, the CSS

styling page that is associated scripts, and then any of the image contents or data that you would

additionally have.

So typical web connection would end up having multiple of the kinds of data that you would

have them downloaded before you render such a page. So, there were essentially the aspects of

how would you handle downloading of multiple of these data, whether to make independent TCP

connections, or have it as one TCP connection on which the entire data is going to be transacted.

And this was studied much nearly HTTP 2 times. And it was that okay, every data that you want

is very fluid. And you want them to be treated as streams of data that could be either independent

connections or could be served on the same connection, like in HTTP 1.2 onwards, and you will

see an HTTP 2, you could basically have a stream of connections that could be run over different

TCP connections.

But if you open multiple of the TCP connections, you would end up having a lot more overhead

at the client as well as the server because now server and client have to maintain the state for all



of these connections. And that would not may not be as much a problem on the client. But on the

server, which is going to serve many of the other clients. This having multiple connections per

client could become a bottleneck.

And hence it was also thought about to say how you can basically multiplex a same TCP

connection to carry different streams of data that was streams within a single TCP connection.

And this was, in essence to say that I could have a stream of bytes that would say, what is the

CSS content or styler page or I could have this other stream that would say what is the HTML

content and start to get them downloaded within a single TCP connection. Rather than having a

connection per object, you could basically have a single connection multiplexed for multiple of

the objects that you would want to download as streams. But this introduced another critical

aspect of what we call as head-of-the-line blocking. This, again, is a characteristic of TCP that

we need to understand what this is and where the problems could lie.

(Refer Slide Time: 10:25)

So, if we try to look into the head of the line blocking, let us consider just a very simple page that

has two different kinds of objects that we want to download. And from the server side, it may be

able to put the contents of one type and put the contents of other type of the object both in a same

TCP connection. And what that means is network may write first the packet 1 and packet 2

which belong to a particular object, and then may try to write other data.



But when it writes packet 1 and packet 2, on the application side of the client, you will basically

be able to receive and read up till packet 1 and packet 2, because this is a sequence of stream of

bytes that make up the TCP packet to be read. But now, if suddenly that the network wrote

packet 4, while skipping the packet 3, but consider packet 1 2 4 all belong to the same object.

At this point, because TCP is byte ordered reception, it would not be able to read beyond packet

2 because it requires packet 3 to even start to look at packet 4. And this is what we term as head

of the line blocking. This is a genuine case if we need or if we have a scenario where packet 3

also belongs to the same object.

But what if the packet 3 belongs to another kind of an object, while packet 1, 2 and 4 are actually

for one kind of an object and they are in sequence. Now, TCP cannot distinguish between the

two and it would just block even if packet 4 were the next sequence that you need, after packet 2

for getting or fetching the object 1.

So, what this essentially means is, we are blocked now because of the head packet that is packet

3 not being there, to make the sequence complete. And what this would mean from the

application point of view is that browser is not able to render the object 1, which consists of

packet 1, 2 and 4, which had already received but because of the missing packet 3, which was for

another object, but it is still not able to render the object 1.

And when we see nowadays, with the websites, typically we are having around 15 to 20 different

kinds of objects that are going to be delivered. And if all of these are going to be done in a TCP

sequence, and if any one of them in between changes or have a loss or we are not able to have a

sequence, we are blocked for majority of the contents, even though we might have the full

content that we may have for a given object.

And this is a major problem that was to be worked out and see what options or what mechanisms

could be build. And we need to think now in terms of what are all the ways that this could have

been addressed. And several works stemed like we said about the TCP Fast Open in 2011, that

tried to focus primarily on how you can abridge the RTT connection or the round trip time.



And likewise, the attempts were made, especially from the web community in terms of what

other aspects could be worked out. And this is where basically the emergence of QUIC started.

(Refer Slide Time: 13:37)

And if not like what were all the other options that we had were also the considerations to think.

And here you may see that if we have to change or tweak anything with TCP, you have to change

the operating system kernel because the entire network stack is where the kernel hosts this TCP

stack. And you would have to change this kernel.

And that also means then all the end hosts. And you have lots of diversity on operating systems,

kernels that reside on both the server side and client side, including variety of form factors,

including the laptops, phones, all had to be changed. And that is overwhelming task. And if

anything in the TCP headers were to be changed nowadays, we said the network is full of

middleboxes.

And if the middleboxes are not able to understand the packets at the transport layer, if they are

operating at layer 4, there is no way that the packets would eventually run to their destiny. Hence

the updates on the middleboxes, also to ensure that any changes on such protocols at the network

stack in the TCP layer at the transport means you have to also upgrade all of these essential

middlebox devices.



And if the middleboxes, by default rule, when especially when your security primary is to say

that if you are not able to recognize the kind of a packet, you simply drop it. What that meant is

you run a situation where any tampering with the transport layer headers could essentially mean

that packets get dropped silently somewhere in the network.

Hence, a better alternative to say how we could work around and bring the concept to weave

within the realms of the TCP and UDP to facilitate or overcome these challenges were thought

about.

(Refer Slide Time: 15:19)

And now, what the engineers at Google tried to realize is to say that why not just rely on UDP

for the internet connections so that you get rid of the 3-way handshake, but try to build a packet

format on top of UDP at the application layer.

So, what it meant is, like the key characteristics that TCP handles in terms of flow control,

condition control, and reliable byte stream in an ordered fashion of packet delivery, all of this if

it can be pushed to the application layer, and keep the transport layer as simple as what the UDP

does just that is to exchange your message between the two ends.

And this was the start of what we call as a QUIC or which initially stood for an acronym QUIC

UDP internet connections. And this work started in, like I said, around 2012 and 2013. And



Google Chrome was the first to start this kind of service. And what it really tried to address are

the two critical issues that we said, and there are many more other issues. Because of the other

constraints, we are limited to just these two issues to understand QUIC in this prospect. So, first,

was to address the handshake problem. So, if handshakes meant that there is a round trip time

overhead, there is a means that we want to cut down on that. And this means were supposed to

be defined as a part of a newer protocol. And we know that UDP has no such overhead.

So, if we try to bring that on top of it, and use the application layer, we would try to build the

intelligence to say how we can build the reliability over the UDP in one way, and how we can

build the order delivery of packets over UDP. And the third part is how we could also build

multiple streams of data over a stream UDP connection.

And all of this in a way that because UDP is an established network protocol, and middleboxes

would treat them as just the typical UDP connections, you will not have any issues or concerns

of packet drops, that will happen either at the middleboxes in anywhere in the network. So,

ticking all of these aspects.

Now the question, in essence, was how to build the handshake procedure so that you are able to

ensure that you are able to negotiate and ensure the client-server side of the window and

parameters in terms of what data rate that you would want to send. And the second issue, like we

just said, if there is a head of line blocking because of the ordering of the packets and byte

streams within the TCP connection, how this can be basically decoupled so that you are able to

ensure that ordering of the bytes for a particular object is maintained, but not for the entire

connection, wherein if my connection is serving to send different objects, I want to ensure just

the ordering of bytes for each of those objects, not necessarily that when object 2 is sent, I want

to look for any information that is tied with object 1 or object 3, likewise.

So, we also want it to have better priority management in terms of if I have the streams. And if I

have like different kinds of data, which data I want to render first so that I could prioritize

sending that information over the same UDP channel to ensure that you get the data correctly in

the order that you would want the browser to render.



So, all of these were the key design characteristics that led to the development of QUIC. And one

more important aspect that we also want to bring with respect to QUIC is this primarily was

thought in the light of the HTTP workloads where you had a browser as a client side and you are

typically interacting or transacting with HTTP server on the other side.

And whenever we had this connections, we always thought of having a secure connection. And

that is where the TLS also came in to provide the secure or encrypted connections.
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And now, if we saw the earlier stack, what we will see is you have the TLS on top of TCP on the

left-hand side here. And if we now want to support the newer framework or a newer protocol, we

also had to ensure that we support the TLS. But this when we see the TLS has a handshake,

which is done only after the TCP handshake is done. And this TLS handshake in a sense ensures

that there is a server that is listening for your connection and you could establish a connection.

So, you can see that the TCP initial handshake, in essence, becomes redundant, if we are able to

ensure the same with a TLS handshake. And likewise, the only things that now we need to

consider if we do this a TLS handshake is what are the initial negotiation parameters that TCP

exchanges need to be done alongside with the cryptographic handshake.



And this is where QUIC tried to incorporate both the TLS part of what handshake needs to be

done and the transport side of the handshake to negotiate the parameters on the congestion

control, the features that you would want, how do you want to ensure loss recovery all of these

parameters together with the encryption based handshakes that you would want to do.

Hence, the way the QUIC stack was developed was to replace the transport layer TCP with UDP

and replace the earlier versions of TLS with a newer version of TLS 1.3, which also supported

for less RTTs to negotiate the cryptographic parameters. In fact, 0 RTT in terms of exchange of

the secure keys if you already have the pre-shared keys you could directly use, and these made

TLS 1.3, a better fit for QUIC.

And what QUIC, readily tried to absorb was to use the TLS 1.3 as the encryption model and

bend the application layer protocol around TLS 1.3 and build it on the UDP transport and the

services that it provides again, leads to the other application layer on the above that is called the

HTTP 3.

And in May 2021, all of these efforts got standardized, and we have a series of RFCs starting

from 8999 to almost 9012 or 9013, detailing about how the QUIC operation should be and what

are the ways that QUIC will work with HTTP 3. And this also meant there was a need to change

the ecosystem around it.

That means if I am trying to go check and get ready DNS parameters for a given connection, I

should be able to get the DNS connection whether the server supports HTTP 3, that is QUIC.

And if it supports then client and server could ensure that they can communicate directly over

QUIC. And that also meant that there is a need for a DNS change.

And there were all services that were being updated to say that whether a server supports HTTP

3 or not. And if not you will fall back to using HTTP 2 and use the standard TCP, TLS model

that you are seeing here on the left-hand side. And this is how the QUIC brought in significant

change in terms of how we could ensure the connections to come up
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And what it essentially tried to address in case of when we consider the first issue of the TCP

handshake and the latency overheads, it tried to bring what we call as the most common case

have a 0 RTT handshake. And that meant you had no overheads to pay. And you could start

exchanging the information right away without any overheads.

And if that was in special cases, that if it were not to be possible, then it made possible of 1 RTT

handshake where you will have to establish the connection with 1 RTT and then start exchanging

the parameters. And this is much smaller than typical 3 RTTs that you have with the TCP TLS

stack.

And only in the cases very rarely, where there is no support for the QUIC, and if client had

started with a QUIC, you would have to fall back to the TCP connection. That meant you would

go up to 2 RTT handshakes, when you know that there is no support for QUIC, and this is what

the most common case that we see with that a traditional TCP, and it is still the same.

And what other important aspect the QUIC also tried to address it trying to do it is because now

you are trying to merge the cryptographic information within the first packet, you avoided the

overheads of additional RTTs to negotiate the cryptographic parameters, especially the

symmetric key that you would want to use for encrypting the session details.

And with the TLS 1.3, it also facilitated to say that if I have a cached credential, I could directly

start to assume that the server would work with the credentials that I earlier shared in one of the



connections and start using it. Because most often, we would have the connection parameters we

are connecting to a particular site, we repeatedly connect over time.

And if I can ensure that the keys are recycled over a large duration, let us say in an hour or so

then you could reuse the same keys to establish subsequent connections. And this is where the

low latency handshake parts were realized, through QUIC.

(Refer Slide Time: 24:30)

So, to quickly look up what it meant in the TCP and TLS 1.3 version. First, you would have a

SYN, SYN-ACK, and ACK, basically the TCP 3-way handshake And once TCP handshake was

done, you would have the TCP connection parameters that were exchanged.

And then the TLS connection handshake would start with a typical Client Hello, Server Hello,

and followed up by the exchange of the server certificate, which the client would authenticate,

and client would verify that he is connecting to the right server and then start the client side of

the TLS negotiation and eventually derive key through which the entire session could be

encrypted and then start sending the packet request.

And this is where we can see that it at least involves 2 RTTs and typically 3 RTTs to ensure that

you have the TLS setup and TCP setup before we start and send the application data. But with

QUIC, because it operates at the application layer, and relies on the UDP transport, we could



merge basically the Client Hello with the initial parameters for a QUIC communication to

exchange the application layer of the transport characteristics that we want at this point.

And what this meant is you typically need 1 RTT to exchange the Client Hello, Server Hello, all

the certificate negotiation wherein encryption is done right from the end of the client finished.

So, you would have the entire encrypted session that is starting right after the client finished,

which is where we can see that this is just 1 RTT overhead.

And if we already have this connection that were being sent, or these certificates that were being

exchanged with the server, you would have those cached within the client side. And for the next

subsequent connection, you could reuse the same and start directly with the HTTP request using

the same earlier cached with parameters in just communicating that we are trying to establish a

connection with these parameters with the server and if all sessions parameters seem fine, you

could essentially have the server respond back and this is where the 0 RTT overhead

communications happen with QUIC.

(Refer Slide Time: 26:40)

And the second important aspect that QUIC also tried to address is the head of the line blocking.

And if we consider the reason why that happened with TCP is independent of the kind of an

object that you transmit, every information that you pass in a TCP packet is sequenced as per the

numbers that you would put that means every byte belong to just one stream or one stream of



byte that you would exchange for TCP. And these bytes could refer to different objects. And that

was for the user and to say what objects that this byte meant for.

So, now if we decouple this information and say, if we build the protocol with the packet data

structure, where we isolate the packet number and this packet number essentially refers to the

stream of connections that are happening over the QUIC. And within this, I may support multiple

of the frames. And what this means is I may send multiple of the packets 1 to n. And within each

packet, I may have packet 1 correspond to one of the frame's data, packet 2 correspond to one of

the frame's data and likewise, and within each of the frame, I want the sequence numbering that

means the offset information that is highlighted here would correspond to the actual sequence of

bytes that you would need for a kind of an object.

So, if I say frame 1, it belongs to a particular object, I would want to ensure that this offset

information is this sequence of streams that I want to build within that frame 1, while for frame

2, I could have a different packet number immediate next packet number sent out packet frame 2.

So, then it does not matter whether the packets were really in sync or not.

But what matters is whatever the packets that you receive, do they have the frames that are in

sync or not? And this is a simple data structure that was being pulled to say that you isolate the

streams from the packets that are going to be exchanged to basically decouple this information.

And now we can ensure that applications look for and match on the offsets to build a stream of

sequence bytes for a given frame. So, that way, we can multiplex now multiple of the objects

within the same connection.
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And this means that now, streams will not encounter any of the head of the line blocking as we

have separate advertised window per stream for each of the connections because the number that

we are seeing for the frame offset is the sequence of data that is for each stream. And also we

could now say which frames have different priorities and embed the packets to ensure that these

frames are going to be sent with different priorities.

And this structured streaming mechanism at the QUIC enables us to overcome head-of-the-line

blocking.

(Refer Slide Time: 29:25)



So, let us try to revisit the same example that we spoke about earlier and see how this would

operate in the view of QUIC. So, if we had the packet 1, packet 2 that were sent from the

application, you could read out packet 1, packet 2, and you are going to read packet 1, packet 2

also as a contiguous bytes for stream 1, which refers to a particular orange object here to say that

data is prepared.

And then when the packet 4 is sent, although its packet identifier is not in sequence, but within

this packet, when you see the stream which belongs to the same stream as the orange object and

the byte offset aligns with whatever the data that you had at this end, now, you are able to

basically take the entire orange stream that is 1, 2 and 4 to view it as a single frame.

And this ensures now that the browser can basically work out the 1, 2, and 4 together and render

the object as you receive the packet 4. And eventually, when the packet 3 is received, and you

will see that this is for another object, it could also take and build the sequence of the stream. So,

if that is contained object, it could also render.

So, essentially, now, this helps decouple of the stream sequence of bytes versus the packet

sequence of bytes, ensuring that application can now be free of the head of the line blocking,

utilize the same connection, you need not how to build multiple connections either because each

UDP connection can now be viewed as different streams of connections that are operating in

parallel. In essence, the streaming of the data is done per stream within the same QUIC or UDP

connection.
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And, in fact, there are several other additional things that the QUIC brought in, in terms of

saying how you could do better RTT management, how do you want to ensure when there is a

packet loss, in TCP you have to discard retransmissions from accounting for RTT estimation, but

with QUIC, it also meant that they came up with the mechanisms where you could try to say how

you could still be able to do better RTT estimation even in the event of packet loss and it also

introduced a stream bit, which was a very interesting aspect but debated heavily as well in terms

of having just one bit to ensure that you can do the RTT estimations without having to do much

of the computation overhead because at one point when I send a window, I can set a bit to 0 for

one window, 1 RTT. And in the next RTT, I can spin the bit back from 1 to 0.

So, there were a lot of optimizations that were brought in from QUIC. And the deployment

although it started in nearly 2014-15, now we see most of the internet traffic when we are

especially transacting with any of the Google sites or any of the Chrome Website, it tries to use

QUIC to ensure that you are able to get better and faster connection. And what we can learn from

the QUIC in nutshell, is that layering is a good aspect in terms of modularity, but it can hurt

performance because of some redundancies that creep in.

Because TCP, TLS both had to do the handshakes, but TLS stacked on top of TCP could not

proceed until the TCP handshake is done. And this also meant now during the TLS handshake

engendered the TCP handshake to be, in essence, redundant. And although there were some key



parameters that you will want to exchange for TCP, which could then be coupled with the

cryptographic handshake.

And this is where the QUIC tries to leverage the two and tries to bring a handshake that

essentially does both the aspects in one go. And it is also important to see when we layer and

build, what are the side effects or the impacts that they bring in terms of the application metrics

of latency throughput at a macro level, as well as a micro level.

Because if we had not done the metrics to see what is the overhead that is being added by TCP,

how does it start in the current world because earlier the entire bandwidth, the connections were

slow. But now if you are having one gigabit connection all the way up your home, you are able

to transact a lot more data than what you would otherwise send in a slower rate.

And this is where the overheads of communications in terms of RTT tries to weigh in as a higher

cost. And now we have to reconsider how we would want to use them or minimize these

overheads. Nonetheless, when you used to try to do the UDP and brought in QUIC, it also has its

own share of challenges, especially when we say QUIC is no more network stack that is coming

with the kernel, but it is an application layer stack. That means, on one hand, you have given the

flexibility to build variants of QUIC protocols at the application layer and then adapt it for

different applications, two: the essence of trying to do things lot more, like if I have multiple

connections that I open, I would be doing the same aspect of the congestion control, flow control

in each of the process independently.

And this is where the overheads also start to creep in. And essentially, there will also be

measurements that were done where it was shown that because QUIC uses UDP and UDP use

less of a utilized service, the stack in the network is not optimized for UDP at all. And that meant

you would spend a lot more overheads in processing the UDP packet. So, all of these essentially

means that QUIC started to have a high CPU usage.

And also we spoke earlier about the offloads that were possible to the network card like if I want

to do the encryption offload, checksum offload, all of those were supported by NIC, which were

done by the TCP, and the kernel stack would then use the offloads of the hardware. But now with



QUIC, now you are in the user space. So, it becomes a lot more challenging to say how we can

really utilize these offloads.

And this also means that now you are doing all of this computation on the CPU, which ends up

having high CPU usage. So, if you have noticed, when you use Chrome, most often you will end

up having Chrome utilize a large portion of the CPU, that is because the variant that underlying

if it is having a lot more QUIC connections, it will start to see higher CPU usage.

And when you want the data to be written to the user space, there are also the optimizations that

were brought in to see how you can directly access the data right at the application layer. So, we

spoke earlier about the DPDK and Mem map mechanism. So, the same now hold fit for QUIC,

and in essence, if you see the other side of the opportunity, we see that QUIC makes gluing this

as a transport and application layer protocol for any of the applications that we want to build

with our DPDK kind of a framework. It makes it very ready fit.

(Refer Slide Time: 36:14)

And QUIC has evolved a lot more than what it started in the early 2015 to where we stand into

2023. And QUIC now is no more an acronym, but an IETF standard. And it was standardized in

May of 2021 where there are series of RFCs put forth by the QUIC working Group resulted in

like I said RFC 8999 for vendor-independent properties of QUIC, RFC 9000 which essentially

describes a UDP-based multiplexed secure transport and how it is, what is the protocol aspects,



how it is going to be built, and 9001 detailing about the TLS to secure QUIC and why TLS 1.3

for QUIC and 9002 for QUIC loss detection and congestion control schemes. And several of the

additional extensions were brought in terms of how the HTTP workloads would often use in

terms of leveraging the header compressions like QPACK that you will use with for the HTTP

and HTTP 3 in itself, a new variant that you will want to support for the faster HTTP

connections.

So, all of these have been standardized in a very recent times. And QUIC has a very strong way

forward also in terms of looking at the newer aspects that we want to build, especially like the

load balancer, multi-path support, version negotiation, and many more aspects are currently still

being discussed actively and are on the path to get standardized.

And we have tried to basically summarize QUIC in a very nutshell, but there is a lot more

beyond what is being covered in this. I encourage you to go look at the RFC 9000 at the least to

get a good understanding and grip on QUIC.


