
Advanced Computer Networks
Professor Dr. Sameer Kulkarni

Department of Computer Science Engineering
Indian Institute of Technology, Gandhinagar

Lecture 43
Summary and Comparison of NFV and SDN

(Refer Slide Time: 0:19)

To wrap up, let us try to see why we need NFV and try to understand how NFV is different from

SDN, that we learned a week earlier and also try to see what are the key research areas and

challenges that are still to be worked out and what is the way ahead with NFV. Foremost, if we

look at what this NFV relies on, it is about virtualization, and this virtualization is basically to

abstract out the physical hardware and enable the network appliances, which were dedicated

hardware, to be now built as software entities.

And this means that we can build these network resources as software without really worrying

about where it is physically located, how many of the instances we have to get, and how we

plumb or connect these interfaces in a physical way. And also we have seen this helps enable a

lot of savings on capital expenses, which otherwise you would have to shell out for buying these

network appliances.

Further, it also helps enable to orchestrate many of the instances of these software functions, like

if I can spawn hundreds of processes that is equivalent to creating hundreds of network



appliances. I can create hundreds of containers or hundreds of VMs it is simple for a network

operator. Hence the orchestration, in essence, becomes a lot more simpler, and the time to market

any of the utilities would be much more shorter.

Also, on the context when we looked this orchestration, if you have thousands of devices, it is

good, but how do you really manage them? So, cataloging, keeping track of monitoring, and

trying to do the best of the orchestration the automation becomes, in essence, the need. But

because it is virtualized because it is software, we can think of programs that can also help us do

this.

Next, because we have virtualized and we are trying to build these as the entities that are

software that readily means that we have an infrastructure where the network appliances

themselves are programmable, and by programmable what really gives us the flexibility is to

adapt and change on the fly.

Like if we see there is a change that we want to try out, we can change the code, compile, run,

and then we have the desired features to test out. And that is where programmability has been the

means to say that yes we have softwareized now these network appliances and have decoupled

all the dependencies that we had with hardware manufacturers or the OEMs and wait for them to

deliver the required or meet the requirements and deliver us the required product. All of this is

now decoupled.

Second, because they are programmable and they are software instances, we can scale them as

we want. That means we can meet to the dynamic characteristics of the network, like traffic

dynamics, whenever they are changing, we can adapt our instances of network functions as we

want, and also this dynamic scaling can be signed in two specific aspects. One, we could scale

out the instances and scale down or scale in the instances or lower the number of instances as we

go.

We could even change because these are what think of virtual machines where I can even change

the CPU, number of CPU, number of memory, what is the size of memory that I would want. All

these characteristics without really trying to do anything on the hardware. Thus this dynamic

scaling supports both horizontal as well as vertical scaling for us.



Third, now, because they are programmable and instances that we can control, we can automate

the things much more readily and easily, and we do not need as much of a human intervention

which is necessary for network operators or telecom operators to look at and manage specific

devices but now we can offload the task to the machines in the form of newer programs that we

can develop to automate the systems overall.

Further, whenever we have the hardware and they are deployed at one place, the visibility is

possible only when we monitor those resources specifically and have the connectivity to them all

the time. But now like as SDN said, there is a centralization, there is a central controller that can

provide the entire information about the network topology. We can think of having these

instances are also being managed somewhat by a similar management and orchestration

framework, which can provide us the entire visibility of what is the status of each of the network

functions.

Although we may not need to go and configure at each of the physical instances where they are

deployed because they are virtual, like an open stack framework, we can check and see what is

the status of each of the machines and likewise, like if you are using Kubernetes for the

orchestration of containers we could also manage the status of each of the containers that will

bring and it would really help us provide better visibility over what is happening.

And also, because now it is softwareized, the entire program the way the packets will be

processed, the way the functions would act, all of this is under our visibility. If we have the open

infrastructure and open source implementations of the network functions, unless where you had

proprietary devices where only the specific OEMs would be able to look and see what the device

is because it is a packed device where the firmware sign upgrades all of those would be managed

completely by the OEMs but now because these are software, we can even do the upgrades

anything on our side if we have open source implementations where we can change, adapt and

update as we need.

Also, the performance aspects, when we see the requirements and we want to map, we may not

have to shell out as much money for the hardware without the need. That means we can tailor the

network instances, the softwarized instances to meet our performance requirements. This way,,

we can actually optimize on the network device utilization.



Although, like I mentioned earlier, the performance when it comes to migrating from hardware

to software, the customers to the commodity hardware, and virtual instances running on top of

commodity hardware performance with NFV is a major challenge.

Also, if we look at it from a network and telecom operator perspective, what is more crucial?

Like if you have a data center, I have a cloud. I want to manage multiple of the customers or

multiple tenants, and all of those I do not have to procure newer hardware for each of my tenants.

I could reuse the same hardware infrastructure for multiple tenants, and that is what we also

discussed about multi-tenancy, which is now because of the virtualized infrastructure it becomes

a lot more easier, and the physical infrastructures can be upgraded as needed. While we can

support multiple tenants on the same physical infrastructure and this also means that we are able

to consolidate and better utilize the resources.

And overall, even the service integration makes it a lot more simpler because now we can have

the operations support systems and business support systems, which would be decoupled and

manage the network virtual infrastructures lot more easily.

In essence, the most prominent factor, which is the key here, is the openness wherein because we

have made everything softwarized, it allows any researcher, any startup to come up create newer

network functions, and innovate much more readily using the frameworks that have been created

and for a network operator or a telecom operator perspective you are no more tied or hooked to a

particular OEM vendor. You can mix and match any of the modules from different software

vendors.

Thus this allows for a full choice on both the network operator side, on the developer side the

implementers, and researcher side and openness fosters innovation, and this is how the NFV

really changes radically the way we can think of the network infrastructure or build the future

network infrastructure.

And if we argument and look back, the entire essence that we have captured here is the same as

why we really wanted SDN. But the context was just a bit different. Here it was primarily from

the network infrastructure point of view, and there it was basically in terms of how to control the

network elements themselves. So, there has been also a debate in terms of whether SDN and

NFV are independent or whether there is any dependency on the two.



(Refer Slide Time: 8:59)

So, to clarify that, let us try to relook or revisit NFV and SDN in terms of the core principles and

what is their model of operation. When we see SDN, it is basically the redefinition of the

network architecture itself. Like how the network was built in terms of how you want to control

and modify the behavior of the networking elements.

So, that is where we spoke about the data and control plane apps distinction and abstractions and

having to do with centralized controls in a minimal sense, and this is where we came up with this

set of abstractions and interfaces northbound and southbound interfaces to control the network

elements.

And the origin for the SDN was primarily from the IT world and how the networks could be

easily be experimented with. Like we want to get the visibility, get the view, and change any of

the network protocols, all of this in terms of not exactly saying that we will re-build a new set of

topology, we could use the virtual topologies and use the virtual switches and build SDN on top

of it. Because of the well-defined interfaces, we could use the open flow to control these physical

or virtual switches and manage them a lot more easily.

While with NFV, what we have seen is the redefinition of the network equipment architecture or

network equipment themselves in terms of how this network equipment are built. Think of a

router as a network equipment, switch as a network equipment. All of these need not be



proprietary devices, the NAT as a network equipment, firewall as a network equipment. None of

these need to be built as a proprietary hardware.

So, we have now redefined that we can rebuild these as software functions, and this is NFV

primarily came because of the proliferation of these middleboxes adding to lot of pain points for

the telecommunication and network service providers requirements. And that is where NFV try

to address those aspects.

And also, by product, what we have seen is also it enabled to greatly lower the CAPEX and

essentially eliminate or minimize the dependence on the proprietary hardware and the

consolidation of these onto a single infrastructure while leveraging what the IT world already use

as cloud infrastructures to build this NFV on industry-standard platforms.

(Refer Slide Time: 11:22)

Further, if I have to put it in perspective what SDN provides is programmability, the split

architecture of how the networks can be viewed with a control plane and data plane or the user

plane where SDN software or the SDN controller would sit somewhere outside of the actual

networking devices and the networking devices systems would facilitate basically the virtual

networks data plane functionalities in the physical network.

So, that is how where we defined the right set of abstractions and split the architecture of the

network elements. On the other side, if we see the NFV, we are now trying to say that the

network function is now becoming a software which is basically a VNF software which is going



to be run on a virtual or a physical hardware so you have right set of abstractions that are being

defined, and the programmability comes with respect to making these network functions as

software.

Well, the abstractions come in terms of making this network function to run on a virtual

hardware or physical hardware the way we would need and abstractions to build the virtual

hardware on top of the physical hardware, which were, in essence, what the cloud virtualization

that leverage.

And in another essence, the three key things that came is the OpenFlow control plane software,

that is SDN controllers or the network operating systems that would interact using the OpenFlow

onto the user data plane forwarding engine. That is basically the networks and network switches

and routers to configure the rules.

Now if we argument this to the NFV context. We can now think of the OpenFlow control plane

software itself as a virtual network function. That is a virtualized network function that we can

run and this could be basically our the network operating system that is being run as a VNF. This

could be a single instance, multi-instance, a distributed system that can be developed as a virtual

network function.

Second with the openflow abstractions that we now see, the forwarding element themselves like

what we call as the switches and routers these are also the hardware that, in fact, in the SDN that

we would want to talk to on the data plane. Now these instances themselves could be virtualized

so you can think of both SDN’s control plane and data plane elements as having being realized

has virtualized network functions and when we think of a vSwitch that we built within our

machines to enable communication across multiple VMs, the forwarding plane is a virtualized

network function that we can really build as what are the means not necessarily use the same

entire vSwitch for the communication but customize that because it is software now and adapt to

our requirements. And all of this would eventually run on the commodity off-the-shelf hardware

making full advantage and leveraging the means to build the network infrastructure at our will.

And this is how we can say that SDN and NFV are both orthogonal and there is no dependence

on each other.



While SDN and NFV, now you can see that NFV is complementary to SDN, and if you

remember in the earlier talk, when I said for NFV, we have a management and orchestration

framework, and for that SDN controller, the OpenFlow control plane software really augments to

the way we would want to manage these network functions because we are now able to control

and configure each of the devices through software. So, in essence, the two SDN and NFV can

be really seen to be complementary to each other.

(Refer Slide Time: 14:56)

Further, let me put it in very simple perspective of trying to understand how we can think of

SDN and NFV at different planes. At a very basic thing what it started with NFV, we had a

network equipment that switches and routers as black boxes because they embedded both the

control and data plane. What SDN tried to do is decouple the control and data plane and push for

open interfaces, especially in OpenFlow for instructing these boxes, which were earlier black

boxes, to now a means to configure these boxes the forwarding rules and set up how these

devices should behave.

To this, now if we look at NFV, what it has tried to do is, do not think of network equipment as

something that is hardware, but we can think of this as a software entity in itself. So, now no

more that a switch is a physical switch but it is also a virtual switch and that is where the NFV

plugs in. So, now you can see that SDN on one end can operate on both the physical switches as

well as the virtualized switches.



So, both are again complementary here and both augment rules and without having the SDN, you

could still softwarize and build the network equipment as softwarized network equipment. So,

there is no dependency either in either of them.

Taking it to the second level and see how these devices behave, like when we abstracted the

control plane, our intention was to make sure that we can centralize the way the decisions are

made and push onto these networking devices. So that decisions are now taken out of the box on

a centralized controller and all the devices basically would follow what the forwarding rules are

being said and operate at a user plane or a data plane to just do processing on the packets as

being instructed by the SDN controller.

Now in this space if we think of this decoupling that we have got and on the NFV side, how this

augments to SDN is to really create the interfaces and functionalities to realize the decisions that

we want to make because on the SDN controller you are really trying to run some functions and

these functions that you want to build can be thought of as a software entities that can be built

like we discussed about Dijkstra's routing.

That is one of the network function instance that could be running on top of the SDN control

plane which dictates exactly what functionality needs to be done and enforce that decision

through the SDN controller again.

So, again we can see that the functionality what we want to bring is where NFV augments to the

SDN but and the last in terms of the essence that we can see what SDN through centralized

control, what we really gained was a very simple management at one place for a network

operator to look update the aspects and that was the SDN controller through which we could

control the entire topology. And that means operations system support for managing those black

boxes was made lot simpler.

And now, with NFV, when we think of this, if you see that these instances could as well be

consolidated into a smaller set of instances and orchestrated as network functions, the

management can as well be done from the NFV’s manual framework wherein you would use

controller as a NFV and plump what are the requirements that you need to manage these devices.

So, again here we can see that because we are able to consolidate the management, we are, in

essence, aiding and helping SDN to better orchestrate and build the rules, and in other way SDN



is augmenting for helping a centralized way to control and manage these devices and how to

really provision network devices what to monitor all of these can work together between SDN

and NFV.

So, I hope we have tried to clarify why these two are complementary and how these two can

work on the same principles for different aspects and build a better softwarized networks.

(Refer Slide Time: 19:01)

To sum up, what I really want you to also remember is, we will address about the cloud as data

centers in the later part. But the core principles of cloud is infinite resources or on-demand

resources. And the way the cloud APIs are built is to provide you complete resource abstraction

wherein you are completely decoupled with what is the actual physical infrastructure that a cloud

provider is operating on.

You are only concerned with your instances of paid infrastructure that you virtually build or be it

the software or platform you could work on the clouds, and that is the benefit that cloud brought.

To that, when we augment the SDN, SDN provides what we call end-to-end connectivity. That is

end-to-end visibility of what goes on and provides the right abstractions for the network in terms

of how the network control needs to be set, and that is where SDN can be summed up as a

network abstraction that facilitates the right control APIs to manage the underlying infrastructure

of virtual or physical devices within the cloud.



And NFV, on the other end, when we argument it requires a cloud-like infrastructure, and that is

where you can basically do the orchestration of the provisioning and orchestration of multiple

devices with providing the flexibility of elasticity as on-demand resources. But what NFV, in

doing so, does is basically the functional abstraction because now we have built the network

appliances, which were hardware as network functions which are now software that can be

pulled in and scaled elastically as we want.

So, what NFV really tries to provide is having agile network services because they are very

flexible, they are softwarized, we can spawn and recreate change, tweak, and adapt the

requirements based on the requirements that we have very easily, and that is where NFV adds on

to the agile network services. And how SDN and NFV really interplay is basically with respect

to providing agility for the underlying network infrastructure and the means for automation.

Like when we want to control the NF infrastructure frameworks, we could leverage the SDN

control to dictate how the devices should be, and when we want the NFV to basically manage,

we can think of the control and data plane elements themselves that SDN wants to work with as

the network functions. And this is how the three key pieces of cloud SDN, and NFV come

together in trying to make us provide better-softwarized networks.

(Refer Slide Time: 21:38)

And to finally, remember about the key aspects of NFV; it is basically one that provides a

software implementation of the network. That is, the network appliances are now software, and



what this also means that I can really break the network appliance into multiple network

functions and use them as and how I want.

And this also means that if there is a firewall that is maintaining a state that is processing the

packets, that is also doing a NAT kind of functionality. You could basically decouple all of these

functions and realize these different functions that I want to scale. Especially when you see that

you have a functionality being a bottleneck either due to the I/O or due to the compute, you

could scale only such instances rather than scaling all other instances, and that is where this

network function modules really helps us treat these microservices aspects into these network

functions and scale them as and how we need.

And third, is basically implementation in virtual machines; what that means is these network

functions could be implemented on a virtual infrastructure, and this way, we really leverage all

the benefits of what we saw on the cloud or IT industry with the deployment of virtual machines.

Abstraction for infinite resources, of course, we can get that if we are able to scale the resources

and have sufficient underlying hardware to provision them on will.

And the fourth is the standardized APIs between the modules that we looked up earlier about

what the HC’s NFV reference framework and architecture try to pull about how we can enable

any of the independent software vendors to develop the network functions leverage on like the

open stack or Kubernetes kind of a framework for managing the underlying infrastructure and

presenter virtual infrastructure where we could run virtual machines or containers as we see fit

and also make sure that they are able to operate, interoperate amongst them through the defined

set of standard APIs.

And the road ahead is with respect to how this NFV is shaping the 5G and 6G networks

infrastructure, the Edge infrastructures, and HC; if you visit the HC NFV working group, there

are specifications and documents about how the NFV infrastructure or what are the

specifications to meet out the 5G requirements, to meet out the Edge capabilities that the

community is currently talking about and it is playing the road ahead.

(Refer Slide Time: 24:09)



Let us try to look at the NFV and Service Function Chaining, in essence, put together as network

services, what are the core research areas. The first and foremost like, when we think of NFV or

SDN, it is again abstractions that we are trying to build, and with abstractions, also we want to

ensure that the performance criteria are not affected. So, abstractions and ensuring

performance-oriented abstractions is a key aspect. So, the abstractions for carrier great networks

and services and which are basically performance-oriented, so that you want to minimize the

overheads of presenting the abstractions themselves. That is one of the areas, the other

prominently being just the performance of the network functions themselves on a given

infrastructure. How do you optimize, how do you schedule, load balance, and ensure that these

network functions are reliable, becomes another critical area of research, and if we see in the last

decade, many of the publications have come out that tried to address these abstractions

performance and also the protocols aspect when we say Service Function Chaining, how do we

ensure that the packets go back and forth with less of overheads? How do you steer the packets

towards the desired network functions, which are the intermediaries that are being built

transparently?

So, there were several of the protocols like the prominent one being the Network Service Header

NSH that was put forth by Cisco, and there were also many other research works like steering,

flow tags, and many of the other works that followed to say what is the optimal way to use and

realize this function chaining.



And also the protocols for infrastructure management and control automation themselves could

be the key aspects to see how we are able to build the protocols that are quick to react, that

provide lower overhead, and so on. And overall, this NFV as an architecture in itself presents a

lot of new aspects to think of like when we have the clouds, and we have public and private

clouds, they have to interoperate, and likewise, if we have a federated cloud, the same could

work good for NFVs to have an infrastructure that is federated.

New kinds of network topologies and architectures that we can really think of and for all of this

as a researcher or as recognitions, if you want to exercise and work out in a much simpler

manner where we may not have access to any of the physical infrastructure or test beds, we

would also need the tools and simulation platforms to try out and see how things will work and

like on cloud you have the simulation frameworks you would try to want to see how the things

would be on our individual machines using some of the simulations or at least on a local very

small test bed to try out different things.

On the other side, if we see it in NFV and SFC systems and applications and well on the

application side, there is no limit to innovation, and we can have lots of new novelties, especially

with the IML coming in; how do you want to do real-time inferences on specific things, deploy

them at edges as edge network functions. What kind of monitoring we would want to do to

ensure that the SLA requirements, wherever they are violated we are able to predict, course

correct, and build the right actions within the edge and telecommunication networks point of

view and also orchestration like it is now no more a single point of failure because we can have

these virtualized network functions themselves trying to be built as an orchestrators, how they

would coordinate communicate and build this framework are all some of the interesting

challenges.

Further, when we look at resiliency, we spoke about what are the carrier grade requirements in

terms of downtime, in terms of time to recover from failure. So, how do we meet all of them with

NFV or the NFV infrastructure that we discussed above? So, also, for the network services,

because now you have a number of network functions that are chained to provide you these

services, it could be that not cut the hardware frame, but one of the network function instances

failed.



That means the chain in the chain multiple other instances are still active and working while one

of them has failed, and it is actually affecting end-to-end service. So, how can we overcome this

kind of service chain breaks that would happen due to network functions going down or a link or

virtual link or physical link that is connecting having some issues?

So, a chain-wide resiliency plan and also this is where consistency also plays a major role

because once the packets are processed, the service is not complete until it is processed by all the

network functions. But if one in two of the functions has been processed while the remaining are

yet to be processed, it is no more having the atomic operations.

So, we want to build the operations of a network service as atomic, starting from the first NF in

the chain to the last NF. So, how do we want to build such a framework without adding much of

overheads? That is another core research area in terms of NFV. And whenever there are failures,

you want to see how is these relations that are being built for the failures, how do you correlate

them, and seehow do you want to build the failure resistance network functions in this aspect.

And also tied with this is the state that we are trying to talk about because all network functions

have state; very few are stateless, but the majority of the network functions are stateful. So, how

do you manage the state and ensure the consistency for operations are all the key areas of aspects

to be addressed in NFV resiliency, and the other aspect is always often the security which needs

the right abstractions and right separations so that you are able to manage the network functional

entities without leaking or any of the entities.

And like I said earlier also these network functions because now they are going to be coming

from multiple independent software vendors, you want to ensure the isolation characteristics for

these devices, and also you want to have a means to trust which network functions you would

want to build, what functions that you can really deploy on your frameworks.

And also once you deploy these functions likewise when you deploy an app on your mobile

phone, a user needs to govern what are the access privileges for those network functions. The

same way user needs to dictate and control what are the access privileges for the network

infrastructure that we have on which these virtualized network functions are going to be run. So,

that means you need better and newer APIs to facilitate this kind of privilege control access

authorization and access controls for these NFVs.



So, overall we have looked at the NFV and said how NFV helps towards building the better

network infrastructure and why it is a key aspect in network softwarization and also discussed

about the Service Function Chains. Later off we will start to look at what we would try to see as

programmable networks, which is an extension to the SDN world in terms of seeing how

programmability can be done to address what we call as not just the traditional network stack but

also if I want to customize and build my own network stack, what do I do? That means I need

further programmability to build such things, and we will start to look at that in the next week.


