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Now, let us try to look and understand what we meant by NFV’s packet processing capabilities,

what are the needs, and where do we stand when we use just the available commodity hardware

and software. For example, if we use a Linux machine, what does it mean, and how do we

address these aspects of performance?



So, the figure here is trying to show basically what we see as a typical packet that is exchanged

when we send out over an Ethernet, and here what we are trying to show is just a bare minimal

packet that we would exchange from one node to the other and once that such a bare minimum

packet is typically considered to be offered 64-byte length which is going to be padded with the

20 bytes of the interfering gap and preamble of 12 and 8 bytes, making it basically a 64 byte

packet with the 20 bytes of the additional data that is being added before sending it out on the

link.

So, a total of 84 bytes is what gets exchanged when we have this very minimal 64-byte packet

that we can exchange at layer 2. So, if we take this as a layer 2 packet, that is a 64-byte

information at layer 2 and exchanged over a link with a total of 84 bytes.

Now consider if we have just a 10-gigabit interface that is what we have is basically a 10 Gbps

link, and on this 10 Gbps link, we are able to send this 84-byte packet that is 84 bytes or 84*8

bits. And if we solve this roughly, we will end up seeing that a 10 gigabit per second interface or

10 gig NIC would allow us for transacting roughly around 15 million or 14.88 million packets

per second.

And this 14.88 million packets per second, if we translate that to how much of a time that you

would end up with per packet, then you would do 1/(14.88 *106) as the time that you would need

to process such a packet which would correspond to roughly about 67.2 nanoseconds per packet

and that is the amount of time that we should be spending to process 14.88 million packets per

second.

And if we look at this and try to see if we have a 1.8 Ghz processor. One cycle roughly

corresponds to 0.55 nanoseconds or if we have a 2 GHz, then one cycle corresponds to 0.5

nanoseconds and on such a machine, if we now compute the number of clocks that we would

need or the amount of CPU cycle clock cycles that we can really spend to meet the 14.88 million

packet processing per second, then it roughly estimates to around 120 clocks on 1.8 gigahertz

processor or if we had a 2 gigahertz processor then it would roughly estimate to around 134 to

140 clock cycles.



And this is where we see that the number of clock cycles that we really want to expend are

premium, and have to see how we can meet or look at in optimizing these number of clock

cycles that we may have to expand once we receive such a packet.

And we need to devise mechanisms to ensure that if we are receiving a packet every 120 clock

cycle, we have to also deliver the packet out within those cycles or have a means to process the

packets within the stipulated time.
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So, to understand this better, let us try to see what really happens in traditional networking,, like

in the Linux World, once the packets arrive. The typical journey is as the packets arrive onto the

NIC, they are queued onto this RX queue or TX queue within the NIC, and then an interrupt

would be fired to the driver while the packets are copied to what are called the kernel space ring

buffers.

And once the packets are copied onto this ring buffer, an interrupt awakes the driver to start

processing on these packets. It would take the packets from this ring buffer and put it onto the

socket buffers, which the application would have shared for processing, and once the packets are

updated onto the socket buffer, a system call would then enable and awaken the application to

start processing the packets.

Note, this is the time that we are speaking is in terms of as the packet arrives to the time that the

application processes it, and the next packet that an application needs to process all has to be



done within 120 cycles. So, we need to understand this in principle, what are the stages that we

are looking at. One is basically the system calls that are involved in making the application up

and start to process the packet.

Two, the interrupt that really triggered from the hardware to the kernel space for the driver to

wake up and start processing the packet. Three, as the driver has to do the copy from the ring

buffers onto the socket for ensuring that the data is delivered to the right applications. So, these

we can see as the major components that would lead towards what we can see as key processing

overheads that we will be adding.

So, we need to understand the overheads that would be incurred and what are the number of

cycles that we would have when we look at this budget that we just spoke about.
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So, we can do that using the strace functionalities or trying to do the kernel tracing or profiling of

the different functions that we have within a system, Linux kernel and the network stack. And if

we look at a typical function when a socket wants to send out a packet, it would use sendto

system call.

And once this sendto system call is done, how much time does it take for the packet to arrive

eventually onto the NIC interface that is out of the ring buffer for that the driver can initiate if it

is ixgbe driver which will call ixgbe_xmit to send the packet out on the link.

So, if we analyse these calls. This is a trace on one of the Linux devices, which was done in the

lab of early 2014 and we can do that on any of our machines and see how the time would look

like, and we can see that the sendto call itself takes around 96 nanoseconds which is much more

than what we said about 67.2 nanoseconds of the budget that we had for per-packet processing

on a 10 Gbps link.

And as it goes further into the network stack of the TCP that starts from the sosend_dgram and

then udp_out where udp header processing and allocation of the mbuf in the sock_buff and then

eventually processing where the route lookup happens at the layer 3 where to send the data

which interface to send the data out and then the layer 2 processing with a MAC lookup and

MAC header setup. All of these, we can see that they incur a lot more nanoseconds time than

what we really had as a budget, and if we sum it up for the time the packet is being asked to



deliver out from the application to the time that packet is really sent out from that device if we

sum it up this roughly corresponds to around 950 nanoseconds.

And we can see that this is almost 20x more than our real budget of 67 nanoseconds. Hence we

can see clearly that we need newer mechanisms unlike what we said the virtual instances would

really work is not true as it is. So, we definitely need certain mechanisms where we can optimize

on this what would it really mean is either rewrite the entire kernel stack or rewrite the network

stack part so that we can optimize on it or rewrite the system calls, which would take much lesser

time and this is a daunting task.

So, we need varied mechanisms wherein even though we may incur the latency in these orders,

we may want to hide latency wherever we can, and that is where typically we do the buffering

where we process in batch, not just one packet. If we send this functionality of sending just one

packet takes around 96. If we send the 100, it might take a few orders more but not 10x the time,

and that's where we can really save on latency. That is one of the approaches.

The other, if we are able to see the bulk of the processing overheads are happening in these three

network stacks. If you are able to avoid the kernel, we can eliminate lots of these other

overheads. So, this is where many of the researchers thought together put together as a

consortium of what all options can be brought to minimize this overhead so that we are able to

keep up then with the 10 Gbps, but now we need to keep up with 40 or 100 Gbps links at the

least.
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And towards these challenges, many alternatives were thought, and the things that really

emerged were what we thought as a kernel bypass because trying to do anything in a kernel was

taking multiple copies and processing overheads. So, better avoid this processing in the kernel,

and when we look at these middleboxes, they are really the applications now running in the user

space. So, why not do the layer 2 packet processing, layer 3 or layer 4, whatever is required right

within the user space?

Well this may add more cycles that we would need to process the packets on the application, but

it would certainly be tailored to what are the requirements of an NF. Network function has rather

than having to do all of the processing for every NF, irrespective of what its requirements are at

layer 2, layer 3, or layer 4, to go through this entire stack, and that is where many of the kernel

bypass techniques emerged and what they really mean when we say this we bypass the kernel is

first, we avoid the interrupt based processing. That means the network interface does not have to

interrupt the kernel driver, wake it up, and start processing. Instead, we can basically poll the

hardware to see when the packets are arrived or immediately send the packet whenever there is a

packet that we want to send it right onto the hardware.

And that is basically through the elimination of the interrupts, which were seen to have major

overheads. Second, we avoid the copy of the packet data from kernel space to user space onto the

ring buffers that you would want then for that hardware to transmit the packet. Instead rely on

the NIC, that is, the network interface card’s DMA to copy the data directly into the user space



buffer and vice versa when we are trying to transmit a packet from user space onto the NIC

memory, where the packets would eventually be transmitted out using the ixgbe_xmit. So, if we

are able to avoid the copy overheads, we would be spending much less of a cycles.

And third, avoid doing any of the system calls which would incur a change of processing, and

scheduling in terms of a user space, context to the kernel space, and vice versa. So, instead we

could use regular functions or library, APIs which would not have to do much with the system

but try to manage many things within a user's space.

This although seems simple has a very challenging aspect to build when you want to have realize

these software of network functions.
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But nonetheless, we can think that if we are able to eliminate these aspects, we would be able to

save a lot on the processing latency, and this is where the things emerged and led to what we see

as a data plane development kit. And this data plane development kit initially originated from

Intel which was meant to provide high-performance I/O and this high-performance I/O as a

library so that it can be implemented in user space.

And this also incorporated that you need special support in the hardware so that you are able to

poll the device rather than the hardware going to interrupt back to the kernel. So, the extensions

were both in the software as well as in the hardware support so that you are able to facilitate

polling on the NICs. And then you would also like as you poll, you need to transfer the packets



directly onto the user space memory. That also required that you bypass the OS and copy the

packets into the user space memory with specific shared memory infrastructure.

So, this was the base of how we could think of having faster packet processing that could be

done on the traditional Linux machines. But when we tried to suit this onto the NFV

infrastructure, NFV has a lot more requirements than this because we need to support running

multiple of the network functions, we need to support having multiple of the network functions

being controlled through an external management and orchestration framework wherein the rules

of forwarding could be set by an SDN controller and each of these network functions could

themselves have to communicate, intercommunicate with them, forward the packets, manage

their own state and in fact when we bypass the kernel we no more have the luxury of a TCP stack

that used to do the reliable packet handling between the two ends.

Now all of that has to be pushed onto the network functions themselves, that means we need a

user-space TCP stack if we have to support TCP connections like HTTP or TLS termination;

network functions now need to additionally support this TCP stack if they have to utilize this

data plane development kit.

But what DPDK really provides is ensuring that very least latency for a packet that would arrive

on the NIC be made available for processing at the user space and ensure that this packet

whenever a process wants to send it out, can be immediately sent out on the NIC without having

to incur any of the overheads. And this is where we need now the use of DPDK and the

combination of the things to further support these aspects that we just discussed.
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And DPDK through its, as soon as it came out, became heavily popular and was used in many of

the network function frameworks. And this requires us to at least understand in a bit what really

changes with the DPDK or why it is really a fast packet processing model, and what it really tries

to bring in is that now NIC would handle the RX/TX queues as it is in the earlier hardware.

These are the hardware queues where the packets would be queued up on reception or for

transmission, and it would be accordingly processed by the hardware. But whenever the packets

arrive here, note now that we have now gotten rid of any of the packets that we were trying to

copy in the RX/TX ring buffer or copying back to the socket buffer for the applications. Instead,

now the ring buffers where these packets were going to be put are shifted from the kernel space

to the user space.

So, what that means is there is just one copy of the packets going directly onto the ring buffers,

and once the packets are copied to these ring buffers because they are in user space, the DPDK

framework can allow the application, which is basically a library that is hooked with the

application to process that packet directly in user space without the need for a system call and

without the need for any interrupt from the NIC to the hardware to process those packets.

And thus, it is completely bypassing the kernel space providing the packets onto the user space.

And likewise, when you want to transmit a packet, you are making a DPDK API call to push the

packet out, and it would copy the packet onto the ring buffer and then which could even be the



mem-mapped buffer so that you will eliminate the overheads of copying and only trigger for

having the NIC to send it out.

But this requires some updates into the kernel space, and that is in the essence of the user space

I/O driver, which basically changes the mode of operation of the NIC, which earlier used to

deliver an interrupt and process the package to the kernel space to now change to no interrupts

but copy the packets onto the ring buffers where the user space buffers are being shared. And this

model became very popular, and we use it excessively in network a function, any of the network

functions frameworks.

And this also comes with several of the additional things. The foremost being the processor

affinity, wherein any applications that you would want to run because you have the memory that

is now running on which will have different amounts of overheads when you are trying to

process memory of different regions, especially because now we have multi-socket or multi-core

systems where memory access to one region may be cheaper than memory access to other

regions and this is where the NUMA awareness is required and trying to bring the affinity of a

application to run on specific processors.

So, if I am having a network function that is running in socket 0, that needs to be ensuring that

we are having these NICs also tied to the same level so that the memory access between the two

is cheaper.

And to avoid especially when we access the packets, they may be huge number of packets that

we will be processing in a short span, and if there is a memory access which is a virtual space

memory that we are trying to see and there are access overheads especially if you have to swap

in or swap out the pages which are typically the 4K pages that we see, it would incur lot more

overheads in kernel trying to be involved in the page swap.

That also could be eliminated through the huge use of what we call as the Huge pages and here

what we are really trying to change is basically, instead of operating on a small page of 4K size,

we want to operate on a megabit or gigabit sized page so that the pages are always resident

within and you want to avoid the overheads of swapping.

Further, these Huge pages also help like you now you have minimized the number of pages your

TLB, which is very limited in terms of keeping track of how many pages that you are really



active can always be resident. So, your TLB need not have to be flushed in and out anytime this

swap happens or anytime the context switch happens and this use of huge pages either as a

gigabit size pages or in like 2 MB pages are being used heavily with this DPDK framework for

further optimizing on how the packets can be really worked out without paying any overheads.

And polling in fact, ensures that we are dedicating a new processor which is going to look for the

arrival of any packets on these ring buffers or push the packets immediately onto these ring

buffers. And we also said like when we have applications, we may have multi-threaded

applications or even we can have multiples of applications that are going to be operating with

DPDK and somewhere they would not have to synchronize in terms of when to process a packet

when to push the packet or forward a packet to another NF, and there may be a good amount of

interaction between multiple of these threads or multiple of the network functions in user space.

So, we would also need key primitives to ensure that we do not have the system calls typically,

we would have a mutex where you lock or you have a semaphore that you would use or a

barriers which are typically in the system calls that you would do. But now we cannot have that

luxury if we want to do the fast packet processing, and hence DPDK also provides what is called

as a lockless synchronization fashion in terms of how we can use fast weight mechanisms for

multiple of the threads to operate in the DPDK space.

But we also need newer mechanisms, not just as DPDK libraries but maybe some things that we

can also augment and build. But the push towards lockless synchronization gained very high

attraction, and several of the mechanisms were also pulled in this and like I said before, the best

way of latency hiding is always doing the batch mode of packet processing.

Because whatever the time that you need to transmit a packet from one to the other, if I am

taking 100x units of time to do that operation and 10x units of time to actually do the copy, then

if I do two copies instead of spending 110 cycles, I would just spend 120 cycles because the copy

overhead is only 10 cycles while trying to do this operation itself is a hundred cycles of waking

up and doing moving the data.

Hence if I increase to a larger batch size, I would end up getting greater benefits, and this is

where the batching of packets when we want to really process started has always been used, not

that it is a new thing that came with DPDK. This was always been the case with respect to when



we build the queues, we want to ensure that you have sufficient packets in the queue, and then

you process a batch of packets.

And the same concepts have been borrowed over for DPDK, but we want to ensure that we treat

a batch of packets even when we want to process the packets at the application space, and that is

how we can see this DPDK as a framework, as a user-space library that enabled for rich and

faster packet processing plates.
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And this DPDK in its essence, comes with two specific kinds of models. One is what we call as

the run-to-completion mode. Here, the network functions that we can think of that we want to

deploy, are deployed on specific app, and it would have basically as the packets are sent it can

process them all at once and send the data out, that means that RX to the TX chain and all the

processing happens in one go, on just one dedicated core.

And this way, we can basically ensure that there is no overhead of passing the packets from one

core to the other because if you have to access the thing, there are a lot of things that come in

between as the caches where the data would already be warmed up and if you move to another

socket or another core which has its own separated L2 and L1 cache, then the data that needs to

be re-pulled into those L2, L1 cache from L3 that would incur more cycles.

Hence, processing in a single core was seen to be a more effective fashion, and that was called as

a run-to-completion model wherein the entire thing, start to end, you do all the processing and



send the packet out so that you are optimizing on and evading any of the memory overheads. But

this model, although best in terms of performance, creates a problem when you want to have

multiple of the network functions that have to interact.

And especially because now you have to glue all the network functions into one processing and

make them as a single process which makes it really tedious job to bundle them up in one

because we want independent software vendors to develop different network functions.

And if we have different implementations, and different mechanisms being used, this

run-to-completion model seems a tedious task to integrate and build. Hence the other alternative

is also provided, that is what we call as a pipelined model. Here different virtualized network

functions can run on different cores.

What that means, now is as the packets arrive, there will be a RX thread that would poll for the

packets that are going to be received, and once they are received, it would copy onto the shared

ring buffer and through this ring buffer becomes basically a channel for communicating another

thread to really process that packet. In essence, what we can see is we can really change these

RX thread ring buffers so that multiple of the network functions would have their own rings and

their own RX and TX threads to process the packet and move it out.

So, that way, there is an overhead that we pay in terms of updating the contents onto the ring, but

we can see now that you do not have to really copy a packet. If we have a packet and they are all

going to be used in a user space, we can have it on mem-map and then just share a pointer to that

address. So, here typically, what you are trying to copy is just the metadata of where to access a

packet rather than copying the entire packet.

And this is where the pipeline model really helps in augmenting the fast packet processing and,

at the same time, ensuring that we can build the NFV applications which are really

heterogeneous in nature and can operate together on different cores. Further, we can see that now

NFV, if they have a different requirement, a single NF when we deploy as a VM, it may have

multi-core requirements, wherein you want to do certain pre-processing, the actual need of

whatever the application has to do, state updates and then post-processing, each running on

independent cores.



All of this can be readily supported in this pipeline model. Although there is a bit of overhead in

terms of the copying and updating of the ring buffers and context switching of different threads

are the two overheads that you would see as opposed to what you would see in the run to

completion.

But the flexibility that you get with the pipeline model is a lot more and readily usable for

deployments of network functions, and once these were seen, there were a lot of research works

that came in either of the contexts and one family of works using run to completion for very fast

packet processing and the other family of works that use the pipeline model and try to build a

framework for developing the NFVs, and both have been equally adopted and used and

preferably like what pipeline model provides has greater advantages although comparatively less

performant than they run to completion models.

But again, like we spoke of the techniques wherein we were able to mask, we could use similar

techniques in the pipeline model to mask the processing overheads or have what we call as

latency-hiding techniques that can be developed for better and more efficient packet processing.
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So, to sum up what we have looked at is not in a very depth of the DPDK but the high-level

essence of what DPDK constitutes of. But if we have to get into the details of what DPDK, it

would be a tutorial on its own of roughly 5-10 hours. But I would encourage that you go look up



the DPDK at this dpdk.org which is like I said now, it is taken up by the Linux Foundation, but it

initially originated from Intel.

And there have been so many of the documentations, and especially when we see the open

source implementations, typically we are wary of how the documentations are. But in my

personal view, the DPDK has the best of the documentation in any of the open source.

Although now many of the open sources are coming up with good documentation but I think

from day 1, the DPDK when it started, they have the best of the documentation. So, it is very

easy to follow it up, what are the key APIs that we would have to use, and how to build on and it

is very easy to try out this DPDK as well, and there are so many of the like I said SDN-NFV

groups including our group where we have another framework called openNetVM where we can

look it up and see how it is been designed.

And this is one of the approaches. There were also alternative approaches that came up. One of

them being the netmap and the other being the PF_ring or the Linux and APIs or new APIs to

facilitate faster packet processing.


