
Advanced Computer Networks
Professor Doctor Sameer Kulkarni

Department of Computer Science Engineering
Indian Institute of Technology Gandhinagar

Lecture 41
Network Function Virtualization – Road Ahead and Key Challenges

(Refer Slide Time: 0:18)

So far, we looked at what is NFV and what were the standards, the frameworks, and all the

positive sides of how NFV is able to help decouple and deossify the network infrastructure for

the telecommunication and operator networks. Now let us try to look at the other side of the coin,

that is although we say that NFV promises a lot of benefits. When it comes to real-world

deployment, it also brings along a lot of challenges with it. And as I mentioned before, these NF

services, NFV would be deployed as NF services that are used to build typically the network

services which include a chain of network functions. So, for the practical deployment purpose,

we need to look at an NFV infrastructure that is going to constitute of multiple of these

virtualized network functions, and then they are chained to provide a set of services, as we show

or discussed before.

So, from this perspective, let us try to see what are the challenges that we see with the real-world

deployment of this NFV and service function chains. First is the management and orchestration.

So, we did discuss about how the NFV mono framework tries to help automate or softwarize the

aspect of management and orchestration.



But when we look into the details of what it means to really manage and orchestrate these

network functions and chain them together, we need to think of trying to associate this with the

real-time workload. So, when the workloads change, that is the network traffics, which is

dynamics that keep changing, and also the systems, the infrastructure that we have, we may see

the ups and downs. So, whenever there are any changes either onto the infrastructure or onto the

traffic characteristics or the demand perspective, we need to provision the resources on demand.

And this is where a dynamic provisioning aspect needs to be supported. How exactly to support?

What is the time scale and which we need to provision and how do we really automate such

control and how do we monitor and manage this traffic so that we are able to do these updates in

time? All are the associated aspects that need to be relooked and have to be worked in tandem,

make sure that NFV and SFC as a thing can succeed. Hence management and orchestration, in

essence, require a lot of efforts to make this happen in real-world deployment.

And second most critical aspect is this performance optimization, and when we speak of

performance optimization, we are talking about how to schedule the resources. How to load

balance the traffic on these network functions and how to maximize or optimize on the resource

utilization so that you are neither over provisioning nor under provisioning the systems.

So, all these aspects need a major consideration, especially when we move away from the

hardware infrastructure which used to process the packets to a software function that now needs

to process a packet performance optimization becomes the most essential aspect to look at.

Third is the availability and reliability aspects, and when we see about availability, it is about

how much of the time the system is up and what is the guarantee that it is providing in terms of

in a given day or in a given month or a year, how much of the time is it always up. Is it 100%, or

is it lower than that and what is the value that defines the availability and reliability in terms of

whenever there is a failure, like whenever the service fails, how quickly can we make sure that

the data is durable?

Whenever it fails, we ensure that the data and the applications have their states saved and are

able to come back up properly, ensuring that there is no loss of user information or no loss of

functionality, and that is about reliability.



And in these aspects, we need to understand how we can build the NFV infrastructure, be it the

physical or the virtual appliances that we spoke about, to have resilience for the failures so that

we are able to accommodate the failures and have a tolerance for any of the faults that occur in

the system and ensure the availability of the systems for the majority of the time and these

aspects need to be relooked because now we are having a one more glued component, these are

virtual infrastructures that are all running on commodity hardware. Not the carrier-grade

dedicated or proprietary network appliances that we thought of and saw before.

And the other crucial aspects when it comes to the challenges which NFV is, in fact, security,

policy, and isolation. On one side where whenever you want to deploy because now we have said

that these software functions are going to be built by independent software vendors, there has to

be an implicit trust in which of the network functions can be really deployed that means like

when we think of having these android apps that we build and see it on our google play store

there has to be a trust in terms of whatever the apps that are being put are really trustworthy to be

run otherwise they may jeopardize the entire security of the system and hence with NFV

infrastructure, with this virtualization that we are bringing and talking about it becomes more

important, also play emphasis on security on this newer layer rather than just at the infrastructure

layer itself.

And hence the security and trust and how to build this framework or ecosystem becomes a major

aspect to look at. The other side is also the policy graphs because now, when we said we want to

realize a network service, we will typically build a policy graph spanning multiple network

functions, but these network functions may be developed and deployed by different software

vendors.

In a sense, now we need to make sure that we are able to make these two talks and work

together, and that is where the interoperability and portability aspects also come into shape, and

there is often confusion that I hear about when it stopped spoken about interoperability and

portability. So, let me try to put a perspective of how these two, although coupled are different

aspects.

First, when we want to define interoperability, it is about the capability of two or more functional

units that can process the data in a cooperative fashion. What that means is we may think of

having two different network functions, maybe from different independent vendors, maybe on



different locations, but when they want to update or function together as a chain, we need to

ensure whatever the data they are going to process and whatever the communication they are

going to have they should be able to understand each other and work together. And that is about

interoperability.

So, if you think of like the most common scenarios that we may have is, we may have a private

cloud, and we may have a public cloud. And when we deploy some of these services on private

cloud and some of the services on public cloud like Amazon, Google, or even on multiple of the

public clouds that we may deploy these services, we want the services that are deployed on

Amazon to be able to talk and work with the functions or services that are going to be run on

Google and likewise with our private infrastructure. That is about interoperability.

The other aspect is portability which is defined as basically a capability of a program that we

want to execute on our machine or our node to be able to do the functionality in the same way

when it is moved or shipped to another instance. And that is where the aspect of the virtual

machine comes in.

But think of this as what data it wants to use and what functions you want to use. So, portability

can be defined in aspects of either data portability or function portability, and for us, when we

have the network functions which contain both states, which is data and functionality that is

operating on the packets and updating of these states, we want to ensure that a network function

that is built for one of the NFV architecture as we discussed about OPNFV. So, if I have

deployed a network function on OPNFV-based architecture and am able to run that function, I

should be able to also run it on my private network function with much of ease without having to

modify any of the aspects revolving the core functionality of the network appliance that we are

building.

Although they may require some custom operation level of updates for very little modifications

in terms of configurations but the functionality as such should be able to work on either of the

deployments of the frameworks or of NFV frameworks. So, these are, in a nutshell the key

challenges that revolve around the NFV.

(Refer Slide Time: 9:03)



Let us try to look at least the performance aspects in detail to understand what it means and what

we mean by performance challenges and how the community has evolved over the last decade to

address these performance challenges. And also try to look in a bit about the orchestration and

reliability aspects.

So, first when I speak of performance and scale, what we are really trying to show here is we are

moving away from dedicated hardware or the middleboxes that we discussed earlier, which were

the hardware infrastructures of the network elements. And now, we are implementing the same

as software functions on these commodity hardware for the standard server machines. So, we

need to now compare how devices that were the dedicated hardware appliances used to work

versus how they would be behaving on the standard software machines.

And what we can see here is that when we think of these carrier-grade NATS as a middlebox that

were deployed on the network infrastructures. They were able to support around 320 gigabits per

second worth of processing capabilities and were able to scale up to 480 million connections

worth of data that they could store.

So, now when we want to move this to a standard server machine, we have to see are we able to

keep up with this rate and, likewise with the firewalls that dedicated firewalls from F5, another

company that used to ship, they are able to support almost around 640 gigabits per second

performance, that is, packet processing capabilities would go about 640 gigabits per second. And



also, they are able to maintain the connection and scale up to around 576 million connections

worth of information they can maintain and be able to process simultaneously.

But now, when we move to the standard server, think of these are basically the server-grade

processors that we are deploying that would be like 2 gigahertz to 3 gigahertz processing

capability with again the commodity memory that we would plug in which maybe again span

few gigabytes.

And now, when we want to use the network appliances that are running on top of it, what we

start to see the network is facilitated through the ethernet switches that ethernet first high-speed

processing ethernet that we may have, and what we see here is roughly the order of 10 to 40

gigabits which is a standard. Now we have moved all the way up to few hundred gigabits per

second in terms of the standard server machines able to have these ethernets and infinity band

support.

But this is still order less than what we would expect from the middleboxes, and likewise, when

we want to store the information of or scale the number of connections, it really becomes limited

in terms of what is the server address space that we can provide, what is the state that we can

build on each of these either in a virtual appliance or in a container model and that seemed to be

very limited in fact, and this is where the performance and scale aspects demand, innovations in

terms of how we can overcome and adapt this.

And a very simple way that we can think, if we have just one middlebox, a carrier-grade NAT or

a firewall which used to cost around 20 or 30 thousand of dollars, now we are replacing that with

the standard server machine, which is around less than a thousand dollars. We can scale equally

the same number of instances.

So, instead of one carrier-grade NAT, I can think of having 4 to 5 standard server machines, each

with 100 Gbps support. In a way that we are now going to manage multiple of these devices, so

that becomes another challenge although we could address one way of making it to be worked

out with scaling the individual instances or what we call as a scale-out but when we scale, we

also have to manage and orchestrate these network functions on which server would it run, where

would it run, how do you plan to build this aspect of provisioning the resources and trying to see

where is the demand, all the bookkeeping or cataloging for all of these services and automation



become a major challenge with the management and orchestration of these scaled out standard

server machines.

And most important, again is with respect to availability and fault tolerance. So, if we think of

these middleboxes, which were carrier-grade NAT or firewalls, the telecommunications what is

the requirement of availability of finite that is 99.999 percent of the time in a year these should

be available.

But when we move out from these dedicated hardware to the standard server machines, which

are known to have like less than three nines of availability time and this we see although it is

now like big of a difference when we see three nines to five nines it is a huge 100x order of

availability time that goes, that shifts when we move from standard middleboxes to the standard

server machine.

So, we look into it this challenge also in a way, what it really means, but now we can see that it

becomes really hard to meet the telecommunication grade availability requirements, and hence

all of these aspects need to be relooked when we want to really deploy these NFV frameworks.

(Refer Slide Time: 14:36)

So, let us look at the performance requirement and what it really means or how we can derive or

try to get a first-cut attempt on how we can think of what is the performance requirements for

these network functions. And we can characterize these network functions based on the network

workloads and kind of network functionality.



So, what here in this table is trying to show is we have the L2 forwarding machine, which is the

very basic switch, nothing else, and if we implement a switch on software in the machine be it,

you can just bare physical process running on a bare metal device and if we measure the number

of cycles that it takes to get a packet and move the packet out, provided the packet is already

available, and you just want to put the packet out on the NIC and what we see is the computation

involved not in terms of taking the packet in or moving the packet out.

Once you have the packet the network function which has to make a decision on which of the

port that it has to send. Basically, the forwarding functionality. So, just the forwarding

functionality when it is written as a code, what it really means is, you receive a packet on port 1,

so you read what is the port on which the packet came or the incoming port, you look up in one

of the tables basically the forwarding table to say which is the output port on which you want to

push the packet out.

And just this functionality, when it is run on a CPU, it was observed to see roughly around 75 to

80 cycles that you need to process per packet to make a decision of where to forward this packet

out. And if we have such a cycle requirement on the compute and if forwarding has a NFV

instance running on one core.

Let us assume a 2 gigahertz processor, then how many of such packets can be really processed in

a second matters a lot, and we can work it out to say that if I have 75 compute cycles and on a 2

gigahertz processor basically, you can see 1 over 2 gigahertz or almost around 50 nanoseconds

that you would put per cycle and if we are spending 15 nanoseconds per cycle and we need 75

such cycles to process one packet; if we do the multiplication math and get the values we can see

that the 75 cycles would account to around roughly helping us process around 26.6 million

packets per second.

And these 26.6 million packets per second are good enough in terms of supporting around 20

gigabits worth of processing 20 Gbps support line with a very minimal packet size. And as the

packet size vary these numbers could change.

So just be able to forwarding maybe a fit enough candidate to meet around 20 gigabits as we see

on a single core, and as we scale the cores, maybe we will be able to do it better. But when we go

to the real network appliances that we want, taking a layer 3 IP routing and suddenly the layer 3



routing which would require us to look at the IP destination at a minimum and do the

destination-based forwarding, and if we have to do that then the number of cycles that we would

need on the compute end increases drastically.

And with this, we will see that there is a drop almost half the drop in the throughput that we can

achieve on commodity hardware. And as the functionality keeps growing, and that is where the

middleboxes really do, like L2 to L4 classification, then you will see that there is a 5x increase in

terms of the cycles that you would need just to do the compute part of how to classify.

Look at the layer 2, layer 3, and layer 4 headers, pass them, and then update the classification

table or bits in the packet, and then you would drop down almost 10x times compared to L2

forwarding in terms of what is the throughput that we can achieve.

And further, like these middleboxes, like we said, do a lot of stateful firewalls wherein you have

rules, you look up the table, you process, you drop the packets, or you allow the packets to

forward, and we can even have a layer 7 processing where you are trying to process all the

information up to the HTTP and try to do these functionalities for security functions like IDs and

IPS where you are trying to proven for every packet and match specific signatures to see whether

there is a need to halt the packet processing or forward it further.

All of these call for much more extensive compute cycles, and as the compute cycles keep

growing, we can see that the packet rates drastically drop. That means the essence that we are

trying to see here is that the compute cycles that we have are at prime, and the throughput that

we can achieve is really becoming very, very constrained when we really want to look at what

network workloads, we need to support for many of these forwarding functions or loading

functions or any of the security other network functions that we can think of. Hence it becomes

important to see how this can be optimized or what are the means where we can do things in a

better way.

(Refer Slide Time: 20:03)



And if we look at NFV performance challenges, what we really see as opposed to what we just

saw in the table. The typical packets may be around 200 to 500 bytes worth of exchange that

really happen over the internet, and with that, the real performance that you really get is around 3

to 4 gigabits per second processing capability per core, and this is true for most lightweight

packet processing which is much less than what the internet interface, the network interface

which is 40 gigabits or 100 gigabits, allows.

So, if I have to catch up to 40 gigabits per second, I have to ensure that the network function

utilizes multiples of the cores on a machine so that if it is you are able to process 3 to 4 gigabits

per core, you would end up putting network function on 10 different cores at least to ensure that

you are able to keep up to the 40 gigabits and thus we know that network interface speeds have

increased drastically to around 400 gigabits per second as we speak today.

So, keeping up the processing of just one machine or multiple of the hardware also becomes

really difficult. And why it is happening is, we need to understand and this was thoroughly

studied in the early works of 2012-2014, and the primary bottlenecks were identified to be the

TCP stack in the Linux kernel, and especially when we think of the virtualized framework, there

is a hypervisor which is talking to the NIC, getting the packets and then passing it on to the

virtual machines.

So, there is a two-way by-passing of the packets and processing of the interrupts and all of this.

That really adds a lot of latency and processing overheads, and hence there were several of



solutions that were thought of and were uncovered and many of them being the most optimized

method being the Intel DPDK.

Although DPDK was started by Intel and now it is under the Linux Foundation but this as a

framework of these solutions work is an interesting aspect to understand in the context of NFV,

and there was also a dedicated virtual mix which was meant to bypass the hypervisor, provide the

packets directly to the VM’s that were running the packets from the NIC. This also helped

improve VMDQ, and SRIOV, where some of the aspects that were brought by Intel as hardware

manufacturers and were also done by several of the network interface card manufacturers to

support them.

And we also will see that interrupt-based processing always incurs latency because you have to

switch the context, get the processing, and then take the packets out. And instead, these

alternatives were like dedicated packet processing CPU cores were added, which would avoid

the inter-processing and do the polling on the packets whenever they arrive, or you are able to

quickly process them and pass them.

And even in fact, it had a good impact on how the Linux APIs were built for sockets, and there

were changes that were made called new Linux APIs that were being presented to provide faster

packet processing capabilities in user mode, and we will see that PF_RING is one of the major

things that came up with an API in the Linux, to facilitate user space packet processing.

We may not have the luxury to run through all of these, but let us try to get a glimpse of at least

the most celebrated thing that is the DPDK framework, and understand how it helps address or

evade some of the performance challenges that we spoke about.

(Refer Slide Time: 23:32)



Next let us look at what we mean by orchestration challenges in a bit. So, this is how a typical

infrastructure looks like when we have like the community data center or a mapping it to a

typical enterprise or any other infrastructure. What we really have is the Edge gateways, routers

that are connecting you to the internet, and what we have inside are basically the switches

consider these as the virtualized instances that we may have built on our NFV framework on top

of the physical servers. And they may be connected in a logical topology in one or the other

fashion.

Now when we want to deploy the network functions on top of such infrastructure, what it really

means is where would you place these network functions in the first. So, consider all of these

network functions to be virtual instances. We may place them randomly anywhere on the service,

but would that be fine and what really matters is, when these are the packet processing

intermediaries, it would be better to say that we would have the functions wherein you are able to

forward the packets in one direction rather than going back and forth.

So, if we had these functions we do not want to be ending up circulating the packets back and

forth on the links to have lower efficiency of link utilizations. Instead, we would want these

functions that we want to change placed in such a way that we are able to process them all at one

place, or as we progress, we are going to have minimum links that we travel to pass these

functions. Hence when and where to place these or instantiate or consolidate these NFVs when



the workload is lower, all of these questions become a prime importance to address in the

orchestration.

Second, typically like what we see is when the flows arrive through the router and then they are

going to be processed, we have to make sure that a chain is built properly otherwise, like what I

just mentioned, we would end up with having the challenges of unnecessary traffic that is going

back and forth adding to the bandwidth tags on the given system. Hence how do we steer an

arriving flow and ensure that we are able to also meet the policy requirements as we steer the

packets becomes a major aspect.

And third, often, there will be traffic dynamics as well as the dynamics of the physical

infrastructure. Some links, some updates need to be done, or some servers are seeing a high load

in such a situation we need to shift the traffic. Hence how do we redirect the flows from one

instance of a network function to the other instance so that we are able to balance the load

becomes a major aspect. So, we need to look at all of these as the key orchestration challenges

when it comes to your deployment of these network functions.

(Refer Slide Time: 26:22)

Further, if we have addressed all of these challenges, the other imminent pressing need would be,

how do we address the resiliency aspect? So, consider we have this kind of a framework, and

there may be various things that can fail here. So, it could be the network function instance that

we have brought that could fail, or it would be either of the links that we have that are connecting



these devices be it the physical links that we are speaking could be failing, there can be linked

flaps that can happen and also infrastructure, the hardware that is hosting many of the servers

itself may fail.

So, we may see the failures at different levels. So, the foremost thing now becomes, whenever

there are failures, we have to be having the ability to detect such failures in a real quick time, and

only when we are able to detect and identify and isolate what are the actual failures, we will be

able to recover. So, recovery means that we would want to have alternate instances that are able

to take the load of whatever the field instances were managing.

And we spoke that these network functions, unlike the network elements where there is no state,

here they are full of state, that means whatever the flows and connections that they were keeping

the information, we need to ensure that there is a backup, there is an alternate instance that also

knows precisely what is the state at which the previous instance was working before it failed.

Hence redundancy through replication becomes an important aspect to work out that we are able

to carry forward the state and work even in the instance of failures of any network functions.

And that is not just enough because if we have a state, but we also need to now migrate the flows

from the failed instance to a new instance, and all of this means that whatever the state that was

updated, the replication has to be in real-time and the state loss should be almost 0 or at best

some minimal state which needs to be recovered in real-time again and the redirection that is

steering of the flows towards the newly updated or redundant infrastructure needs to be also done

in real-time. So, how to provide the correct and swift NFV service failure becomes a major

challenge when it comes to the real deployment of resilient NFV frameworks.

(Refer Slide Time: 28:59)



So, overall what we are seeing when we think of this resiliency we have to meet the availability

requirements, and what those availability requirements really boil down to is the drastic

difference that we see between the server-grade machines that we operate in a virtualized

infrastructure to the carrier-grade requirements that they impose when you see from the telecom

operators networks where you are running with the dedicated hardware.

To put it in context, what a carrier-grade for a carrier-class refers to is a system or a hardware or

software, a combination of the two or any component that is being put in a infrastructure needs to

be extremely reliable and in the sense that these systems have to be thoroughly tested and

engineered to meet the requirements of what we call as five 9s of availability.

And the five 9s of availability means this 99.999% time, the device, the software or hardware

that component needs to be up, and what does it really mean is if we take a downtime per year, it

should be less than 6 minutes down within a given year, or if we take it per day it has to be up 24

hours bearing at a burst about 864 milliseconds of downtime in a given day, that is less than one

second of downtime that you expect in a given day.

But these are possible with the carrier-grade proprietary hardware that were built, tested over the

years, and then deployed, but now, when we move to the server-grade machines, I said earlier

that the server-grade machines at best offer about 99.9% of the availability. While the

carrier-grade requirement is at least five nines, which can be anything further up from five nines

but nothing below.



So, now we are operating when you virtualized and running it on commodity hardware; our

availability requirements from the hardware point of view have really gone down, that is, having

around 99.9% of the times available only. Now if you compare the same with the down times

that you see, this is 5.26 minutes per year as opposed to 8.77 hours.

So, if you try to put this in perspective, you can see that this is almost 100x, that is, if you take a

downtime per week, you can see that it is around 10.08 minutes, that is, around 600 odd seconds,

while if you take the finite availability which is the minimum class that we need to meet that is

around 6 seconds of a down time in a week. So, you can see that there is a 100x shift with this

99.9, that is, three nines to five nines. And we are speaking of the range, which can be much

below this when we are talking of the commodity hardware.

So, it becomes a major challenge in terms of how do we make these systems available, and the

only means is basically you ensure that there is enough redundancy and we can fail over to the

instances much quickly. But when it comes to carrier-grade machines, it also imposes a

constraint of the fault recovery through redundancy models, and what it really says is, if I fail at

instant x, I should be able to recover to instance y within 50 milliseconds of time, and that is the

carrier-grade or carrier class requirements.

These are very essential when we speak from the telecommunication networks perspective, but

now meeting the same requirements with the commodity hardware becomes a major concern. So,

we need to say now how we can ensure the redundancy that is fine. Besides redundancy, we also

need to ensure that we are able to recover our boot-up in less than 50 milliseconds.

If you take your Linux machines as of today and you want to boot it up, it takes the order of a

few seconds at the least, even with the very 10 minimal Linux kernel, and if we think of virtual

machines that you want to run on a where minimal aspect, it would still take some around a

second or less than a second to bring it but in the order of several milliseconds.

Even if you want to spawn a container, the containers take around hundreds of milliseconds to

come up, and hence whatever the virtualization and deployment models that we saw make it

really impractical if we have to bring the system on the fly. We have to have like a backup that is

there and running so that you are only able to switch over in a short span of time, and that is

where the unikernels also gained a lot of attraction in terms of how we can boot it up in less



around tens of milliseconds at first, and this is where also like several of the research focused on.

What are the alternatives that if we containerize and keep the containers in active-active mode or

active standby mode? What are the means to update the state quickly and ensure that you are

able to start the processing in less than 50 milliseconds of time? These become major aspects

also in terms of research which is still actively perceived, but these are the key challenges as we

think of need to be addressed from the NFV point of view.


