
Advanced Computer Networks
Professor Doctor Sameer Kulkarni

Department of Computer Science Engineering
Indian Institute of Technology Gandhinagar

Lecture 40
Network Function Virtualization - Concepts, Framework and Architecture - II

(Refer Slide Time: 0:19)

So, we looked at the NFV framework that enables dynamic construction and management of the

virtualized network functions. Now let us look at the key architectural components of this

framework and what are all the key abstractions and interfaces that would be necessary to realize

such a framework. And in this, ETSI came up with what we call as the ETSI NFV reference

architecture also known as the NFV MANO or the ETSI NFV Management and Orchestration

Reference Architecture.

And again the components that we saw earlier to the components that we see now are more or

less the same, but there are some additional components that we need to discuss in detail. First,

this NFV architecture that was proposed by ETSI has, in fact, helped define the standards for

NFV implementation and so we need to understand what are those standards and it would not be

possible to cover all of them to a greater depth, but at least we should try to understand what are

the main architectural reference points and what are the executional reference points that are

being leveraged to build this reference architecture.



And in essence, this NFV reference architecture consists of, at the core, the virtualized network

functions or the software applications that would be deployed to deliver the desired network

functions on the NFV infrastructure. So, we looked at NFV infrastructure encompassing a virtual

storage, compute and virtual network, including the hardware infrastructure of compute, storage,

and network.

But when we think of these virtual network functions that are going to be deployed, then we need

to ensure that these network functions are managed properly and to do that, ETSI came up with

what we call as the EMS or the element management systems, which would be responsible for

the functional management of these virtual network functions.

And in this, by management, what we mean is to include the functions of fault management, the

configurations that we need to set for VNFs, what is the core required, the compute requirement,

storage requirements, memory requirements, all of these configurations that you would want to

do, the performance monitoring, what are the performance characteristics that you are looking

for, what are the SLAs that this VNF needs to be supporting and what are the security constraints

in terms of access control, authorization aspects, all of these configurations can be plumbed into

what we call as the element management systems.

And note that these element management systems can themselves be deployed as virtual

machines or virtual instances that would run on the same infrastructure, but this would provide

us the handle to control and configure the network appliances that we would want to run.

Although in this figure, what we have shown is that there is one-to-one mapping for an element

management system to the VNFs, this is not necessarily true. We may have a single EMS which

is able to be managing multiple of the VNFs. So, one-to-many is possible in terms of multiple

virtual network functions being managed by a single EMS instance.

And now, these EMF instances or virtual network functions need to be managed from the

network operator's point of view. And for a network operator, you would want to have control

from one place to say how these configurations can be done. So, for that, this interface of virtual

elements to the virtual network functions, the MANO infrastructure that we would want to

facilitate needs to be given, and this interface is between the core layer of what we saw as the

MANO layer.



If within this, we need specific functions, what we call the virtual network function managers,

which would manage the subset of these network functions because one of the kinds of network

functions can be deployed by some software vendor while the other kinds of network functions

may be coming from other kinds of a software vendor. So, we may have different virtual network

function managers to manage all of these different kinds of virtual network functions. So, in

essence, this VNF manager is responsible for the life cycle management of these virtual network

functions and the configurations on the EMS.

And when we mean by life cycle, is when to instantiate this network function, when to have the

software updates for these network functions, how to version these network functions and ensure

that you can monitor the performance levels, diagnose defaults, and if there are any failures, how

to heal or ensure that they can be respawned and when their life cycle is over how to terminate

these virtual network functions. All of these become the key aspects for this virtual network

function managers to handle.

And once we have provided these virtual network functions to the virtual network function

managers interface, that would enable any open environment so that multiple managers can be

plumbed in on a single infrastructure. Second, like we have at the bottom, is the network

function virtualization infrastructure which encompasses both the virtual and the physical

infrastructures; this again when we want to be controlled or like when we have a premise or a

campus or enterprise we have these infrastructures that are going to be set up.

We need a handle to again manage this infrastructure, and that is exactly the role of the virtual

network infrastructure manager or what is being termed as the VIM here in this diagram. And

this virtual infrastructure manager is responsible for managing the compute, storage, and network

resources, software or virtualized infrastructure, as well as the physical infrastructure. Then what

we would also need is to see how these network functions can be brought to life in terms of

managing the life cycle; there have to be some policies on which you would want to act.

And that is facilitated through the component of what we call as the NFV orchestrator in the

MANO. And this NFV orchestrator is basically the one that automates the deployment, the

operation, the management, the coordination of the VNFs when we spoke about how to chain

these VNFs, what are the means to connect these resources, all of this could be coordinated from



this NFV orchestrator. So, this NFV orchestrator basically covers the orchestration and life cycle

management of the physical as well as the software resources that are needed to run these virtual

network functions.

So, that means this NFV orchestrator would need to communicate with the virtualized

infrastructure manager on one end and also need to communicate with the VNF managers to

spawn or create the necessary virtual network functions and set up the configurations, etc on

them. Thus this NFV management and orchestration focuses primarily on all

virtualization-specific management tasks that are necessary to run this NFV framework.

And here, we can also see that there is a role of an SDN controller. Although the placement of an

SDN controller in terms of the architecture of NFV was highly debated SDN controller, like we

saw in our earlier lectures, is to manage how we want to set up the communication amongst these

network instances to manage or provision the resources or these virtual computes that we would

want to build in this NFVI.

So, we can think of an SDN controller as working in conjunction with the NFV orchestrator to

set up the forwarding rules that we want, what control functions that we want to build for these,

what is the topology that we want to build with the virtual links, all of these aspects can be

managed by the SDN controller which we can think of is being situated along the lines of NFV

orchestrator and the NFV manual framework. And the other most critical piece that any of the

operations in telecommunication or enterprise would have is what we are showing here as the

OSS and BSS component.

And in OSS and BSS what we mean by OSS is the operations support system and what we mean

by BSS is the business support system. Think of the operation support system as a means to

facilitate communication, to facilitate the concerns of whatever we need to deal from an operator

point of view to manage all of these resources.

And from this end, what we would see is basically that the means to maintain and operate all of

these devices, we need a specific database where the things would be basically stored in terms of

what information we are gathering about the infrastructure, gathering about the services that we

want to build and operationalize these services. And think of this operationalizing as taking care

of the entire infrastructure that we have and to ensure that we meet the utility over this



infrastructure. Like when we have a telecom operator who is trying to onboard a new user, what

is his status that is being maintained for a given user on the local premise is managed by the

operations support system.

And the other aspect is the BSS which primarily consists of how to interface with the customer

or the end user. Like if there is a customer relation management information that needs to be set

up, like when we talk over our mobiles or when we use the data, there is a billing that happens.

So, how these telecommunication billings that need to be done is given and updated to the user,

all of these aspects come into the business support. So, think of it in very simple terms if we have

to say the interface, for example, between the BSS is for capturing the user's requests or

capturing the order from the end user; like user specifies the intent to the networks through this

BSS framework and how you realize such an intent of end user, like the user wants to have 100

GB data that he wants to purchase that is done through the BSS support system. Now once that is

done, how it is being operationalized and ensuring that the requests of a user are fulfilled is what

governs what we call the operations support systems role to fill in and do this job. And this is

where like the reference points of this OSS and BSS, how they interact with the virtual network

functions and how they interact with the virtual network infrastructure hardware have been

categorized as other reference points for communication.

Note that the communications that are marked in green are the execution reference points for the

VNFs to interact with the hardware and, likewise, for the virtual layer to interact with the

infrastructure, that is, the software abstractions that we are trying to build for the VNFs to work

on a given infrastructure and the main NFV reference points or the ones that are marked here in

black are the ones that allow us to manage and control such an infrastructure and build the

desired services over this infrastructure.

And whenever we have such infrastructure requirements, we need to catalog a lot of metadata.

That means there is an implicit requirement to support the database where we catalog the

infrastructure, the kinds of network functions, the service descriptions, all of this data in one

fashion this could be a distributed framework by itself. Overall this was how the ETSI NFV

reference architecture was delivered from the ETSI group.

(Refer Slide Time: 13:29)



The ETSI NFV reference architecture saw various open source implementations, and we will

look at just one of the open-source implementations known as the OPNFV, which it stands for

the open platform for NFV and this is a collaborative project under the Linux foundations and

that has helped transform the global networks through this open source NFV.

And what this OPNFV tries to do is to facilitate the real implementations of the reference points

that we discussed in the earlier framework or the reference architecture, and it initially started

with the focus on the virtualized infrastructure manager implementations of how to communicate

or bridge this interface between the virtual infrastructure manager and the network function

virtualization infrastructure as a key piece.

And then it started to build all the other components and this OPNFV, which facilitates the

common NFVI and also facilitated a through the project as a continuous integration with several

of the upstream projects and when we say what were the core upstream projects that we see in

this architecture where they were having the means to develop and deploy network functions and

primarily it is the open stack that was there already to create VMs orchestrate and where to

deploy the VMs.

So, this OPNFV was trying to support integrating this NFV framework which is by developing

the VIM and the NFVI with integrating them with the upstream projects like open stack, and

when we think of the containers, we could have the Kubernetes as a framework that would



support and when we think of the controllers, SDN controller they service to support the open

daylight and many other like ONOS and so on.

So, the overall goal was to build this reference platform that any of the telecommunication

operators or even the enterprise operators could take and start to build the NFs and work them

out. And this has been a huge success, and it is continuing; although it started with just the

bottommost layer, it has now grown to address the VNF manager, the orchestrator, and the

interfaces between these points.

(Refer Slide Time: 16:22)

Further, there is also this Cloudband and the RedHat architecture. This is infrastructure based on

how the RedHat Enterprise Linux open stack integration could be done with the Cloudband,

which was an Alcatel-Lucent-based NFV platform, and this, in a way, offers a new way to

design, deploy and manage the network services. You can think of having the RedHat open stack,

which is now facilitating how to manage and provide control over the NFVI and implement the

NFV manager and also provide the Cloudband orchestrator communication with that to build the

VNF models.

And TOSCA is one of the core protocols or mechanisms to see how the NFs can be modeled to

build the abstraction, the logical abstractions of providing the services that we want to build for

realizing these network services. And these have been very prominent and successful, and there



were many more of these architectures that have been instantiated, but we need to see, we have

this framework architecture, and we have so many of the reference implementations, but what

exactly do they offer in terms of what are they bringing to the table?

(Refer Slide Time: 17:51)

And as we know, this NFV is about implementing the network functions in software, which

would now run on generic hardware. And in order to do this, we need to say when we create a

framework to instantiate these network functions, we are thinking of a data center or a cloud-like

environment where multiple users are using the same resources. That means we need to ensure

that the framework implementations that we have are able to support multi-tenancy.

And what we mean by multi-tenancy is basically an architecture where a single instance of

software application or the hardware that we have would serve multiple customers. And each

customer is what we refer to as a tenant. And in this reference, the mode of operation for the

software where multiple independent instances of the same software could be run by different

tenants. And we still need to ensure the isolation for the software infrastructure, but they may

still be using the underlying same shared environment.

So, logical isolation amongst multiple instances of the same software that we are going to run is

to be guaranteed. And this is where the NFV really helps by ensuring that we are able to

decouple the hardware from the softwarized instances. And each of these softwarized instances



can now be controlled and configured independently by different vendors. And that is how it

supports multi-tenancy. And another important aspect, whenever we try to build systems, we

evolve. And when we evolve, we start versioning the systems.

And then, when we expose these to the public, there may be a need where one user would want

to operate on a particular version while another user would want to operate with a different

version. So, there is also a need to support what we call multi-versioning, wherein which allows

the network functions of different versions to coexist on the same framework. And this makes it

also simple. Whenever we want to have upgrades or have to switch back to a stable version when

something experimental is not working, we could have the previous version rolled back much

more simply rather than having to restore the entire infrastructure.

And thus, this NFV, through the use of VMs and the right abstractions, enables to support these

cases. Further, this NFV also, we discussed saying that it would allow for having some sort of

resilience and service assurance and also ensuring that there is a security diagnostics and

surveillance that we could do with these functions. So, the reference implementations that we

want to build and the architecture need to have the abstractions or the APIs to facilitate these

information.

And overall, when we have such a framework, what it really creates is the opportunity for many

of the software players to come together and independently even build different network

functions. And this is where the innovation starts to foster in terms of how different software

frameworks can be pulled together and create new services, and even collaborate with different

network functions to create multiples of these services to work.

And in doing all of this, now what this NFV really tries to facilitate is to provide a scale for

deploying a large number of instances, meet the demands of the traffic load to scale out or scale

in the required instances of the network functions that we would want to run. And all of it can be

automated in terms of trying to bring a new instance of network function, managing its life cycle,

scaling the resources, or even scaling up the resources of CPU or memory requirements for a

particular function can all be done in an automated fashion.

And thus, what NFV actually offers is to ultimately transform the way we can think of the role

that the network operators have to do in terms of building the network infrastructure. But note



that this often always has to be incremental. We cannot have a zero-day where we shift to this

NFVI. So, they may still have to deal with the legacy hardware, but when it comes to the NFV

infrastructure, they may be able to automate many of it and mix and match in their infrastructure

as they see fit.

(Refer Slide Time: 23:08)

Thus, what this NFV essentially offers is in terms of economy, it reduces capital expenses and

ensures that we can run multiple network functions on the same hardware, that is, through the

consolidation of equipments, which otherwise would have been, you will have to purchase

proprietary and different kinds of equipments.

Second, it also helps enable the speed for the time to market. And that is where the acceleration

for innovation has been really upped by NFV, wherein we minimize the time that the network

operator would need to deploy, prototype, and idea because he is no more dependent on the

hardware operation equipment manufacturers.

Third, through the support of multi-versioning and multi-tenancy, we are able to now allow many

of the platforms to coexist on a single infrastructure. So, that is a consolidation of multiple

infrastructures as well. So, it is again adding to the economy of scale, saving on a lot of the

aspects of capital expenses, and also, from the user point of view, it also saves a lot of resources

and money.



And overall, this has enabled the open ecosystem for innovation and also provided the flexibility

to the network operators to easily manage, readily deploy, and provision new kinds of resources

and also provide better operational efficiency, wherein now they can take advantage of the

uniformity in how you want to manage the resources, you no more need to dig into the different

specs of different devices to just manage the management is one point.

Although the configurations and updates may require you to deal with the specifics, but in terms

of the operational management, it would have been a lot more simpler. And overall, what NFV

has tried to do is provide software-oriented network functions which are open to innovation,

which we can readily, rapidly prototype and deploy and test out. And in a way, we have basically

de-ossified the network infrastructure and enabled the network functions to take over and

softwareize these networks.

And all of this also accounts to a lot of operational expenses minimized due to the fact that we do

not have to have specialized labor to spend on. We have less of a power. You are not having

multiple of instances that would run for different purposes, but just commodity hardware running

multiple instances; lower requirements on the space to host and deploy these instances and also

in terms of monitoring now, the number of devices have gradually shrunk. So, you will also be

able to monitor these things very easily.

(Refer Slide Time: 27:00)



And all of this, in a way, is good, but it also means that we have now, in a way, tried to cap off on

how the IT-oriented skillset and talent can be reused for managing the NFVs because they are

now built on the commodity hardwares. And we can also see it as an augmentation that it is

trying to bring for the IT skillset to operate on the NFVs and build these NFVs very easily.

So, this NFV supports a lot of use cases, like we said. And if we have to start with the basic

switching elements, that is basically in the telecommunication operator’s world, we can have a

broadband network gateway or the BNG, which is basically the access point for the subscribers

through which they connect to the broadband network.

This can be deployed as a virtualized network function. Carrier-grade NATs that we also

discussed earlier can now be thought of not as dedicated hardware but as just the network

functions that we can deploy on the commodity hardware. And more so, we can even deploy just

the routers as the instances that we can run on the commodity hardware as just the software, like

Quagga that the Linux world offers can be used to run the different router configurations that we

want to build.

And when we see from the mobile network operator’s point of view in the mobile network

infrastructure, we can implement basically what we call as the HLR and HSS modules, which are

basically the home subscriber servers, which is basically in the 4G kind of a network where the

main function that they would provide is to facilitate the communication of the network with the

subscribers' profile and authentication information’s for a 4G user. And likewise, maintain this

information as a software instance rather than as dedicated hardware.

And we could also have what we can think of as the GPRS nodes, SGSN, or the serving GPRS

support nodes, which are used for basically ensuring that all packets switched data within the

network is able to operate and authenticate the users. And this mobility management, all of these

specific functions, which were earlier implemented as proprietary hardware can now be

implemented as just the software. And likewise, the SGSN or the serving GPRS support node,

which could also be, can be implemented as a software instance.

We can also have the GGSN or the gateway GPRS support node, which basically is responsible

for the internet working between the GPRS network and the external packet-switched networks

like the internet to speak of, wherein they keep a record of the active mobile users who are



attached to the SGSN network and facilitate for the mobility of these mobile users. So, all of

these functions, which were earlier the proprietary hardware with custom protocols that were

being built, can now be built as software functions.

Likewise, the packet data network gateways, which are the critical network functions in the 4G

mobile core network or the evolved packet core EPC networks. Hence, we can see that NFV can

be applied for ISP networks, for telecommunication networks, including home networks where

the ISPs can run specific functions as whatever this gateway devices that we would use to hook

to the internet can now be seen as the virtualized instances where they can provide numerous

home services for home environments. And in fact, when we connect with enterprise networks,

we typically use VPN gateways or IPSec-based VPNs.

Now, all of these functions can be implemented in the enterprise network as the virtualized

network functions rather than as dedicated hardware, which cost in several hundreds of

thousands of dollars. Also, for any kind of network, be it data centers, be it enterprise or

telecommunication, if we want to do any traffic analysis like DPI or quality of end-user

experiences, all of these measurements that we have to do, they can be built as custom functions

and not necessarily have to be dedicated hardware, including monitoring for the SLAs,

diagnostics that we want to run all of them.

So, in a nutshell, we can see the NFV replacing many of the custom or proprietary hardware that

otherwise were deployed in any kind of network, including firewalls, virus scanners, IDS, spam

protections, and so on. So, all of these become the key use cases for NFV, where they can really

transform the way we operate with the networks.

(Refer Slide Time: 32:16)



In essence, like if we look at this NFV use case as a carrier-grade NAT, we can build the NAT44

function, which is a software function that would manage a table, which would keep the lookup

of the public and private IP and manage the setup for translation within the IPv4. And also, it

could be the same device that we can now use when we want to tunnel and use the IPv4 and v6

devices. So, we can have a NAT4 address inside while we can represent a NAT6 or IPv6 address

to the outside world. And we can even facilitate overlapping addresses in a much more easier

fashion.

And if we see that a NAT is becoming a bottleneck, we can instantiate a new instance of a VM to

take over and enable that we can scale elastically the kind of functions and run them in our

hardware. And likewise, when I mentioned about the routers, we can think of open-source

control plane that we can build using the Quagga and Linux framework. And we could also build

optimized data planes to facilitate more performance-oriented operations, which we will look at

the data plane DPDK in the next lecture.

(Refer Slide Time: 33:42)



Nonetheless, what we have really tried to achieve when we rethink of the network infrastructure

that used to be around prior to NFV, what we would see is at the bottom, we have the hardware

infrastructure, which consists of the rack, cable, power, and cooling to run the hardware

infrastructure consisting of the compute nodes or compute hardware’s, x86 machines or any

ARM machines or any of the servers, the switching infrastructures like routers, the switch

devices, and the network infrastructure that encompasses variety of the middleboxes, which used

to be the core at the hardware.

And on top of these, we used to have the hypervisors, OS and applications run. Now, we have

taken out these network infrastructures and moved them into the software layer. That is, now you

can think of the infrastructure as just the compute and switching infrastructure that is there as

hardware. And all the network infrastructure, which were the hardwares earlier, have now moved

to a software network functions that would run on top of the same compute infrastructure. And

this shift is exactly what NFV has enabled and the shift has also led to a lot of innovations that

we can think.

(Refer Slide Time: 35:11)



So, now, when we see these network functions, the next immediate question would be, how do

we deploy them? And what we have started earlier was the dedicated hardwares. Now, we want

to run these, get rid of these dedicated hardwares and run on top of the commodity hardware.

So, one of the most simplest approach would be we have this dedicated commodity server, which

is running a server host OS and has comes with associated binary and libraries. And we deployed

a network function as a process that would run. So, to consider this as a Linux box and I am

running an application like Quagga on top of this Linux box. So, that is one of the most simplest

implementations that we can have.

So, here, we are running the network functions directly on top of the physical hardware. But with

NFV, we want to bring in the virtualization and with the virtualization, what we can think of as a

most common means to deploy is as a traditional virtual machines. And here, what we mean is

we create a virtual machine on top of the physical infrastructure through the use of the

hypervisor and run our applications or network functions as an application within this virtual

machine, which would have its own guest OS that would run on top of the hypervisor.

And this facilitates at most isolation, the maximum isolation and ensures that these virtual

machines can be spawned and run easily. But these are in a way heavy-weight because we are

now trying to maintain a guest OS, the binaries that are needed for that virtual machine to be run

on a single hardware. And they are more intensive in terms of the memory and storage. And

what we have seen as a shift in this virtual machine model is the lightweight containers.



So, we could even build our NFV infrastructure, the virtualized infrastructure to run these

containers, wherein NFs can be thought of as the applications that are run within a container.

And the container as a scope provides the isolation for that particular application, but it would

reuse the same underlying host OS. And that way, these are much more lightweight, and we are

able to deploy these containers in a much more faster way. That means the time to start or time to

spawn a new instance would also be greatly reduced when it comes to the container model of

running these network functions.

And there was also an interesting path that the researchers proposed and what we call as the

unikernels. Here, think of unikernel as a dedicated kernel which is just doing one function at a

time and that is exactly our network function. So, the unikernel app and host OS are basically the

drilled down or a very thin or lightweight host OS and app which just do the function that we

want. So, think of these as what we can see, when we want to run very specific code and just do

a particular job alone. And because these are now softwarized in terms of what we would want to

run, we can run much more of these unikernels on the same server so that we are able to scale a

lot more than what we would be able to scale or with VM end containers given the limited

resource constraints that we may have.

And these also unikernels make it a single address space wherein if something fails, it is easier to

respond to another instance or update the state much more easily. And these unikernels are also

called as library operating systems. And one of the most celebrated works in this is the Qlik OS

as a means to develop the network functions using the Qlik OS infrastructure as a unikernel.

(Refer Slide Time: 39:35)



To summarize, what we have seen is the evolution of the NFV framework and the reference

architecture. And for each of the reference architecture, as it evolves, we need standardized

definitions of what interfaces we are going to operate. And the slide here precisely shows what

are all the ETSI NFV groups, ISGs, and deliverables which have enabled us to build these

abstractions and build these reference points for implementing the open standards.

And you can see that we started with just six of these specifications and documents, but these

have culminated to more than over 30 odd documents that have come up trying to foster the

openness and innovation in this NFV infrastructure. I have put the links for those to look at, and

in order to access these documents in the ETSI, all of these are in the public domain, and that

would give us a good hint of what the way the evolutions have happened for this NFV just over

the last 10 year.

(Refer Slide Time: 40:46)



So, NFV, if we have to understand to the core, we will have to deal with a lot of terms and

concepts to deal with. I have tried to cover some of them and address them in earlier lectures, but

some of them we may not have covered. So, I have tried to put some of the key terminologies

and the concepts that are associated with understanding the NFV for reference in these slides,

including the most relevant acronyms that you may see in some of these slides and that you may

often encounter in trying to understand NFV.

So, next up, what we will try to do is we will look into the key challenges. We have looked at

how these benefits have evolved from these network functions, but any technology like when we



bring it also comes with its own sets of challenges. So, it is also important for us to understand

the key challenges that come along with this development and deployment, and the realization of

the NFV framework. And we will try to do that in the next class.


