
Advanced Computer Networks

Doctor Sameer Kulkarni

Department of Computer Science Engineering

Indian Institute of Technology, Gandhinagar

Lecture 28

Road to SDN

In the last week, we looked at how network virtualization and overlay networks helped

overcome the internet impasse, and enable the researchers to continue experimentations over

the virtual test beds. This week, we will continue and see what other developments happened

towards network diversification. And to facilitate better control over the network.

(Refer Slide Time: 00:39)

Our primary focus for this week would be Software Defined Networking, or more popularly

known as SDN in short.

(Refer Slide Time: 00:48)

And this SDN when we say it refers to a networking architecture, that virtualizes the network,

where the network control functions are decoupled from the network forwarding functions,

and also enable the network control to be made directly programmable. We will look at these

two aspects in detail.

(Refer Slide Time: 01:17)

And before that, let us try to see what actually happened and what were the points are

reasoning’s that were made for this SDN. And I often point to this famous quote by John

Day. And this seemingly a bold but a courteously a very true statement, wherein he pointed

out that we often believe the things to be the paragon of engineering at a given point, rather

than understanding that they are the snapshots of our understanding at that specific point in

time, which is also true when we look at internet as a marvel of engineering.

And this often leads to how we try to advocate about the merits and demerits likewise. But

often, what we end up doing is profits on specific aspects than re enquiring and looking at the

other aspects. And this is what John Day pointed out rightly, towards what happened with the

Internet. Nonetheless, we do need to understand that learning is a continuous process. And

progressive evolution is a natural phase, only when we continue to reason and inquire a good

habit.

(Refer Slide Time: 02:38)

So, let us begin our journey on SDN and try to briefly look at one of the most cited papers.

And this paper was actually almost a decade ago published a decade ago. And that clearly

illustrates what things happened in breaking out this SDN. And in fact, this paper traces the

intellectual history of programmable networks, including the very early efforts of active

networking, and the efforts to separate the control and data planes, including the works on

open flow and network operating system. So, I will try to summarize the key aspects that are

discussed in this work in a very brief manner.

(Refer Slide Time: 03:21)

So, we can think of this paper as three specific aspects. First, is the active networking, which

in fact, was the first of its kind to introduce the notion of programmable networks. So, let us

look at active networking, and then jumping to the other two aspects of separation of control

and data planes and the emergence of network operating system.

(Refer Slide Time: 03:44)

So, the first, as you see the active networks, were the first of the attempts that were made to

make the networks programmable. And this even the advancements of the processors, or the

processor technologies were in the significant reduction in the computation costs actually

propelled for the research, active networks.

In a sense, what active networking represented is a radical approach to network control. By

envisioning a programming interface or a networking API’s that are defined and exposed. For

example, the processing, the storage, the packet ques for each of the functions that happen

within a network, the API’s be exposed on each of the individual network nodes and be

supported in terms of a custom functionality that can be modified by the incoming packets or

a subset of the packets that traverse through the networks can modify these functionalities

within the network.

So, now you cannot think as packets as just as passive data that is being transmitted from one

end of the device to the other. But also, the data contains the active part, which can

manipulate and process and change the way the network behaved for processing of these

packets. And that is what really led to active networking.

In a very nutshell definition. It is like a communication pattern that allows the packets

flowing through a telecommunications network to dynamically modify the operations of the

network itself. And to understand it more prominently, let us try to see what actually active

networking offers?

It is basically a networking paradigm where the bits that are carried are in more general

constitute compute and data just as what we do a program, program contains a set of

instructions that enable you to operate on the data and manipulate the data. Likewise, now the

packets that are transmitted contain the code, which can be operated over the networking

elements themselves, to instruct or to modify the existing connections.

So, if we see this figure here, as a transmitter, you want the data X to be transmitted, which

constitutes of both the data that you eventually want the receiver to receive, say, or Y or not

necessarily the same data as what you transmit, but a function of that data that will eventually

result in the receiver receiving the data Y on the other side. And to make this happen, you

also add the code that would operate on this particular data X within the network. And where

this manipulation or the function when it is run would actually translate this X of the data into

Y which the receiver needs to receive.

And at the same time, if there is a code that needs to be operated within a medium and make

sure that some properties of the medium be changed from the initial state of medium to

medium prime, then this X code would facilitate to make this channel operate and bit. Let us

think of a very simple and an example of how the NAT operate. And what happens when we

try to do the NAT, you need to have the private and public IP matchings that are being set.

Now, this allows anyone from inside the network to communicate outside to a public IP. But

what about the other way? We know that we cannot reach back to a private IP unless we

know that there is a mapping that is being cited on that device preset that is a rule that exists

to say that what would be the public IP and port to which it can translate back to the private

IP and private port.

And this is not possible without the usage of this turn or turn aspects very hard to write the

traversal mechanisms and say that you can reach the device that is within a private network.

Now, if we are able to embed the code and data and ensure that as the packet traverses, it can

set up this functionality of mapping within an ad device so that now we are able to access and

reach the other side of the private network, or job is done.

So, that way the active channel is actually building the rules or mappings as you go. And this

is exactly in a sense of what active networking, try to offer. But for different ownerships, like

when you want to manage or when there is a change that you need to do on the network

routers or switches, you can instead of going to program get to the device and change you

could as well send the data that could make the updates that could even reflect the status back

to the user and help user to the necessary connections. And this is where the active

networking started. And this offered a major change in the networking paradigm.

Nonetheless, this was not as much successful because of the complexities that had in terms of

the deployment. But it essentially paved the way of how we can think of networks to be

active. And now if we look at it, in another sense, the networks in the earlier week last week,

when we discussed about the end to end arguments, we said the network’s will be bare

minimal and dumb bytes that will just transmit the data.

And now we are talking completely contradictory to it where we are saying emphasizing that

networks can even manipulate the data and act on it. It is as well as empowering the network

to generate data on its own for transmit the data to the receiver, the way that the receiver

would want to get rather than what the transmitter would want to send. So, these conflicting

aspects also brought in, but for the good in terms of how we can think of networks as no more

as a passive elements, but as active elements that can also help aid for better running better

management, better control over the network.

And there were several of the intellectual contributions that were made by these active

networks, one to say that they enabled the programmable functions in the network. And what

we see with middle boxes is exactly the same where you have the middle boxes that

manipulate on the data (())(10:40) what we discussed, it actually translates the packets,

headers, right IP header and well 4 headers, the port and IP mappings are changed.

And likewise, with the firewalls and load balancers. So, these are all as a program we will

functions which are now being considered part of networks. And this notion of programmable

networks, in a way lowers the barrier for network innovation, so that we can think of adding

innovations right into the network. In fact, Data Plane programmability is again coming to the

forefront in what we are going to learn as network function virtualization.

The whole second aspect with this active networks is the network virtualization, wherein it

provides the ability to de multiplex, the software programs based on the packet headers, and

what that means is we could embed the programs onto the packet data and based on the type

of packet data, different programs can be executed within the network and manipulate all the

traffic before we transmit and forward, in a sense, is a kind of a virtualization that a network

provides over the functionalities that it can build.

So, the construct of this active networks was based on two kinds of programming models,

one as a capsule model, where the code that needs to be run is carried in bind within the data

packets, as we saw in this diagram here, where a packet would carry the X code, and X code

is the one that is being operated on the network medium and transition its state from medium

to medium.

And this was in fact, the most powerful of the model that became very popular, while the

other was a programmable switch or a router module, where the switches or routers, which

where we want to run the code could be established in an out of band fashion. And the

functionality that you would achieve either way is the same but not necessarily that the data

the code is carried in band within the packets, but this can be specific sets of controls that you

want to build. And this is again, what we see when we want to manage specific devices. This

out of band model really suits it. And this, in a way, very active networks, although it did not

succeed over time, but it paved the way for how we can see the network’s to be programmed.

(Refer Slide Time: 13:08)

The second of details is the separation of control and data planes and which is what we

actively refer to or know as the software defined networking. In fact, this was the initiation

journey for SDN, wherein the disaggregation of the hardware with respect to the software

that would manage and control started with the integration of open interfaces.

(Refer Slide Time: 13:38)

And in here, let us look at some of the key words that set the path for the separation of

control and data planes. The first of the work is the tempest that was put forth, late 90s. And

here, the authors discussed about how to allow the third party to access the network without

jeopardizing the network integrity, or in a sense, how, as a network owner like a campus or

enterprise network, how I could accommodate legacy networking solutions, and then also

have a programmable enrollment defined for my custom networks.

That was the core of saying how you would want to separate out the control over the network

and what in a sense, the data part of the network needs to do. And this in fact, led to the setup

of IETF working group called the forces or forwarding and control element separation. And

this work, in fact, this IETF working group led to a series of RFCs charting out the key

requirements, the framework for forces and the protocol specifications, and many things

started to emerge in the plane of control and data separation.

In fact, you we had also led to a protocol as a means to separate the forwarding and control

elements from the transport. And if you look at TCP, we have so many of the flags that try to

control the way the data would move and needs to be handled. But now, if you think of

transport protocol, which is specifically meant on one side to carry the data, the other side to

carry the signals, and you want to separate these out.

And in fact, this led to what we call as the SCTP, or stream control transmission protocol,

which is widely used in many of the real time streaming applications, and various of the live

calls, etc. And this has played a major role in setting up of many of the aspects when we look

at the framework for the control and data plane separation.

Next step, there were RCEP, soft router and PCE 4D works. Let us just try to look at what

this PCE and 4D really meant. PCE stands for Path Computation Elements, which brought

the notion of having a dedicated server, which could basically decouple the computation of

the parts or the network parts. But from the outers, I do the computation of the parts on behalf

of the network routers. So, we all know that when routers compute the part, they all do it

independently.

Now, think of one server that can do this computation for many of these routers. And what

this means is this path computation offload that happens to a dedicated server, it could be

general purpose machine, it could be one specific router itself. And then this, in a way ensure

that you are now able to virtualize the way the routing is done for a specific domain. And that

was the initial separation of how the functionality of routing could be even though as a

separate entity, which can be decoupled from the routers, tempest.

And this centralization of path computation, in fact, enables the operators to customize and

control the routing policies and algorithms that you would want to run from a single location.

That is more important, because now if you want to change anything, you are just to go and

update at one place rather than going and updating it, several of the routers that are spread in

the network. And that is the flexibility the species started to provide.

And this work in fact influenced and led to what we see as a 4D project that started which

was in fact the Clean Slate architecture for network control and management. And this work

was guided by three principles. First is the network level objectives. That is, when you try to

run a network which needs to have robust data characteristics, that is in terms of satisfying

the performance objectives, or the reliability objectives or the policies that you want to ensure

to be met when you want the network to transmit specific packets or flows of packets, you

want to guarantee those network level objectives.

And to do that assurance of net meeting the network level objectives, what you really need is

a network wide view which is more timely, accurate, and is able to provide the precise

characteristics of what is happening at each of the links or the topology of the network, which

can eventually be able to help achieve the network level objectives of providing a robust

network.

 For example, if there is a link failure, you want to have that view then and then rather than

waiting for the routers to converge and decide what would be the alternative path, you would

want to know the instance the link fades and free route or change the path of packets so that

you are able to adapt pretty quickly and in real time. And you thus you are able to meet the

network level objectives.

So, this means that there is a need to have the network wide views in a timely and accurate

fashion. And in order to have this timely and accurate updates over the entire network, it

would also call for having a direct control that is once I know that okay there is a failure of a

link, I should have the control at each of the elements directly to say what would be the best

alternate path which can be taken immediately rather than waiting for the routing algorithms

to converge and that set up the alternate paths.

So, the decision logic should be provided to the network operators with a direct interface so

that they can configure the network elements much more precisely in real time and these

were the key guiding principles of the 4D project. And what this 4D really meant? Is to look

at the network or view the network elements in 4 distinct layers of what we call the Ds

And the ground most at the lowest layer is the data element where it is confined towards

processing of the packets alone when you it is just as the dumb pipe that would take the data

and based on the rules that are being set it would forward data. So, forwarding as a key

aspect. And the rules that are necessary for forwarding have to be configurable in real time.

And the second of the layer that is built above is the discovery layer. And this discovery layer

is crucial in providing the topology characteristics at a given time and also the traffic

measurements in terms of which devices have the link bandwidths that are getting over

utilized that are getting underutilized or what is the queue occupancy at each of the devices,

what is the current communication topology looks like which links are up which links are

down, kind of information in real time. So, that is being managed by the second of the D that

is the discovery layer.

And once you discover the aspects in a network, you would want to quickly disseminate this

information so that the decisions can be taken in real time. So, the third of the layer is the

dissemination plane. And this dissemination plane enables the information collected by the

discovery and the local information to be sent out to the network operators for installing the

packet processing rules that are necessary or changes that need to be made in real time.

At this dissemination layer, once it is done, it is also important to have decision plane and this

decision plane can be logically a centralized place where in the decision for the entire

network not the distinct elements, but for all the elements when a network can be taken at one

place. So, this consists of a logically centralized controllers to think of that can convert the

network level objectives that you have based on the information that get disseminated to them

from different entities in the network.

So, this is like a point where I can have a software or a program that can run adapt and tune

the network characteristics to make and meet the network level objectives of having a robust

network. And, in fact, this work paved the way further for how we think of today’s software

defined networks.

(Refer Slide Time: 23:01)

And the third of the tear is in fact, the evolution of the open flow and network operating

systems. And in here, you can see a lot of works that started with ethane leading to open

flow, Onix, ONOS, NOX and various other works have come in recent years. And the most

fundamental work in this is the ethane, which published I think around 2007. And in fact, was

influenced by the 4D project from a (())(23:40) and this ethane brings the vision to life, when

you want to concretize several important aspects like how to boot up what is the registration

policy setup, deployment aspects of the networking devices like routers and switches.

And this ethane work has been seminal in many aspects, wherein it was it paved the way to

move the control plane out of the switching elements and also towards building a centralized

controller wherein one element can take the decisions on behalf of the other switches and

routers in your network. And Ethane’s approach to define the API’s or mechanisms to make

this communication from these switching and router elements to one of these centralized

entity as the network API’s lead are influenced towards the creation of open flow and open

flow started around 2008.

And eventually, this Ethane and open flow led to a startup called Nicira which was later

acquired by VMware and what we now know as the Open flow southbound API’s and the

SDN with the control plane has become a common norm. And this in a nutshell is the

eventual is the roadmap of how the SDN what we see today started, and much of the works

are there to follow. And in fact, over the last decade, there have been more than thousands of

publications in the area of software defined networks.

