
Advanced Computer Networks
Professor Dr. Neminath Hubballi

Department of Computer Science Engineering
Indian Institute of Technology, Indore

Lecture 10
Packet Classification – Part 2

(Refer Slide Time: 0:18)

So, before we actually look into the algorithms, let us formalize what the classifier is. Then we

will look into some of the data structures and the mechanism to do this, differentiate its service

or the packet classification. So, we said that the classifier is denoted with C, and it is a collection

of the rules. Here, in this case, there are n rules R1, R2, and RN, and every rule has got few

things, one is called the predicate, Rj is the rule, and maybe Rj is the 10th rule.

And this predicate is on every dimension, i.e., the source IP address is one dimension, the

destination IP address is another dimension, and you have a condition to evaluate on every

dimension; some of the dimensions might have a wild card like * that is okay, you have got a

condition on every dimension, * is also a condition, it is matching to every possibility that is the

difference, it has got a condition on the d dimensions.

And then the second thing that it has got is a priority assigned to this particular rule. We will

come to that in a minute, why this priority is required, and then it has got certain action to be

performed. So, a predicate is a combination of the predicates that are there in the rule and then an



action to be taken, and then as the third one you have got is a priority assigned to that particular

rule, these three things are there.

Let us say that a packet P is arriving at a router R1, we pick up the header portion of that packet

and exactly d attributes from that particular packet and we say that a packet P actually matches a

rule Rj if all the d values d1 to d2, d2 to whatever dk, you have k number of the dimensions, if

all the k attributes match then we say that this rule is actually matching.

The packet classification is all about, given a packet P extract d fields do matching and if all the

attributes that are required match in that particular rule for this packet, then we say that the

packet is matched and it is not necessary that only one rule is matched, it is possible that more

than one rule can match. So, that is why we need to pick up a higher priority rule if there is more

than one match, then you need to pick up the rule which is having the highest priority.

Just an example, if the attributes are, let us say, source IP address and the destination IP address

and one rule says 10.10.1.1 is the source IP address and the destination IP address is 2.2.2.2, this

is rule number 1, let me call it R1 and the second rule R2 says that this is *. So, it does not matter

what the source IP address is and what the destination IP address is. So, it is easy to note that R1

is actually a subset of R2.

So, R2 matches anything no matter what are the source and the destination IP addresses, any

packet that is coming to the router will always find a match with the R2 but R1 is a subset of

that. Now the question is if, let us say, R1 says you need to forward it with priority, R2 just says

that you need to forward it, whether I forward it with the priority, or whether I forward it by just

following a normal priority that is the differentiation we need to bring and that is actually

resolved using the priority value.

So, that is what the packet classification problem is you pick up the packet that has arrived, you

pick up the header values in that one and you got a set of rules inside your classifier, evaluate

against the rules inside your classifier, and come back with the highest priority rule that is

matching with this particular packet header fields that is the classification problem. Now any

algorithm that I want to design needs to do this kind of operation.



(Refer Slide Time: 5:16)

But the example just I gave you led to something called the rule conflict. So, the previous

example that I took again on these two fields just to simplify the discussion the source IP address

and the destination IP address are the two fields; one is 10.10.1.1 going to this 2.2.2.2, one is

saying that you allow this communication and the second one is saying irrespective of what is the

source and destination IP address, you actually deny this communication.

So, let us say a packet P comes, and the P has got the source IP address of 10.10.1.1 and the

destination IP address of 2.2.2.2. Now when I evaluate against this set of rules, both R1 and R2

match, and according to match whether I am going to allow it or deny it, we said that we need to

assign a priority to this rule, if R2 has got the highest priority then you need to deny this

particular packet to go through, if R1 has got the highest priority then you should allow this

particular packet to go through. The more fields I got, the higher the chance of this conflict.

So, more than one rule might match because, for the same combination source destination IP

address, if I add a protocol field, one with the TCP field and another with the UDP combination,

I can possibly have two different rules inside my classifier. So, now as the combinations

increase, the number of rules will also increase; the more the number of rules you have got inside

your classifier more the chances of a conflict.



Now in order to assign priority to these rules, I need to understand the priority and how do I

assign priority to these rules. So, that brings us to the discussion to something called conflict

resolution.

(Refer Slide Time: 7:28)

So, let us try to understand that rule conflicts are very much possible inside the classifier, one is

telling something else, and one is telling something else that is possible. So, now how do I

actually resolve the conflicts inside the rules when I say conflict resolution, basically, I want to

assign the priorities in such a manner that conflict resolution is always possible. So, meaning,

can two different rules inside my classifier have the same priority, maybe priority number one is

assigned to more than one rule; if that is possible, again, there might be conflicts; how we

actually resolve these conflicts is the issue.

So, let us try to understand the strategies or different mechanisms used to resolve this conflict.

So, there are five rules in this particular classifier and the first one is saying 10.10/16 this is a

class 16, which falls in this range irrespective what is the destination IP address you should allow

this particular packet to go through.

So, again let us take the case that a particular packet comes with this combination 10.10.1.1 this

is the source IP address, and the destination IP address is let us say again, 2.2.2.2 anyway, the

rule R1 and R2 are the candidates now based on the source IP address and the destination IP



address combination for both the rules are * this is anyway going to match, R1 is going to match,

for this is the best case.

And now you look into the other case now R2 has got the source IP address, you see this is not

the prefix format; this is the entire IP address. The other rule R1 is in the prefix format, now

which rule to apply or which rule to prioritize, maybe I am going to say that this has got the

highest priority, maybe the higher the number higher the priority, you can have the other way

around as well and this has got the priority number 9.

So, now the highest priority rule for this combination is R2, and based on whatever it says, it

says deny, you actually deny the particular packet to go through. Now the question is, is this the

only way with which you assign the priority, rule with the highest priority you apply that, that is

one way of resolving the conflict,

Then there is what we call the best match that you have got. So, one is in the prefix format; there

are many, many other combinations in this prefix format 10.10/16 another 216 combinations fall

under this series that is not the most specific one; rule R2 is telling the exact source IP address,

so that is the best match that you can find. So, now if you use this strategy, what it means is my

classifier, in order to do a packet classification or a decision on that particular packet, you need

to start with the rule R1 and then go across the table and evaluate all possible applicable rules,

find out that and then you actually come back with the one which is actually the best matching

one. So, there could be many, many other possibilities; you can have another rule saying

10.10.10/24 in the prefix format; now, there will be not only two, there will be three rules which

are matching to this particular combination.

So, among all of them, you need to find out the best case; the second way to resolve this conflict

is something called the first match. What it means is there are some rules inside my classifier and

I am going one after the other, rule R1 R2 R3; you first apply the rule applicable, which is the

first one in the sequence, and you take the decision on that one, in this case, it also happens that

if you get this particular packet rule R1 is the first match using that it is saying allow, you

actually allow this.

Now if you follow the first match category, what it requires is I want R2 because R2 is the more

specific rule applicable to this particular combination, R2 to come ahead of R1. So, maybe the



order of these rules needs to be interchanged. So that I can make the decision of routing or

forwarding based on the longest prefix. So, the same kind of rule can also be applied here as

well. So, R2 is more specific I want that to apply I want to use the first match category by default

the rules inside the classifier need to be ordered in the decreasing order of their priority. So,

which is having 10, R2 has the highest priority that should come first and then should come the

R1 that is another strategy that you can use.

And the third strategy that you want to use is if some rule is saying you need to deny or drop the

packet, you go with this one because denying or dropping is more conservative in nature,

particularly if you are implementing a firewall kind of operation some two systems you do not

want to communicate.

So, in this case, rule R2 says that has got the best match that you can find, although this has got

the lower priority; let us say the priority of this rule is 8 and the priority of rule R1 is 9, and the

highest priority rule is the R1 but because R2 says you need to drop this particular packet and

dropping is more conservative in nature and it is best for the security. So, we want to apply that

rule, whichever is saying you drop the packet.

So, I am going to again look into the classifier all the rules and then find out all the applicable

rules and again start using the priority. Among them, if some rule is actually saying that you need

to deny this particular packet, you apply that rule to that particular packet, this is how the

evaluation is done. One is the best match that requires if your rules are not ordered, you need to

traverse the entire set and then you come back with the best match that is possible with the

highest priority.

The second one is if I have the ordered rules inside my classifier, find out the first match,

whatever the rule is applicable, then you apply the action that is specified by that rule and the

third one are you give priority to that rule which is actually denying the content. So, this is

actually facilitating this kind of operation is not an easy job because you need to have may have

thousands and thousands of rules. I can constantly keep inserting new rules inside my classifier.

Then if I insert one rule that might conflict with so many other rules, I need to reorder the rules

inside my classifier; what is the best order, so many things can get disturbed or if an existing rule

is taken out from this one, again you need to re-alter the table and all this can happen. Now we



will try to understand how exactly this kind of rule matching and the applicable action can be

taken on that particular packet when you want to do the differentiated service.

(Refer Slide Time: 15:38)

So, another challenge is whatever the rules that we saw in the previous case did not have the

rules specified in this particular format; either there is a wild card or there is a number, but that

might may not be always the case. So, what is the challenge here is sometimes the rules might

not necessarily have the exact numbers but a particular range for example, rule R1 has got this

source port in the range 1 to 10, and rule R4 similarly has got a range of 1000 to 2000 in the

source port field and similarly for the destination port 25 to 35.

Now, how do we actually evaluate? it is not only one port if I have to do a matching, I need to

check whether the source port number in that particular packet falls in this particular bracket or

not. Now if I want to do a quick lookup or the matching of these rules this is similar to that of the

IP lookup table, and what we understood in the IP lookup table is if the rules or the dimensions

can be expressed in the form of a prefix. So, in this case, this rule for the source IP address can

be expressed as 10.10.* does not matter, what is the next combination that is the source IP

address and then 20.20.*. So, this is in the prefix notation I can always convert it into binary

maybe if I convert this into binary, you will get 0001010, which is the first eight-bit and then the

second eight bit would be 0001010, and then you put the *, that is the prefix for this particular

source IP address field in the rule R1.



Similarly, for R2 and R3 and so forth, and similarly for the destination IP field also, you can

have this conversion. So, the source and destination IP addresses can be expressed in the form of

prefixes but not the source port number and destination port number, which are expressed in the

form of the series in this range. How do I convert the port number, and sequence of port numbers

that are expressed here from 1 to 10 into a prefix format?

Remember that if prefix format is an exact IP address or the exact number, that can be a prefix

format. For example, if the source port number is 10, what is the prefix notation for this in binary

1010 is the notation. So, I can say that the prefix notation is 1010; this is the exact match this is

fine.

So, now it is not only one there are ten different IP addresses in this IP address field; how do I

actually convert this into prefix format, remember the data structure that we studied may be the

trie one, or the hardware implementation that we studied for the route lookup, are all applicable

or efficient when the fields or the constraints or the predicates are expressed in the form of the

prefix notation.

So, the one way to do this is take rule R1 and the source port is actually saying expressing a

range and for every possible source port number, you write a rule, i.e., rule R1 is broken up and

for every source port value, there will be one rule inserted into this classifier. So, the same source

IP address, destination IP address and protocol field when port number is 1, you want to set the

rule one. When the same source destination IP address and the protocol field when the port

number is 2, you have a second rule like this one now. Because there are ten source possible port

numbers, there will be 10 different rules written inside the classifier.

And it is no secret that if I do that then the number of the rules inside the classifier are going to

increase, and they will be blown up. Now the more number of the rules you need you to have in

the classifier, the more work you need to do because I do not know whether R1 will match R2

will match, n number of rules are there and you need to evaluate all of them, so that is actually

not desirable.

Now the question is, is there another way of doing this, can I express the port numbers written

inside this range format into a prefix format, there is a way to do that; we will come back and



learn that part later. So, assuming that is a challenge, the reason why I am talking about this right

now is the set of the data structure that we are going to study is efficient for the prefix notation.

So, if I use the prefix notation to express all particular combinations of the values inside my rule,

then I can implement the evaluation part quite efficiently; with that background, we will come

back and see how to convert this range into a prefix format sometime later, but assuming it is

there then we will try to do that.

(Refer Slide Time: 21:16)

Now assume I have done all this, all my constraints are specified in terms of the prefix notation.

Now, what are the practical requirements, how do I evaluate the performance of one particular

kind of implementation, and what are the advantages of a particular implementation? One is the

search speed, how much time it takes because, of course, when you want to do a matching over a

set of rules how much time it takes, more the number of rules you have got, the more time it

might take, the efficiency or the speed with which you want to do this matching will happen.

So, if you have a 10 Gbps link, then approximately 32.2 million packets per second, that is the

speed with which I want to do the classification; there is a practical requirement. And the then

the second thing is, how much storage do I require to do this kind of classification, if I come up

with the data structure and if it is taking too much amount of space, then that is not desirable.



So, the efficiency of the storage of that data structure itself becomes an important parameter for

making the decision, and the data structure or the algorithm that I use can accommodate more

number of the rules. Today I have 100 rules; tomorrow, I might have another 100 rules, and the

sometime down the line, I might have 1000s of rules.

So, can the data structure scale well to accommodate new rules to be inserted in the table, how

much change that I need to bring inside whether it requires the complete rearrangement or

rebuilding from scratch, or can I build incrementally alter the data structure and accommodate

new rules whether that flexibility is there that is another requirement, it needs to be flexible to

accommodate that.

And today, I got d number of fields; maybe d is equal to 5 fields today; tomorrow my dimension

might increase to 10. Can the data structure accommodate that increased number of header

fields? And then the fifth parameter is how much time it takes to do the update operation,

whether I can do it quickly or maybe a fraction of a millisecond or it takes some time, whether

there is downtime involved if I do the update, take out the old set of the rules and put the new set

of the rules inside my router, if this requires the downtime of the router that is not desirable.

And the last parameter is the flexibility of the specification. If you go back to the previous

example, the source IP address and destination IP address can be expressed in the form of the

prefix. This is the source IP address and this is the destination IP address but the port number

needs to be expressed in the form of the range; as a user, I specify this range, then the router

automatically takes this and then does whatever format it wants to convert it into automatically

and then do it.

So, that gives the ease of specification to the end user if I am the network administrator, my job

becomes easy. So, I can write a minimal set of rules, and then whether it is replicating, creating a

multiple numbers of rules out of one, or converting the range into prefix format, whatever it is

doing related to the router it will automatically do.

So, the kind of flexibility the router provides, the better it is. So, whether we want to, whether all

of these can be met or not is a question. Still, at least in theory, these are the kind of the

parameters we want to take into consideration when we want to implement or make a choice of

the one kind of data structure over the other one or one kind of the algorithm over the other one.


