
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Science and Engineering
Indian Institute of Technology Hyderabad

Formal Definitions and Examples of Non-Deterministic Finite Automata (NFA)

(Refer Slide Time: 00:16)

Hello, and welcome to lecture 7 of the course Theory of Computation. In lecture 6, we saw

non-deterministic finite automata, which are NFA’s. We did not formally define it, but we saw

examples and we tried to understand it through these examples. It was the same as DFA’s but

with some seemingly added flexibilities like you could have multiple outgoing arrows for the

same symbol, you could also make epsilon transitions, and then you accept a string.



There could be multiple ways to process it correctly. But if at least one of them is a valid

accepting computation, you accept the string. Now, let us come to the formal definition of

NFA’s.

(Refer Slide Time: 01:15)



So, the definition is very similar to what we saw in DFA’s. NFA or non-deterministic finite

automata 5-tuple (Q, Σ, δ, q0, F). Here if you see the definition Q is the set of states, Σ has a

finite alphabet, q0 is a start state and F is a set of accepting states, this is exactly the same as

what we saw in DFA’s. The only place where this definition differs is the transition function

written in red.

So, in the case of DFA’s, we saw δ: Q x Σ → Q. So, basically, if you are at a certain state, and

you have a certain symbol, then you go to the next state. But over here, it is not like that,

because here we have flexibilities. If you see here at a certain state S and then you see a 1

there could be two possible next states that you can go to, or there will be three possible next

states, or maybe there is no outgoing arrow labelled 1.



So now we define the transition function as δ: Q x Σϵ → P(Q), here P(Q) is the power set of Q

which is the set of all subsets of Q. So, the idea is that if you are at a certain state, let us say s,

and the 1 can take you to let us say r1 and r2, then you will say that

δ(s, 1) = {r1, r2}

If δ can take you to 2 possible states, then you say that the transition function outputs a set of

the possible states that 1 takes you to. This could also be a singleton set, if there is only one

outgoing arrow marked 1 or it could also be an empty set ɸ if there is no outgoing arrow

marked as 1.

We have Q x Σϵ (notice the subscript epsilon), why do we have a subscript epsilon? Basically,

we want to accommodate the empty transitions that we said earlier. So, Σϵ is nothing but

Σ∪{ε}. So, it is the set of all symbols plus the empty symbol. This enables the empty

transitions.

We may also write things like δ(s, ϵ) = ɸ which means that there are no empty transitions,

outgoing from s. So, if instead of an empty set you have {r1}. This means that there is one

outgoing arrow mark empty string which takes you to r1. And q0 is the start state F is a set of

accepting states it is exactly the same as before.



(Refer Slide Time: 06:04)

Now, we have to formally define what constitutes acceptance states. So, in the case of DFA, it

was very easy because there was only one way to process strings. And at the end, are you in

an accepting state or not? Now, there are multiple ways, but as I have been repeatedly saying,

you accept at least if there is one valid way to process that string. This notational thing is just

for formal representation and completeness, even if this is confusing, even if the notation is

confusing, as long as you have a thorough understanding of what constitutes acceptance, that

will be good.

So, we say that N accepts w, N is the NFA, w is the input string, if we can write w as

w = y1 y2 y3 ….. ym



So, notice that I am not using n as length, instead, I am using m since there may be empty

symbols in between. If you look at the DFA that we saw above which accepts the string 1111.

So, how does it accept the string 1111 So, the first one takes it from q1 to q2, then an empty

transition takes it from q2 to q3, then the next one takes it from q3 to q4 and the last two 1’s

keep it at q4.

So we can accept a string if there is a way to split the string into y1 to ym, including epsilon,

such that the NFA for this particular splitting up there is a valid computation that takes it

from the starting state to the accepting state. So, r0 must be the start state and for each i we

have-

ri+1 ∊ δ(ri, yi+1) for 0 ≤ i ≤ m – 1

So, what we want to say is that the set contains ri+1. Also rm must be an accepting state. So,

which means if there is a valid if there is a way to split up the string in a valid way and

processes strings such that it ends in an accepting state, we see that the NFA N accepts w.

(Refer Slide Time: 12:15)



The above example shows a NFA which accepts all the strings that end in 10. So, let us see

what are the states here? So, states are 3 states {q1, q2, q3}, the alphabet is binary {0, 1}. The

set of accepting states is just {q3}, the start state is q1. Now the transition function δ also has

to be defined for each Q and Σϵ (please refer to the image attached below).

I have not marked a couple of empty transitions, but you can fill this in. So, this is an

example and the formal notation stating when a string gets accepted, hopefully this is clear.

(Refer Slide Time: 15:03)



Please also read example 1.38 from the book. So, basically the same exercise that we just did

for this NFA, I want you to read example 1.38. In that example there are 4 states and then

binary alphabet etcetera, but please, please try to work out these: what is Q, what is Σϵ, what

is δ and so on.

So, we have seen in the NFA's formal definition what constitutes acceptance. And we already

said in lecture 6 that NFA’s are at least as powerful as DFA’s. In the next lecture, we will see

that they are no more powerful than DFA’s. So, we will see why they are equivalent. And that

is all. That is all from me in lecture 7 and see you at lecture 8. Thank you.


