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 Hello and welcome to lecture 61 of the course Theory of Computation. This is also the last 

lecture of the course. So, we have already completed and summarized space complexity in 

the previous lecture, and now this lecture is just intended to be a summary of the entire 

course and some concluding remarks. So, at the beginning of the course, we asked the 

following question: What are the fundamental limits and capabilities of computers? What 

is computation? What can computation do? Is there something it cannot do? How much 

can it do? So these are the things that we wanted to understand. Our goal was to understand 

if there is something that is not computable or what is computable, what is not computable, 

etc. 

So that was our goal. We started our journey with automata theory. These are simple 

computation models that recognize a certain class of questions, languages, or problems. 

We saw regular languages, which were recognized by multiple kinds of devices or 

structures. 

Regular languages are recognized by DFAs, NFAs, regular expressions, right? All of them, 

we showed that they were equivalent. Then we understood the crucial properties. We tried 

to understand what is not regular, right? We used the pumping lemma. We learned the 

Myhill-Nerode theorem, etc., to determine languages that are not regular as well. Then we 

went to context-free languages, which were supposed to be a superclass of regular 

languages and were more powerful. 

These were recognized by context-free grammars and pushdown automata. So again, there 

were two equivalent models—two completely different models, but it turned out to be 

equivalent in power. Then we saw grammars like Chomsky normal form. We saw the 

concept of ambiguity, where there is a string that is derived in two different ways. We also 

saw languages that are not context-free using the pumping lemma. 

We also saw the CYK algorithm, which was an algorithm that can very efficiently tell us 

whether a given string was generated from a given grammar if the given grammar is in 

Chomsky normal form. So, we understood these structures at this automata in yielding the 

regular and context-free languages, and this was, in its own right, interesting that you have 

regular languages and context-free languages. But this also served as a stepping stone to 

understand computability theory and Turing machines. So, Turing machines are this kind 

of abstract model of modern-day computers, right. So, we initially started out with the 



single-tape deterministic Turing machine, then we saw variants like the multi-tape Turing 

machine, we saw variants like the non-deterministic Turing machine, and we saw that all 

of them are equivalent. 

Then we said that Turing machines are equivalent to algorithms, which is also known as 

the Church-Turing thesis, right. Then we defined what is decidable, what is not decidable. 

So, decidable languages are those that have some Turing machine that can decide them, 

meaning it should be able to take the string as input and should be able to definitively tell 

whether it is in the language or not. So, it should accept or reject; no looping or infinite 

loop is permitted. So, we saw languages such as ADFA, ANFA, EDFA, EQDFA; all of 

them were decidable, like ACFG. 

But ATM is the first language that we saw to be undecidable. We saw that ATM is 

undecidable, right? And in order to show that this is undecidable, we had to do a lot of 

work. We had to start from first principles; we had to define what countable sets are, what 

uncountable sets are, and using that, first we had to establish that the number of Turing 

machines is countable, whereas the number of languages is uncountable, so there have to 

be languages that are not Turing recognizable. Later, we took up ATM and then, with this 

complex proof of diagonalization, we showed that ATM is undecidable. And then we 

learned reductions. Reductions are a way of transforming one problem or one language 

into another language. 

So, if we have a decider for the second language, this will yield a decider for the first 

language. Reductions can also be used to show undecidability. Because if a hard problem 

can be reduced to another problem, it follows that the second problem is also hard. Because 

if the second problem is easy, then the first problem also has to be easy. So, using the fact 

that ATM is undecidable and using reductions, we saw other languages being undecidable, 

such as HALT TM and REGULAR TM. 

So, HALT TM is like does M halt on a string W. REGULAR TM is does the Turing 

machine M recognize a regular language. Then we saw Rice's theorem, which was a 

general theorem about Turing machines, which actually encompasses a lot of languages 

and shows that all of them are undecidable. Basically, given a Turing machine, any non-

trivial question about the language it recognizes is going to be undecidable, right? Then we 

saw the technique of computation histories, and then we saw PCP (post correspondence 

problem), which is also undecidable. This is a very simple, easy-to-describe problem that 

happens to be undecidable, right. So, that completed computability theory and that was 

kind of some responses or some answers to our quest of what is computation, what is 

computable, what is not computable, right. 

So, the next question, the natural question, is: okay, so we have an understanding of what 

is computable and what is not computable. But how much investment do we need to 



compute something? How many resources do we need? How much time do we need? How 

much space do we need? So, two most important resources for computation are time and 

space. On the basis of the time and space required, we started to study the languages and 

classify them into so-called complexity classes based on how much of each resource is 

required. In time complexity, we saw complexity classes such as P, NP, we saw what the 

P versus NP question is, we saw the verifier model for NP, we saw polynomial-time 

reductions, NP-completeness. We saw that SAT is NP-complete, which is the first language 

we saw to be NP-complete. 

This was using the Cook-Levin theorem. Then we saw other NP-complete problems, many 

other NP-complete problems. It's subset sum, Hamiltonian path, integer linear 

programming, and so on. All of them were NP-complete. Then we turned our attention to 

another resource, space. 

So we saw the basic model of space complexity. We saw relations between time and space 

complexity, NL-completeness, classes L, NL, P-space, then Savitch's theorem, all of that 

we saw. Then we saw a couple of other results also, NL = co-NL and P-space completeness. 

And that kind of summarizes what all we have seen in terms of complexity theory. So, 

based on time and space, we were summarizing languages or problems into complexity 

classes. 

And this also completes the summary of the entire course: first automata theory, then 

computability theory, and then complexity theory. And so this is what we saw over the 

entire course. Of course, each one of them—some of them you could actually have spent 

more time on. But then this course is for a fixed duration. 

And there are many, hopefully, we have covered enough breadth that helps you to pursue 

a specific tangent or direction that you find interesting on your own. Sipser itself has 

excellent problems and also other chapters that we have not really touched. So we didn't 

touch chapter 6, then chapters 9 and 10 we did not touch. And of course, there are other 

books on similar topics where some other topics are also going to be covered. So, if you 

are interested in this kind of stuff, there are several ideas and directions that could be 

pursued. 

One of the most important directions that I would suggest is to learn complexity theory, 

computational complexity theory. So, some starting points are there in Sipser itself. You 

can try to read chapters 9 and 10. So, there are things like hierarchy theorems, time 

hierarchy, and space hierarchy theorem. So, basically, it says that if you have, let us say, 

n^3 time and n^2 time, there are languages that need n^3 time cannot be decided in n^2 

time.  

And similarly for space, there are languages that can be decided in n cube space, but cannot 

be decided in n square space. Basically, if there are two functions, one of which is faster 



growing and one of which is slower growing, there is something that you can do with a 

faster growing function but cannot with a slower growing function. This kind of result is 

called hierarchy theorems. Then there are oracles, relativization, and something called the 

polynomial hierarchy, which we did not cover. 

Then there are other models of computation that we have not covered. We just talked about 

two different things like time and space complexity. There are other models of 

computation. So, the interesting thing is that these models of computation come with 

different types of resources, not just time and space. So, there is circuit complexity where 

we look at circuits, meaning Boolean circuits. 

So, it could be and it could have the components of these circuits will be AND gate, OR 

gate, NOT gate, like Boolean logic gates. And these are used to build functions, which can 

be used to answer questions, like the same questions we consider, like subset sum or three-

set or whatever. We can build circuits to answer them, and we can try to understand these 

languages in terms of what types of circuits are required. So, you have complexity classes 

based on what types of circuits can decide them. So, what types, meaning how many gates 

does it have, what is the depth of it, what is the size of it, and so on. So, there are other 

resources that come into play. 

Another interesting area is randomized algorithms or randomized computation. So, again, 

in randomized computation, we use, in addition to the input, we also rely on random bits 

or random coins. So, we want to do something. So, you take the input, and when there are 

steps where we will just toss a coin, and if the coin says heads, we will do something; if 

the coin says tails, we will do something else. These kinds of algorithms are called 

randomized algorithms. 

And there is a lot of scope for, there are complexity classes that are specifically designed 

for randomized computation. So, there are courses in many universities where you just 

learn randomized computation or randomized algorithms. Another one is counting 

complexity. So, we talked mostly about decision problems, yes/no problems. There are 

problems where you can ask to count something, like how many paths does this graph have 

from a certain vertex to a certain vertex? How many matchings does this graph have, 

perfect matchings? How many spanning trees does this graph have? So, these kinds of 

questions where you count something. 

So, this is different. Again, there are complexity classes for addressing these types of 

questions. Another one is interactive proofs where we actually answer questions using 

interaction between two parties. So, all of them have their own computation model and 

have their own sets of complexity classes where we classify problems based on the 

resources needed in these kinds of situations. So, these are all very interesting. And one 

place where you can find some of these directions kind of addressed is my own, I have a 



course on computational complexity, which has been offered some, like August, July, 

August semesters over NPTEL platform. 

But if you're just curious to learn, you don't need to actually wait for the offering. You can 

just, the videos are available in the public domain; you could just go to the portal or 

YouTube and watch these videos. So, this is one place where you can learn some of these 

things. I think most of these things. But there are also courses on computational complexity 

by even other great professors from many other big universities. So, you could actually try 

to watch them as well. So, I am just saying there is a lot of material available on the internet 

for these things. 

Available for free as well. So, if you are interested in these kinds of things, some of these 

topics, you should try to think about or try to read up, try to explore on your own. That will 

be a lot of fun. Perhaps you will be interested to learn more, and that is my hope too. So, 

as I said, my hope is that you learn more and get interested in these topics and continue to 

maintain interest in these topics. So, we will have a lot of people who are experts in these 

kinds of areas. 

So, if you have any feedback, please let me know any comments or suggestions on the 

lectures or how it was structured or any way it could have been improved. So, in case I 

teach this course again in the future, I could take this into account. If there is something 

that you liked or something that you did not like, feel free to let me know. I'll be happy to 

hear the comments and feedback. I think NPTEL also offers or NPTEL also has this proper 

feedback system at the end of the course, so please give your feedback in the NPTEL portal 

as well. My email ID is given here; it should also not be hard or difficult to find. If you just 

search for my name, Subramanyam Kalyan Sundaram, or search for my name, IIT 

Hyderabad, or something, you should easily be able to locate my homepage and my email 

ID. So, if you have any suggestions, feel free to write to me. 

And as I said, hope you enjoyed learning and hope you will continue to be interested. I 

hope it excited you and that you will continue your interest. And maybe, hope at some 

point we will run into each other in the real world as well. And that's all. So, hope you had 

fun learning this course and thanks a lot for listening in, tuning in, and that's also big. 

Perhaps we'll meet in some other course, some other location sometime. Thank you. 

 


