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 Hello and welcome to lecture 57 of the course Theory of Computation. This is also the 

beginning of week 12, which is the last week of this course. So far, we have seen automata 

theory; we saw PDAs, NFAs, DFAs, etc. Then we saw computability theory, and over the last 

couple of weeks, we have been seeing complexity theory. To be more specific, we have been 

seeing time complexity. Over this last week, in the remaining time that we have, we will 

briefly cover space complexity. 

So, just like time, space is also an important resource when it comes to assessing how 

computation performs. It is also a resource that we are concerned about when it comes to 

computation. Space complexity is about understanding or classifying problems based on 

how much space they require. So, first of all, let us define what space complexity is, and 

then later we will see complexity classes based on space requirement, and then we will see 

different computational problems, where they get placed in which complexity class, how 

much space they require, etc. 

Space complexity is given by a function, just like time complexity, where the function 

indicates the maximum space required by any input of that length. So, just like time, instead 

of maximum time required, we are saying maximum space required. And for a non-

deterministic Turing machine, it is the maximum space used by any branch of computation 

over all the inputs of length 𝑛. So, in a non-deterministic Turing machine, it is the 

maximum over all the branches of computation. This is similar to how we define time 

complexity, but just that we are now measuring space instead of time. 

But before that, the notion of time was rather well-defined. We just took time to be the 

number of steps. But what is space? One natural way to define or interpret space can be the 

following: We look at how much space is being used by the Turing machine over all the 

tapes. So, let's say it's a single-tape Turing machine, which means the input is only on one 

tape, and the input is on one tape, and that's the input tape, and the work also gets performed 

on the same tape. 

Whatever we want, we do it on that tape. As we said, a single tape is equivalent to multiple 

tapes, etc. Now the question is, what is the definition of space used? So, one possibility is 

that, let us say, the input occupies the first 𝑛 cells. So, 𝑛 is the length of the input. Then, as 

part of the computation, we use some extra space. 



So, the total space will be wherever the head accesses the tape and wherever it modifies, 

etc. So this, suppose this is the red and the blue part, this entire part is the space used by 

the Turing machine during the course of the computation. It may be convenient to assume 

that the space used is the number of cells on the tape. This is fine, but there is a small issue. 

The small issue is that now by default, the space used is going to be at least the length of 

the input, at least 𝑛. 

The space used, by this definition, cannot be less than the length of the input. But this, in a 

way, is penalizing us. Just because the input is long doesn't mean that we should be using 

that much space. There are problems where the extra space that we require may be small. 

So what we should be charged for is the extra space, not really the space on the input. 

But sometimes it may get messy because maybe instead of using extra space, I just modify 

the input and get what I want. So now it's not clear how to define what is allowed and what 

is not allowed. The problem here is that this model of measuring the space requires us to 

or forces us to use space at least the length of the input always, and we do not want that. 

So, we want another model where we can get a more nuanced or clearer picture of how 

much extra space is needed. One small point of caution here: this week, some of the 

presentations that I am going to do are going to be slightly different from how they are 

presented in Sipser. 

 For instance, in Sipser, I think this definition comes later during one of the reductions, but 

we will just stick to what we are saying in these lectures. So, I am just mentioning that 

there is a small difference in the way things are presented in Sipser and in these lectures. 

As I said, this model has an issue because there are problems that require only sublinear 

space. Sublinear means logarithmic of 𝑛 space, like, let us say, log 𝑛 space or square root 

𝑛 space. But then this model will force us to use at least order 𝑛 space. 

So, we will change the model. The new model is the following, and this model will be more 

accurate and more faithful in terms of how much extra space is required. We will consider 

a 2-tape Turing machine or a 3-tape Turing machine based on the goal of the Turing 

machine. So, 2-tape or 3-tape; I will tell you why 2 and why 3. So, there is a Turing 

machine, and the input is on a read-only tape. The input is presented and you cannot modify 

it; it’s just presented there. 

You cannot modify it; you cannot work on the input. There is a second tape, which is a 

work tape. All the work happens here. The work tape is read as well as write. You can write 

something here, you can edit here, you can modify, you can overwrite, you can read; all of 

that can be done. 

So, this is where the work really happens. And if it is a decision Turing machine, a Turing 

machine that says accept or reject, then we only have two tapes. If it is a computational 

Turing machine, if it is a Turing machine that computes a function, let us say it has to take 



𝑥 as input and compute some function on 𝑥, let us say it has to compute 𝑥2or 𝑥3, in that 

case alone we need a third tape, which is the output tape. So, if it is a function computing 

machine, then we have an output tape, which is a write-only tape. We want it to be write-

only because we don't want it to be used for any work. 

 

 So, you just write something, and we are not going to be able to edit it or even read it. So, 

it’s just write-only. It's a place where you write and forget it, and maybe this space will be 

used by some other machine or some other thing to access it. As far as this Turing machine 

is concerned, we just write and forget. 

At the end, we want the output to be written here. So, three tapes if it is computing a 

function; if it is a yes-no problem that the Turing machine is answering, only two tapes. 

Once again, the input is on a read-only tape. We are not going to be adding anything more. 

The work tape is a read-write tape, and the space that we actually call the space usage of 

the Turing machine is the space on the work tape. 

So, how much space on the work tape is used? That is the space requirement of the Turing 

machine. Over all the inputs of the same length, what is the maximum space used? That is 

the space used on the work tape; that is the space complexity. So maybe I'll just write that 

here: space used by the work tape, sorry, space used by the work tape is what counts 

towards the space usage. So now the definition is clear. 

We have an input tape which is read-only, a work tape which is read-write, and an output 

tape if necessary, if we are computing a function. And the space usage is the space used on 

the work tape. So now it is clearly possible to use, let’s say, log 𝑛 space on the work tape. 

It may not be as big as 𝑛. In fact, we'll see examples where we use less than order 𝑛 space. 

Now let me define complexity classes. This is analogous to 𝑑𝑡𝑖𝑚𝑒 of 𝑓(𝑛) and 

𝑛𝑡𝑖𝑚𝑒 of 𝑓(𝑛)which we defined in time complexity. So similar to them, we have 

𝑑𝑠𝑝𝑎𝑐𝑒 of 𝑓(𝑛) and 𝑛𝑠𝑝𝑎𝑐𝑒 of 𝑓(𝑛). So, 𝑑𝑠𝑝𝑎𝑐𝑒 of 𝑓(𝑛) is the set of all languages that 

can be decided by an 𝑓(𝑛) space or 𝑂(𝑓(𝑛)) space deterministic Turing machine. So 

deterministic Turing machine, that’s why it's called 𝑑𝑠𝑝𝑎𝑐𝑒.  

And 𝑛𝑠𝑝𝑎𝑐𝑒 is the set of languages that can be decided by an 𝑓(𝑛) space non-deterministic 

Turing machine. So this is 𝑑𝑠𝑝𝑎𝑐𝑒 𝑓(𝑛) and 𝑛𝑠𝑝𝑎𝑐𝑒 𝑓(𝑛). This is just like 𝑑𝑡𝑖𝑚𝑒 and 

𝑛𝑡𝑖𝑚𝑒, but just analogously defined for space. And one more point is that in the textbook, 

they use the name space of 𝑓(𝑛). So, here I am just using 𝑑𝑠𝑝𝑎𝑐𝑒 just to kind of emphasize 

that it is deterministic. 

 



 

 So, let us see some problems and analyze how much space they require. One example is 

3SAT. As we know, it is an NP-complete problem. We have variables, a Boolean formula 

with clauses and variables. 

You have some clauses, and the formula is the AND of these clauses where each clause is 

the OR of three literals. Let us say 𝑥1, 𝑥2 etc., be the variables, 𝐿 variables, and 𝐾 clauses. 

We have already seen many algorithms, but let us see one more algorithm. We want to 

show that it is in 𝐷𝑠𝑝𝑎𝑐𝑒 N, meaning a deterministic Turing machine, deterministic, not 

non-deterministic, that uses 𝑂(𝑁) space. 

If you remember, it was NP-complete. We do not know a 𝑑𝑡𝑖𝑚𝑒 𝑛 algorithm. We do not 

know if it can be done in 𝑑𝑡𝑖𝑚𝑒 𝑛1, 𝑛2, 𝑛3, 𝑛𝑘 for any constant k. We do not know if it can 

be done in 𝑑𝑡𝑖𝑚𝑒 𝑛1000. 

None of this is known because such an answer would settle the P versus NP question. But 

here I am saying I do not need 𝑛2, I do not need 𝑛3, I do not need 𝑛100. I just need n space 

or O(n) space to decide 3SAT using a deterministic Turing machine. So, the algorithm is 

fairly straightforward. It is something that we have already seen. 

Basically, we just try all the 2𝑛 assignments. You could have a counter. So, you could have 

a counter something like this. Initially, it is all 0s, then it counts up, then it keeps counting 

up and so on. 

Finally, you reach all 1s, and this counter corresponds to the assignments. This will be an 

L-bit counter because there are L variables. This counter will go from all 0s to all 1s, 

meaning all false to all true assignments. There are 2𝐿 assignments that this counter cycles 

through. For each counter, for each assignment, we just evaluate the formula. 

Let us say for all 0s, we substitute all 0s in the formula and see what it evaluates to. It is 

fairly straightforward. At each clause, you evaluate whether it is true or false. If all the 

clauses are true, we say the formula is satisfied. If any clause is not true, we say the formula 

is not satisfied. 

 

 

 So, for the counter, we need L bits because it is an L-bit counter. To evaluate the formula 

for a specific assignment, you can just look at each clause and see whether it is true or not. 

Some constants, maybe three, four bits of extra space may be enough, maybe five bits, at 

most 10 bits, right? Given that it's a 3CNF form, you evaluate a counter and see whether it 

is true. If it is true, you continue; if it is not true, then you can immediately say that this is 

not a satisfying assignment. You just need to have the three assigned values for the literals 

in the clause. 



At the end, we accept if there is some assignment that satisfies the formula. If, after cycling 

through all the assignments, none of them satisfy the formula, then we reject. So, that is 

the accept and reject condition. We accept if there is some assignment that satisfies this. 

We reject if, after cycling through all the assignments, we don't find any assignment that 

satisfies this. 

It’s a fairly straightforward approach. The space requirement is surprising because here we 

need only L for the counter and a constant extra space. So, all that we require is O(L) space, 

which is L plus some constant, which is also O(n) where n is the length of the input. So, 

the space required is O(n). It is a deterministic linear space machine that can decide 3SAT. 

This is quite surprising. Forget linear; we do not have quadratic, cubic, or 𝑛𝑘 algorithms 

for deterministic algorithms in terms of time that decide that. Here, in the space-bounded 

domain, we have a linear space algorithm. The thing is that this takes a lot of time, right? 

We are cycling through all the possible assignments, but we don’t need much space. We 

are just cycling through assignments and testing each one of them. It takes time but not 

much space. This is one indication that space seems to be more powerful than time. We are 

able to do more things in the same space than we could do in the same time. 

Next is palindrome. In fact, we had seen a linear time algorithm using a two-tape Turing 

machine, a linear time deterministic algorithm using a two-tape Turing machine for 

palindromes. Let us see how much space we require. Suppose the input is written on the 

tape and is 1,2,3,1, 2, 3,1,2,3, up to n, and the input is x. We first check the first bit, 𝑥1, and 

then we check the last symbol, 𝑥𝑛. 

If they are not the same, we immediately reject. Otherwise, we continue. Then we check 

𝑥2 and 𝑥𝑛−1, 𝑥3 and𝑥𝑛−2, and so on till we get to the midpoint. It’s a very simple, 

straightforward algorithm. 

You reject if any of these pairs are not equal. You accept if you don’t reject until then. So, 

it’s a very simple, straightforward algorithm. How much space is required? The only space 

required is to maintain this counter for your position: 1 or n or 𝑛 + 𝑖 − 𝑠𝑜𝑚𝑒𝑡ℎ𝑖𝑛𝑔 or i or 

whatever. So, this counter i needs to be stored. 

We also need to calculate n+i-1. So, these two things need to be stored. Then we need to 

remember 𝑥𝑖, which is a single symbol, when we go to 𝑥𝑛+1−𝑖. So, basically, we need to 

remember 𝑖, 𝑛 + 1 − 𝑖, 𝑎𝑛𝑑 𝑥𝑖 and then go to 𝑥𝑛+1−𝑖. 

So, i is a number that is bounded by one, bounded from 1 to n. Right, n plus 1 minus i also 

is in the range 1 to n. So, all we need is 𝑛𝑙𝑜𝑔(𝑛) bits to store this number, sorry, to store i 

and n+1-i, and 𝑥𝑖 is a symbol, so it depends on the alphabet size. So if it is binary, we just 

need one bit; if it is decimal, you may need four bits to store 𝑥𝑖. Right, so, but it is constant 



because the alphabet is fixed for the input alphabet, right? So it is not variable based on 

input length or anything. So this requires 𝑙𝑜𝑔(𝑛), this requires 𝑙𝑜𝑔(𝑛), and this is constant. 

So overall space required is just 𝑙𝑜𝑔(𝑛) space. So the overall space required is 𝑙𝑜𝑔(𝑛) 

space. Again, now we are seeing another instance where palindrome, which required order 

n time, now only requires 𝑙𝑜𝑔(𝑛)space. So we are seeing that it is significantly lower space. 

We took SAT, which required exponential time, that we do not know of any sub-

exponential algorithms for SAT. Now we could solve it in order n space, and palindrome, 

which we require order n time, now can be solved in 𝑙𝑜𝑔(𝑛) space. 

So here we have two problems which can be done much better in terms of space. But not 

all problems are like that. There are some problems which require space which is of similar 

order. But in general, space seems to be a more valuable or more powerful resource than 

time. If you're given the same amount of space, you seem to be able to do more than what 

you can do with time, but it's not clear. 

We are just talking on the basis of examples. Now, let me define some complexity classes, 

which are like we define P and NP, etc., in the case of time complexity. So, the complexity 

classes are L, L stands for log space, and NL stands for non-deterministic log space. So, 

log space means it is the set of all, it is actually D space of 𝑙𝑜𝑔(𝑛). 

So, actually, palindrome is in L. So, it is just the letter L, which stands for 𝑂(𝑙𝑜𝑔(𝑛)) 

space. And NL is the non-deterministic equivalent of that. It is the same amount of space, 

but with non-determinism. And then we have... So notice that now in the case of time 

complexity, this 𝑙𝑜𝑔(𝑛) space, 𝑙𝑜𝑔(𝑛) time, etc., is not really meaningful because just to 

read the input, you need n; like you need to go through from the first location till the nth 

location. 

Just to read the input requires n time. But whereas in the space, that space is not being 

counted, right? The space where we use to store that input is not counted. So we can 

actually do meaningful things with sublinear space. This is not really, usually not possible 

in time. You could do some simple things like there could be simple problems where you 

only look at a couple of leading symbols and then decide. But in general, it is not very 

interesting to look at complexity classes or computational problems which require 

sublinear time. 

But in case of space, we have L and NL, which is log space and non-deterministic log 

space. So, palindrome is in log space or palindrome is in L. So I am just explaining why 

there is a log space but not a log time. So now the third thing is with respect to or analogous 

to polynomial time we had the class P, which indicated the set of all computational 

problems which can be decided in polynomial time. 



 

 So, which is 𝑛𝑘 time by some deterministic Turing machine. So, we had P, which was the 

union of D time 𝑛𝑘; analogously, we have PSPACE. It is the set of all computational 

problems that can be decided in polynomial space. Right? So, this is equivalent to, or this 

is analogous to, P. Right? So these are some of the common complexity classes, and most 

likely we will not be seeing too many more complexity classes that classify problems in 

terms of space usage because of the time that we have. We have just this week 12 to cover 

space complexity classes. 

But maybe we will see one or two more. So the classes that we will see are L, NL, and 

PSPACE. So now, having explained all of this, let us move to... So we have defined things 

in terms of time, things in terms of space, deterministic, non-deterministic, etc. So now let 

us see how these classes compare against each other. So many of them are simple, but some 

of them require some amount of cleverness. So we are going to see some relations between 

complexity classes based on time, space, etc. 

So the first thing is that 𝐷𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)), for any f(n), 𝐷𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)) is contained in 

𝑁𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)). We saw something similar in time. 𝐷𝑇𝐼𝑀𝐸(𝑓(𝑛)) is contained in 

𝑁𝑇𝐼𝑀𝐸(𝑓(𝑛)) because a non-deterministic Turing machine can just act like a 

deterministic Turing machine. In other words, a deterministic Turing machine can be 

viewed as a non-deterministic Turing machine that does not use all the options. 

So 𝐷𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)) is contained in 𝑁𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)). It's straightforward. And this implies 

that if you set f(n) equal to log (𝑛), this implies that L is contained in NL. But one may ask 

at this point, is it a proper containment? The answer is we don't know. Right? Now, the 

next thing relates deterministic time and deterministic space. So suppose there is a language 

that requires f(n) time or 𝑂(𝑓(𝑛)) time to decide. 

We are saying that it can also be decided in 𝑂(𝑓(𝑛)) space. This is also fairly simple. The 

𝑂(𝑓(𝑛)) time Turing machine, the Turing machine that decides in 𝑂(𝑓(𝑛))time, runs only 

for 𝑓(𝑛) time. So, which means that Turing machine cannot use more space than  𝑓(𝑛) 

space because if you give 100 time steps, the head can only move 100 cells because each 

time step only moves one cell, right? So the space usage is not going to be more than the 

time, right? So, the Turing machine that decides the language in f(n) time or 𝑂(𝑓(𝑛)) time 

is already space-limited to 𝑂(𝑓(𝑛)) space. So, the maximum space used by the same 

Turing machine is 𝑂(𝑓(𝑛)). Hence, 𝐷𝑇𝐼𝑀𝐸(𝑓(𝑛)) is contained in 𝐷𝑆𝑃𝐴𝐶𝐸(𝑓(𝑛)). 

So, this is also fairly straightforward. Now the next thing, so instead of 𝐷𝑇𝐼𝑀𝐸(𝑓(𝑛)), one 

may ask, what if we had a non-deterministic time Turing machine? So then we cannot use 

the same idea because we want to simulate a non-deterministic time-bounded Turing 

machine with a deterministic space-bounded Turing machine. So we cannot use the same 

idea. So, what we will do is something that we have already seen. If you remember, we 



simulated a non-deterministic time-bounded Turing machine by a deterministic time-

bounded Turing machine. 

 

 

In lecture 31, while studying computability, we saw the simulation. In lecture 47, when we 

studied time complexity, we actually assessed or calculated how much time it takes. So, if 

you remember, we said that anything that can be done in non-deterministic time f requires 

deterministic time 2𝑂(𝑓) or something like that. So, let us just revisit that. So, the same 

approach works here is what I want to say. So what was the approach? The approach was 

to, like, you have a computation tree, right? So we know that it runs in n time, not 

deterministic time f(n), which means all computational paths get completed in O(f(n)). 

And then we want to identify if there is some computation path, sorry, some computation 

path that leads to acceptance. So maybe, I do not know. Some computation path that leads 

to acceptance. So out from the computation tree, we are looking for such a path. So what 

we can do is we can just go through all the paths in a breadth-first search manner. 

So if you remember, we discussed this earlier. We said that each path will be labeled based 

on which branch it takes at each configuration. So here it will be 1, here it will be 2, and 

then maybe again 2, I don't know, here it is 3, whatever. So this path will be labeled 1, 2, 

2, 3, something. So you have a counter that can track which computation path it is. 

And we basically keep cycling through the counter. And the number of symbols in each of 

these positions will be upper-bounded by the branching factor. So there will be some 

branching factor B, which is the maximum number of children any configuration can have. 

And so it will be, so that will be the number of symbols each position, like each position 

this can take, this counter can take, right? So it's a B-bit counter or B-symbol counter or 

the base of this counter is the capital B. And, but then the length of the counter is no more 

than O(f(n)). 

Because that is the height of a computation tree. So, in fact, all of this we discussed in 

lecture 31. So, maybe you can refer back to those lectures, but just that we did not look at 

it in terms of any time complexity or space complexity. So, each computation path can be 

encoded by a string of length O(f(n)) that is what I said, the counter, and we keep track of 

these strings. 

And so we have two things. One is that counter. We have this counter that keeps track of 

the computation paths. And then we need to simulate the non-deterministic Turing 

machine. So suppose you fixed a number. It's a one, two, two, three something. And then 

for that specific string, let's say for the string one, two, two, three something, we want to 

simulate the NTM. 



So there is no non-determinism there. The counter is already there. Based on the counter, 

we decide the choices. And this will require O(f(n))  space because we are just running an 

O(f(n)) time Turing machine. So, again, O(f(n))) time will run in O(f(n)) space also. So the 

O(f(n)) length counter is the first thing. And then for the simulation itself, we need O(f(n)) 

space, but that is for one specific counter, one specific string output by the counter. 

Now, when we update to the next string, we don't need to keep track of what we did with 

the earliest string. We can just do it afresh; we can reuse the space, right? This is an 

interesting thing with the space. We can keep reusing it. We don't need to preserve what 

was done earlier. 

We don't need to preserve everything that was done earlier. Maybe we only need to store 

a few bits of information. In this case, we just need to store whether we have found an 

acceptance earlier or not. In fact, if we found an acceptance, we would just close the entire 

simulation. 

Otherwise, we would just continue. So, we have two things. One is O(f(n)) length counter 

and each simulation taking O(f(n)) space. So, overall space required is O(f(n)) So, while it 

is a deterministic space-bounded Turing machine that takes O(f(n)) space, which is what 

we have said here. 

n time f(n) can be simulated by D space f(n). So this is another result. In fact, this is similar 

to the way we showed that SAT is in D space n. So basically we are taking a, it's kind of 

the same thing, but set in a more general setting. There also we explored all the 2𝑝𝑜𝑤𝑒𝑟 

impossible choices and said that it takes only an nnn-bit counter and constant space. 

Here we are saying it takes O(f(n))  bit counter and O(f(n)) space. So, n time f(n) can be 

simulated in D space f(n). Next thing, we change the roles. Suppose something, so far both 

the results or two things we have said is D time simulating in D space and n time simulating 

in D space. Now, let us see how much time it takes to simulate a space-bounded machine. 

Suppose we have a D space machine that runs in O(f(n))  space. 

And how much time does it take to simulate, right? And what we say is that it takes 2𝑂(𝑓(𝑛))  

time. We also need an assumption here. The assumption is f(n) is at least log (𝑛). This is 

actually an important assumption. And usually, many statements in space complexity will 

be accompanied by this assumption. In a way, the point is that we need, we cannot really, 

it is not really meaningful to measure D space f(n) if f(n) is smaller than log (𝑛).  

Like if f(n) is little over log (𝑛), D space of f(n) does not really make much sense because 

at least to, like one thing that we may be interested in doing is to keep track of the indices 

as we scan the input. So, the input length does not matter, it does not count. But let's say 

we need to look at the 10th symbol of the input or nth symbol of the input or n minus 10th 

symbol. Then we need to have a counter to keep track of where I am. 



The Turing machine doesn't automatically give us a counter. We need to have a counter. 

So the counter will range from 1 to nnn, which means it needs log⁡n\log nlogn bits to 

store such a counter. So I'm saying why this assumption that f(n)f(n)f(n) is at least 

log⁡n\log nlogn is not, it's a reasonable assumption because below log⁡n\log nlogn, we 

cannot meaningfully do something. And why we need it, so this is why it's a meaningful 

assumption. It's not really, we are not losing anything by restricting ourselves to this 

assumption. 

And why we need it, we'll see in this proof. So this is, for most meaningful space-bounded 

machines, this doesn't really hurt, this assumption. So, D space of f(n) means there is an 

input tape and there is a work tape. Let us assume that it is an accept-reject, it is a decision 

Turing machine. 

And the space used in the work tape is f(n). That is what this means, D space of f(n). And 

let us see how many configurations. So, one thing that we can do is to run the space-

bounded Turing machine. And let's see, it's a deterministic Turing machine. The left side 

is also deterministic, right side is also deterministic, right? And we just run that space-

bounded Turing machine and see how much time it takes. 

And what we are going to do is that that is going to be good enough. Just that we are going 

to limit the running of the time-bounded Turing machine to this much time. And we are 

going to say that we will always get a decision. So, we just run the same machine and if 

we measure the time taken, it is going to be at most 2𝑜(𝑓(𝑛)). 

If it does not conclude by that, we can stop the computation and reject the input. So, let us 

see why that is the case. So, the claim is that if something runs in D space f(n), the time 

taken is 2𝑂(𝑓(𝑛)). So, let us see why that is the case. So the number of configurations of this 

space-bounded Turing machine, let's see what it is. 

 

 

 So we have multiple things which constitute the configuration. One is the head positions. 

There are head positions which are in the input tape and the work tape. So this is because 

of head positions. So the input tape, the head could be in anywhere from n positions. 

n is the length of the input. And the work tape, the length is f(n). So the head position can 

be anything from 1 to f(n). So there could be f(n) possibilities for the head position of the 

work tape and n possibilities for the head position of the input tape. And the input tape 

contents are fixed for a specific input. So, there is no scope of changing. What is the number 

of possible contents of the work tape? So, contents of the work tape, it is going to be 

γ^(f(n)). 



So, contents of the work tape, it is going to be size of γ^(f(n)), where γ is the tape alphabet. 

So, contents of the work tape because there are f(n) cells and each of these cells can have 

any tape alphabet, tape symbol there. So, it is γ^(f(n)). And then we have the state, the 

number of states which is q. So, these are the things that comprise the configuration. 

Now, if we just see this, we can simplify as 2^(some constant times f(n)). So, we can see γ 

is 2^(some constant). And we have n f(n) here and q here, it is the same thing. But then all 

of these things are dominated by the 2^(constant f(n)) term, n f(n) q. So, q is a constant, n 

is a linear term and f(n) is going to be, we know that f(n) is at least log n. 

So, it is going to be dominated by 2^(f(n)). So, what we can do is we can easily absorb all 

this into the exponent term. So, we can replace it with 2^(another constant f(n)). So, 2^(c2 

f(n)), but it is just another constant which we can say 2^(O(f(n))). So, now the number of 

configurations of the space-bounded Turing machine is 2^(O(f(n))). Now, number of 

configurations is 2^(O(f(n))) means it has to terminate in 2^(O(f(n))) steps. If it does not 

terminate in 2^(O(f(n))) steps, that means it is repeating some configuration, which means 

it will just get stuck in some loop. 

So if you run in that time, and if we accept, fine, we accept. If we reject, fine, we reject. 

But if it does not terminate in 2^(O(f(n))) steps, 2^(O(f(n))) steps, that means we are stuck 

in some loop. Because there are only, let's say there are only 100 configurations. And if 

you have run 110 steps and we have still not accepted or rejected, it means that some 

configuration is repeating and it is just going to repeat again. 

We are just basically stuck in a loop. So, there is no point in just going through the loop 

over and over again. We may just as well accept that it is stuck in a loop and reject the 

output, reject the input. So we just run the DSpace machine and limit the running by this 

many steps, 2^(O(f(n))) steps. If it accepts, we accept. If it does not accept, in that much 

time, we reject. So the main key idea here is that we bounded the number of configurations, 

and that gave us an exponential time bound in the space complexity. 

And obviously, this gives us a corollary. So, if f(n) is set to be log n, if f(n) is set to equal 

log n, we get that if we set f(n) to be log n, we get that DSpace of log n is obviously L and 

DTime of 2^(constant times log n) is obviously P or some polynomial. So, we can say it is 

contained in P. So, L is contained in P. 

 

 So, this is something that may not be too surprising. It is something that runs in log space 

will not take more time than polynomial time. So, here we compared the deterministic 

space and how much time it takes to run a deterministic space Turing machine. The next 

thing is we will move to a non-deterministic space Turing machine. So, we move to a non-

deterministic space-bounded Turing machine. Again, we use the same assumption that f(n) 

is at least log n. One point, we actually use this assumption over here, right? We use this 



assumption over here because if we don't have this assumption, we cannot assume that n 

f(n) is dominated by 2^c f(n), right? Because you assume that n is dominated by 2^c f(n). 

So, we have to assume that f(n) is at least log n. Otherwise, we cannot do that. That is 

where this assumption actually plays a role in this proof to move from basically this 

inequality. So, similarly, it will play the same role here as well. So, now we are saying that 

instead of a deterministic space-bounded Turing machine, we are dealing with a non-

deterministic space-bounded Turing machine, but the result is that it takes the same amount 

of time. It can be simulated in d time 2^n. So, this right-hand side is the same, but the left-

hand side has been replaced by n space. We cannot use the same simulation that we did 

here, where we just ran the d-space Turing machine because d-space Turing machine is 

just deterministic. 

But non-deterministic space-bounded Turing machines could have multiple approaches. 

So, now we cannot run it just like that, because running it itself requires us to explore many 

computation paths, etc. And if there is a branching factor of B, then if you do some kind of 

exploration of all paths, it may result in some kind of double exponential thing like 

B^2^O(f(n)) configurations, because we have a tree that is of height f(n). Sorry, we have 

2^O(f(n)) configurations. So, the tree could be as big as 2^O(f(n)) size with that many 

different configurations, but then each configuration can have as many as B children. 

So, this could be as bad as this. So, we do not really use this kind of straightforward 

approach. The thing is that the total number of configurations is bounded, right? So we 

already saw that the total number of configurations in the case of a d-space Turing machine 

is bounded by 2^O(f(n)) and n-space also has the same bound because the configuration 

doesn't really depend on whether it is deterministic or non-deterministic, right? It is just 

contents of the work tape, head positions, and state, right? So the number of configurations 

is going to be 2^O(f(n)), right? Or at most 2^O(f(n)). Right? So, the point is that many of 

these B^2^O and things, the configurations, they are like duplicates. Like, the same 

configuration may be appearing in multiple computation paths. 

So, we do not need to duplicate the effort. Instead, we can just look at the entire tree, the 

entire set of configurations as a single directed tree. Right? So, we have the starting 

configuration of the non-deterministic Turing machine on input. So, whatever input it is, 

once we decide the input, the starting configuration is fixed. And then how many valid 

successors does it have? So, some successors and they will have more successors, and so 

on. So, we will get some kind of a directed graph which is a configuration graph. 

And we just want to know whether there is some way to reach the accepting configuration 

from the starting configuration. But then there is another problem here. The problem is that 

there could be multiple accepting configurations because the accept state is unique, but the 



tape contents could be different. But what we can do is modify the Turing machine such 

that whenever it accepts, it erases the tape contents. 

So, it erases the tape contents and brings the head back to the left end, which means there 

is only a single accept configuration. We can assume there is a single accept configuration. 

So now, in the configuration graph, so you start from the, so it's a directed graph where 

you have an edge. You have an edge if there is a valid successor, if this configuration is a 

valid successor of the previous configuration. 

So you have a directed edge from i to j if j is a valid successor of i. And that is easily 

checked by the rules of the non-deterministic Turing machine. So we can build this 

configuration graph. Another point is that we do not need to explicitly build it. We can 

kind of have this idea in mind and just build it as we guess or make the next step as we go 

along. We can kind of on the fly check whether the edge is there or not. 

All we need is access to the information whether there is an edge from i to j, and this can 

be done on the fly. We don't need to set up an adjacency matrix because that's again going 

to be too much space and too much time. So we don't need to do that. In fact, in this case, 

we can actually build the configuration graph and build the adjacency matrix also because 

anyway, the running time that we are using is 2^O(f(n)). So we can build this configuration 

graph and we need to check whether there is a path from start to accept. 

So we can use any traversal algorithm, right? We can just use breadth-first search or depth-

first search, which runs in linear time in the size of the graph. So v plus e time, which is 

upper bounded by v^2 time. And we know the number of configurations is 2^O(f(n)), right? 

Something that we said here, as well as we said here, right? So that implies that the running 

time of the BFS is also going to be 2^O(f(n)). 

The square gets absorbed in the O here. So it's just asymptotics. And even this O is 

unnecessary. So the running time is 2^O(f(n)). So what we have shown is that an n-space 

Turing machine, an n-space Turing machine which runs in O(f(n)) space can be simulated 

in d time 2^O(f(n)). Right? So, again, even though it is a non-deterministic space-bounded 

machine, it took the same time as a deterministic space-bounded Turing machine, right? 

So, this is also d time 2^O(f(n)), this is also d time 2^O(f(n)), right. 

And this implies that by setting f(n) to be log n, we get that you set f(n) to be log n, we get 

that n-space of f(n) is NL. So, n-space of log n is NL. And d time of 2^O(log n) is basically 

d time of n^constant, which is polynomial time. So, this shows that NL is contained in P. 

So, yeah, I think that is what I want to say in this lecture, lecture number 57. So we 

introduced space complexity, which is the maximum space taken by an input of any length. 

And in the case of a non-deterministic Turing machine, it's the maximum space used by 

any branch of computation on any input of the same length. And then we said that the 



standard model of computation, the standard Turing machine model may not be good for 

measuring the space because it forces the space requirement to be always at least n. So, we 

considered or we structured another model where we have the input separated from the 

work tape, where the input is read-only and you cannot work on the input tape. And the 

space that counts is only the space in the work tape. 

Now, with this model, we can make meaningful statements like this problem can be 

decided in O(log n) space. So, then we said some statements. Statements, so we defined 

some complexity classes like L, NL, and log space, sorry, NL, NL, and P space. So L is 

log space, NL is non-deterministic log space, and P space is polynomial space. And we 

saw some relations versus the D-space f(n) is contained in N-space f(n). 

D-time f(n) is contained in D-space f(n). So one consequence of this is that P is contained 

in P space, polynomial time and polynomial space. Yes, and then we saw that non-

deterministic time is also contained in the same space. So, this shows that even NP is 

contained in the P space. 

That is what this shows, right? And then we saw how space-bounded Turing machines can 

be simulated by time-bounded Turing machines. So, d-space of f(n) is contained in d-time 

2^O(f(n)) and n-space f(n) is contained in d-time is also contained in d-time 2^O(f(n)). So, 

by setting f(n) to be log n we get that L is contained in P and even NL is contained in P. 

So, that is some introduction to what is space complexity and also some relations between 

how these space complexity classes relate with each other as well as with time-bounded 

complexity classes. And in the next lecture, we will see something called, just like we had 

NP completeness, we will see a notion of completeness, but it will be NL completeness, 

not P space, but NL completeness. So, that is what we will see in the next lecture. As far 

as lecture number 57 is concerned, that is all from me and see you in the next lecture. 

 


