Theory of Computation
Professor Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Integer Linear Program is NP-Complete

(Refer Slide Time: 0:16)

INTeqee Lnehe Peogow (T0P) @

NPTEL

D all bot s it l,«i\u,\?%ml

s ?W{\W
Fad %,k o xy Mok

HAAX WA 1A 3 Bixy
e\

hbd B aux tag i, b Fage, D,

Qg Xy Faggle b F00kn E by,

fkw\‘K\ ‘H\M?jz_“’- . +"\Mv\'ﬁwélﬂw\
Xi 20 ¥i

Rue 04, bi & e duen ax ook A e
LI TS @
Qﬁm&wwm\wm' NPTEL
o plon Cpualiion), e o
= Howy dhiluusking - b s peadion,
sdhednding dlo .

- WMMMM.(M
dousion Sastion, & W P,
Daknig |, Chadhisan. | Kasauralah ase
e, o ot Dropeied algpdlma.

ho i Vs, prgaan CTUPY " (iuamh
Prangasmn o e oo cwliad ok

t\.w M QA;«M’PW\W QTW\ ‘o o

Praomn it o allbbinol confind ot %ﬁf}
e s dhedk b s i
(s ik gy waluas B, pocklonn

e \

D il enodin & shasd a4 TLY alldl
o Ol TLR, st @ %5 hoate ke bam
golﬂﬁ

Hello and welcome to lecture 56 of the course Theory of Computation. In this lecture, we will
discuss another NP-complete problem called Integer Linear Programming (ILP). Before
delving into ILP, let's understand Linear Programming (LP), a well-known technique with

numerous applications.

Linear Programming involves maximizing an objective function subject to constraints. You
choose variables x; to x,,to maximize the objective function, given constraints expressed as
linear inequalities or equations. The constraints look like a,,x;+a;,x,+...+a,;,x,<b;,

Az1X1+a52%,<b, and SO ON UP 10 A1 X1t AmaXat. . . FAmn Xn<by, .

In matrix form, this can be represented as Ax < b, where A isan m X n matrix, X isann x 1
vector of variables, and b is an m x 1 vector. The objective function to maximize is Y .C;x; ,

which can be written as the dot product C - x, where C is a vector of coefficients.

Given A, b, and C, the goal is to find the values of x1 to xn that maximize the objective
function while satisfying the constraints. Linear Programming was formalized during World

War 11, and it is used to optimize resource allocation under constraints.

For example, in wartime scenarios, there are constraints such as limited supplies and risks,
but you want to maximize some benefit, like transporting food efficiently while avoiding
enemy detection. Linear Programming has many applications, including diet optimization.
For instance, to create balanced cat food, you need to ensure the right proportions of

nutrients, such as protein and carbohydrates, within upper and lower limits.

Now, let’s move on to Integer Linear Programming (ILP). ILP is similar to LP but with the
additional constraint that some or all variables are required to be integers. This makes the

problem more complex and is the focus of our discussion on NP-completeness.

To show that ILP is NP-complete, we need to prove two things:ILP is in NP: Given a
proposed solution, we can verify in polynomial time whether it satisfies the constraints and
optimizes the objective function.An NP-complete problem reduces to ILP in polynomial

time: We can take a known NP-complete problem and transform it into an ILP problem.

For example, reducing the subset sum problem to ILP involves creating a system of linear
inequalities that represent the subset sum instance. By demonstrating this reduction, we
establish the NP-hardness of ILP, and by verifying solutions efficiently, we show that ILP is
in NP.

At the same time, we have, let's say, 10 ingredients. The first ingredient provides some
nutrients in certain quantities, the second ingredient provides other nutrients in other
quantities, and so on. How much of these ingredients should I include so that all nutrients are
in balanced quantities? Additionally, I want to optimize the cost since each ingredient has a
certain cost. The goal is to select the ingredients to minimize the overall cost without

compromising the nutritional limits.

In transportation, such as for an airline company, you want to optimize how your fleet
operates. This involves scheduling constraints. Any real-world application with multiple
constraints that aims to meet specific goals can often be formulated as a linear program. A
linear program involves linear constraints and an objective function that you want to

maximize or minimize.

For example, we want to maximize the sum of Cixi, subject to the constraints Ax < b.
Sometimes, there are minimization versions. Linear programming can be solved efficiently in
polynomial time using algorithms like the simplex method, developed by George Dantzig,
which usually runs in polynomial time but isn't guaranteed. Later, Khachiyan and Narendra
Karmarkar developed algorithms that are polynomial time.

However, if we add the constraint that all xi must be integers, the problem becomes hard. In

linear programming without the integer constraint, if a constraint isn't met, you can gradually

adjust x1 or x2 to meet it, making fine-tuning possible. Minor adjustments don't significantly

change the outcome, allowing for smooth optimization.

When xi must be integers, you lose this flexibility. If x1 is 3, you can only move to 4 or down
to 2, losing the smooth range for adjustments. This constraint makes the problem harder, not

simpler, by reducing flexibility and making it more constrained.

Integer Linear Programming (ILP) involves the same setup as linear programming but with
the additional constraint that variables must be integers. This small change transforms the
problem from being solvable in polynomial time to being NP-complete, showing how a

minor adjustment can significantly impact problem complexity.

So, this convey, this additional constraint changes the whole situation. And we will see that
this additional constraint makes it NP-complete. So NP-complete means we generally believe
it is not possible to solve it efficiently. Whereas without the integer constraint, the problem was
in P. So, in fact, what we will see is a special case of integer linear program called 0-1 ILP. So
in fact, here, what | am saying is I am not even saying that it should be integers, the x i’s should

be integers, | am saying that the x i’s should be 0, 1. x i’s should be 0 or 1.

(Refer Slide Time: 11:03)

dusion Yassion & w P,
Dok, Chadien. , Loswnnliah e {;@
me, ubo bt Dropied algpedlin. =

ho i U, progasn CTUPY "y Louamh
o wn dedd b idps

(i " dangg woln o, paeklonn
ik |

DL it coidin & shasl e &, TLY Gl
Mo VTR, st wdh ¥ boate ke bromt
LS

Fad 50, otk
HAAX WA %C,m 7/&
X B aux, tagt, boe Fay, £,

Qg Ky tagg ottt An E by,
hx ¢b

B Xy FAwgKe ¥ - FAgyAn & bin

Y20 ¥i

Rue a4, bj 6 s quin ax ok 4 te
LP ke

= fomaligh Dusaiag, seumd, il o,
o olon Guntalifion A e .

So, let me just state the decision version of the ILP, 0-1 integer linear program. So ILP is just
short for integer linear program. So, the decision version of the general linear programming is
that instead of asking to maximise or minimise, | already said you could ask is there a C, is
there an x i’ such that summation of CiXi greater than t, in which case it becomes a yet another
constraint. So, basically, you want to find some x1,x2,up to xn which meet some set of

constraints.

(Refer Slide Time: 11:38)

®

Q«L&wm L)\])l TLY u e M,Qnsmk . NPTEL

Doy . wk X\ gy - - Xn € %O‘\]MM

(LY P S N T

O K Faggfe b A8, aXa Ehy

O Ky FAwrgXa ¥ FRagyhn & by

xefo} i

lasn. "~ e diion votion &, 01 TU1
NP epldy .

O Ky FAwg Ko ¥ - FAyyka & b

xefo} Wi @

NPTEL

Tlugun " e diion votion &, 0L TU1
NP gl .

Mol 0 DL TR € NE syl

@) SuBSET-SOM £, OV TP,

huea & LURSET- SOM ifame. $59806, 000
[LTV, SIS TR RV TR T Y
o\ TUP a |l

Dm’\hm ulnk Xy Yoy oo Ke st ok

Dmmﬂ, W)k ’(\,)(-,,,~~xk Wﬁt\m
S At v £t —0) @

-8 Xy ‘\’k%\t“'. s “’&_CQ\(L ["h = @ i

e §ony ¥

Tt i taoy o v Yok o il ©
st 6 i Ml

SAtx t Flx 2 b — @)

@X@ = i&m:’o

-
When 106 80,10 4y o o ot 03 wlhing
P B, TEE Gt t,

A . CorCe T M nella.

Xi€ 301y i,
Tb s tagy o e Yok B ol © (%9
- u %«h‘&n‘r\‘w NPTEL

SA X £ Pl 7t —@)

@x/@ = _\%&pﬁ:’c

Whon 1o e §0,00 4y o e ot 03 oy
DE TPRITRN % o (S A TR R
Wudh 0ty CORSET-SUM padliun .

Tl 01U TU u NP conglid.

Similarly, the decision version of the 0-1 integer linear program (0-1 ILP) is given matrices A
and B. We need to determine if there exist x1 to xn in {0,1} such that the constraints Ax < b

are satisfied. If the range is integers, it becomes general ILP.

Now, let's see that this problem is NP-complete. The decision version of 0-1 ILP is NP-
complete. It is in NP because we can guess and verify: guess which xi are 0 or 1, and verify

whether they meet the constraints.

To show NP-hardness, we reduce the subset sum problem to 0-1 ILP. Given a set S and a
target sum t, we want to build a 0-1 ILP instance such that the subset sum instance is a yes

instance if and only if the 0-1 ILP instance is a yes instance.
Given a set S and a target sum t, we construct a 0-1 ILP as follows:

1. The first constraint is ¥, S;x; < t.

2. The second constraint is — Y¥_, S;x; < —t.

We also want all xi to be in {0,1}. This setup ensures that if xi are chosen such that

>k . S;x; = t, both constraints will be satisfied.
Let's see why this works:

1. Given a subset sum instance, we write down the ILP with constraints Y%, S;x; < t
and— Y%, Six; < —t.
2. Multiplying the second constraint by -1, we get ¥¥_, S;x; > t.

3. Combining ¥¥ , S;x; < tand Y%, S;x; > t we get ¥, Six; = .

This ensures that the sum of the selected Si equals t. The xi being 0 or 1 effectively picks
some Si values to include in the sum. This is equivalent to the subset sum problem, where

you want to determine if there is a subset of S that sums to t.

Writing this instance of 0-1 ILP from the subset sum problem is straightforward and can be
done in polynomial time. The correspondence between the subset sum instance and the 0-1
ILP instance is clear: the 0-1 ILP is a yes instance if and only if the subset sum problem has a

subset summing to t.

(Refer Slide Time: 18:39)

INTekee Lkt Pogom (Tup) @

NPTEL

[?“"X‘W
Fad %), K, xo Bk
WAXIWI A %m;

WW B aux Fagk, £ tat, £ b,

Oy Xy thgglo bt An Eby,

kx ¢h
[T W L ST £ R ST

20 ¥i

T ®

DM‘:A%, k‘wﬁ»uex\, Losmnolak ase NPTEL
taus, o bt Dropaied algpdtluncs.

ho g ons, togaun CTURY ‘g (s
Pt . abdibinel sl o
o n deadd b iy

[T N PTRCTI TG T, Y
ek |

e il eaodon & shail o & TLY ol
o OIUTLR, o tadh x; hoate ke bome
2ot

fla. Riion woion |, 01 TUY st (Rl @

NPTEL

M'\h’\k '-W-’k ’(\:(L)"XV\ G %O.\]MM

KXt ky o F0, € b,

O K Fagglo b H0,0ka Eby

('A\M\K\ '\'A'MLK; Yo ‘I"l.,M'M\ ‘—LM

efo] ¥i

ﬂhﬂﬁi%lwmmme% of1 T
Y. el .

D T OV ALTIP ENP Dm0l auneiki

O &y FAwgKe - FRgkn & b

xefo} Wi @

NPTEL

Tlugun. " e diion voion §, 0L TU1 %
Y. gl .

Doy ! 0) OTLTLP €N G aud vonchy
—

) SUBSET-SOM £, OV TP,

huea n LORSET- QUM iufam. L5808, 0000
ol fiogd f b o o e K Wy &

o TiP a |l

DUQ,‘“\DL MJJ& KyyYa,y i W\JAM

fofl! 0) OILTUR ENP yuoy ank Sascky

(@) SUBSET-SOM L, OV TP, @9

NPTEL

hian a CORSET- SO adfane 5§88, 0]
nad G S b o e K Wy <
o TUP a |l

Do thot, wivk %y, 15, X ndn Yok

st gt vox et —0
S At T e-F - O

e ol N

0t b ooy o v Mk sty ©
il %t Wlnoe

Tt iy tasy 1o e ik W ity © ,
Wﬁwz«w 6%

St £ Flx 72t —@©

NPTEL

13
@'&@ = _‘%\&m:{;
Whow o e §0,0, My o o ot 14 wing
N PRV & (S A SPTE RD
Vudh oty CORSET-COM pafuin .

Tl O[TV 4 WP ouglid.

So, we talked about linear programming, which involves linear constraints and inequalities.
Subject to these linear inequalities, we want to maximize a linear objective function by
selecting appropriate values for x. Given a matrix A, vector b, and vector C, we want to find
the x values that maximize the objective function while satisfying the constraints.

Then we discussed integer linear programming (ILP), where we added the restriction that the
xi's must be integers. This additional constraint makes the problem harder. We specifically
looked at the 0-1 integer linear program (0-1 ILP), a special case of ILP where the xi's can

only be 0 or 1.

We showed that 0-1 ILP is NP-complete. Membership in NP is easy to see because we can
guess and verify which xi's are 0 or 1 and check if they satisfy the constraints. We
demonstrated the NP-hardness by reducing the subset sum problem to the 0-1 ILP problem.
Given a subset sum instance, we can easily construct a 0-1 ILP instance, which is a yes
instance if and only if the subset sum instance is a yes instance.

Thus, the reduction from subset sum to 0-1 ILP is straightforward, and it shows that 0-1 ILP
is NP-complete. This completes our proof that 0-1 integer linear programming is NP-
complete.

(Refer Slide Time: 19:50)

O

K A
020 = & sa-t a\;{%}

NPTEL

Whou e e 50,10 My o Bt 14 g
G4 wn b) S EY w B b,
Wik oty CORSET- SO padfun .

AT [B Ao 1

Tl touplds fout, i
Nud ek - hoars MQM&"S

[WTeaee Leat Peore (T1) \%_f;

NPTEL

Dol bk v ok 0w L Phaonn

(s DW{\HNMI\M
Fad % xg - xy ok

WAX I YA é(&‘ﬁ('\
7
Wt B aux Fagx, £ Fagn, £,
Qg Xy Fagple b dopata Sy

Ax ¢h
Own Xy Hhwigha t o - Fhyyykn € by

X 20 ¥i

And this also completes the time complexity part of the course, which is chapter 7 in the
textbook. This also concludes week 11 of our course. In week 11, we explored many NP-
complete problems. We saw that the clique problem is NP-complete, the vertex cover
problem is NP-complete, and the Hamiltonian path problem is NP-complete. These problems

are based on graphs.

We also mentioned a couple of other problems but did not provide detailed proofs, leaving
them as exercises. We demonstrated that the subset sum problem is NP-complete, which
involves determining if there is a subset of a set that sums to a target sum t. We then showed
that the knapsack problem is NP-complete. Finally, we saw that the 0-1 integer linear

programming problem is NP-complete.

One fascinating aspect of integer linear programming is that linear programming without the
integer constraint is polynomial-time solvable. However, when the constraint is added that

the numbers must be integers, the problem becomes NP-complete.

This completes the time complexity chapter. Next week, in week 12, we will begin an
overview of space complexity. Just as we studied time complexity to understand the time
required to solve or decide on a problem, space complexity focuses on the amount of memory

needed to answer computational questions. This will be the focus for week 12.

That’s all from me for week 11 and lecture 56. See you next week. Thank you.

