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Hello and welcome to lecture 56 of the course Theory of Computation. In this lecture, we will 

discuss another NP-complete problem called Integer Linear Programming (ILP). Before 

delving into ILP, let's understand Linear Programming (LP), a well-known technique with 

numerous applications. 

Linear Programming involves maximizing an objective function subject to constraints. You 

choose variables 𝑥1 to 𝑥𝑛to maximize the objective function, given constraints expressed as 

linear inequalities or equations. The constraints look like 𝑎11𝑥1+𝑎12𝑥2+…+𝑎1𝑛𝑥𝑛≤𝑏1, 

𝑎21𝑥1+𝑎22𝑥2≤𝑏2 and so on up to 𝑎𝑚1𝑥1+𝑎𝑚2𝑥2+…+𝑎𝑚𝑛𝑥𝑛≤𝑏𝑚 . 

In matrix form, this can be represented as 𝐴𝑥 ≤ 𝑏, where A is an 𝑚 × 𝑛 matrix, x is an 𝑛 × 1 

vector of variables, and b is an 𝑚 × 1 vector. The objective function to maximize is ∑𝐶𝑖𝑥𝑖 , 

which can be written as the dot product 𝐶 ⋅ 𝑥, where C is a vector of coefficients. 

Given A, b, and C, the goal is to find the values of x1 to xn that maximize the objective 

function while satisfying the constraints. Linear Programming was formalized during World 

War II, and it is used to optimize resource allocation under constraints. 

For example, in wartime scenarios, there are constraints such as limited supplies and risks, 

but you want to maximize some benefit, like transporting food efficiently while avoiding 

enemy detection. Linear Programming has many applications, including diet optimization. 

For instance, to create balanced cat food, you need to ensure the right proportions of 

nutrients, such as protein and carbohydrates, within upper and lower limits. 



Now, let’s move on to Integer Linear Programming (ILP). ILP is similar to LP but with the 

additional constraint that some or all variables are required to be integers. This makes the 

problem more complex and is the focus of our discussion on NP-completeness. 

To show that ILP is NP-complete, we need to prove two things:ILP is in NP: Given a 

proposed solution, we can verify in polynomial time whether it satisfies the constraints and 

optimizes the objective function.An NP-complete problem reduces to ILP in polynomial 

time: We can take a known NP-complete problem and transform it into an ILP problem. 

For example, reducing the subset sum problem to ILP involves creating a system of linear 

inequalities that represent the subset sum instance. By demonstrating this reduction, we 

establish the NP-hardness of ILP, and by verifying solutions efficiently, we show that ILP is 

in NP. 

At the same time, we have, let's say, 10 ingredients. The first ingredient provides some 

nutrients in certain quantities, the second ingredient provides other nutrients in other 

quantities, and so on. How much of these ingredients should I include so that all nutrients are 

in balanced quantities? Additionally, I want to optimize the cost since each ingredient has a 

certain cost. The goal is to select the ingredients to minimize the overall cost without 

compromising the nutritional limits. 

In transportation, such as for an airline company, you want to optimize how your fleet 

operates. This involves scheduling constraints. Any real-world application with multiple 

constraints that aims to meet specific goals can often be formulated as a linear program. A 

linear program involves linear constraints and an objective function that you want to 

maximize or minimize. 

For example, we want to maximize the sum of Cixi, subject to the constraints 𝐴𝑥 ≤ 𝑏. 

Sometimes, there are minimization versions. Linear programming can be solved efficiently in 

polynomial time using algorithms like the simplex method, developed by George Dantzig, 

which usually runs in polynomial time but isn't guaranteed. Later, Khachiyan and Narendra 

Karmarkar developed algorithms that are polynomial time. 

However, if we add the constraint that all xi must be integers, the problem becomes hard. In 

linear programming without the integer constraint, if a constraint isn't met, you can gradually 



adjust x1 or x2 to meet it, making fine-tuning possible. Minor adjustments don't significantly 

change the outcome, allowing for smooth optimization. 

When xi must be integers, you lose this flexibility. If x1 is 3, you can only move to 4 or down 

to 2, losing the smooth range for adjustments. This constraint makes the problem harder, not 

simpler, by reducing flexibility and making it more constrained. 

Integer Linear Programming (ILP) involves the same setup as linear programming but with 

the additional constraint that variables must be integers. This small change transforms the 

problem from being solvable in polynomial time to being NP-complete, showing how a 

minor adjustment can significantly impact problem complexity. 

So, this convey, this additional constraint changes the whole situation. And we will see that 

this additional constraint makes it NP-complete. So NP-complete means we generally believe 

it is not possible to solve it efficiently. Whereas without the integer constraint, the problem was 

in P. So, in fact, what we will see is a special case of integer linear program called 0-1 ILP. So 

in fact, here, what I am saying is I am not even saying that it should be integers, the x i’s should 

be integers, I am saying that the x i’s should be 0, 1. x i’s should be 0 or 1.  
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So, let me just state the decision version of the ILP, 0-1 integer linear program. So ILP is just 

short for integer linear program. So, the decision version of the general linear programming is 

that instead of asking to maximise or minimise, I already said you could ask is there a C, is 

there an x i’ such that summation of 𝐶𝑖𝑋𝑖 greater than t, in which case it becomes a yet another 

constraint. So, basically, you want to find some 𝑥1, 𝑥2, 𝑢𝑝 𝑡𝑜 𝑥𝑛 which meet some set of 

constraints.  
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Similarly, the decision version of the 0-1 integer linear program (0-1 ILP) is given matrices A 

and B. We need to determine if there exist 𝑥1 to 𝑥𝑛 in {0,1} such that the constraints 𝐴𝑥 ≤ 𝑏 

are satisfied. If the range is integers, it becomes general ILP. 

Now, let's see that this problem is NP-complete. The decision version of 0-1 ILP is NP-

complete. It is in NP because we can guess and verify: guess which 𝑥𝑖 are 0 or 1, and verify 

whether they meet the constraints. 

To show NP-hardness, we reduce the subset sum problem to 0-1 ILP. Given a set S and a 

target sum t, we want to build a 0-1 ILP instance such that the subset sum instance is a yes 

instance if and only if the 0-1 ILP instance is a yes instance. 

Given a set S and a target sum t, we construct a 0-1 ILP as follows: 

1. The first constraint is ∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1  ≤ 𝑡. 

2. The second constraint is − ∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1 ≤  −𝑡. 

We also want all 𝑥𝑖 to be in {0,1}. This setup ensures that if 𝑥𝑖  are chosen such that 

∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1 =  𝑡, both constraints will be satisfied. 

Let's see why this works: 

1. Given a subset sum instance, we write down the ILP with constraints ∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1 ≤  𝑡 

and− ∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1 ≤  −𝑡. 

2. Multiplying the second constraint by -1, we get ∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1 ≥ 𝑡. 

3. Combining ∑ 𝑆𝑖𝑥𝑖
𝑘
𝑖=1 ≤  𝑡 and ∑ 𝑆𝑖𝑥𝑖

𝑘
𝑖=1 ≥ 𝑡 we get ∑ 𝑆𝑖𝑥𝑖

𝑘
𝑖=1 =  𝑡. 

This ensures that the sum of the selected 𝑆𝑖 equals t. The 𝑥𝑖  being 0 or 1 effectively picks 

some 𝑆𝑖 values to include in the sum. This is equivalent to the subset sum problem, where 

you want to determine if there is a subset of S that sums to t. 

Writing this instance of 0-1 ILP from the subset sum problem is straightforward and can be 

done in polynomial time. The correspondence between the subset sum instance and the 0-1 

ILP instance is clear: the 0-1 ILP is a yes instance if and only if the subset sum problem has a 

subset summing to t. 
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So, we talked about linear programming, which involves linear constraints and inequalities. 

Subject to these linear inequalities, we want to maximize a linear objective function by 

selecting appropriate values for x. Given a matrix A, vector b, and vector C, we want to find 

the x values that maximize the objective function while satisfying the constraints. 

Then we discussed integer linear programming (ILP), where we added the restriction that the 

xi's must be integers. This additional constraint makes the problem harder. We specifically 

looked at the 0-1 integer linear program (0-1 ILP), a special case of ILP where the xi's can 

only be 0 or 1. 

We showed that 0-1 ILP is NP-complete. Membership in NP is easy to see because we can 

guess and verify which xi's are 0 or 1 and check if they satisfy the constraints. We 

demonstrated the NP-hardness by reducing the subset sum problem to the 0-1 ILP problem. 

Given a subset sum instance, we can easily construct a 0-1 ILP instance, which is a yes 

instance if and only if the subset sum instance is a yes instance. 

Thus, the reduction from subset sum to 0-1 ILP is straightforward, and it shows that 0-1 ILP 

is NP-complete. This completes our proof that 0-1 integer linear programming is NP-

complete. 
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And this also completes the time complexity part of the course, which is chapter 7 in the 

textbook. This also concludes week 11 of our course. In week 11, we explored many NP-

complete problems. We saw that the clique problem is NP-complete, the vertex cover 

problem is NP-complete, and the Hamiltonian path problem is NP-complete. These problems 

are based on graphs. 

We also mentioned a couple of other problems but did not provide detailed proofs, leaving 

them as exercises. We demonstrated that the subset sum problem is NP-complete, which 

involves determining if there is a subset of a set that sums to a target sum t. We then showed 

that the knapsack problem is NP-complete. Finally, we saw that the 0-1 integer linear 

programming problem is NP-complete. 

One fascinating aspect of integer linear programming is that linear programming without the 

integer constraint is polynomial-time solvable. However, when the constraint is added that 

the numbers must be integers, the problem becomes NP-complete. 

This completes the time complexity chapter. Next week, in week 12, we will begin an 

overview of space complexity. Just as we studied time complexity to understand the time 

required to solve or decide on a problem, space complexity focuses on the amount of memory 

needed to answer computational questions. This will be the focus for week 12. 

That’s all from me for week 11 and lecture 56. See you next week. Thank you. 

 


