Theory of Computation
Professor Subrahmanyam Kalyanasundaram
Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad
Lecture 55
Knapsack Problem
(Refer Slide Time: 00:16)

KNAPSALYL -
— PO
&)
(lmmnmw L7 e A B

(!Lw(%,,& MW 0, Wy, . . Wy
“MI”&X“AQM \J‘,Vq,',,. Ve

floxt & tadk (g with et gaidy V.
QWQKWQ«LLO@&ZG\.

Quotkion Dy Bsg ik o ek & iy
VR TP Y TP N

g\W\N/l)WUM ’-%L\)T [AN]
S) vl =,‘§1v: A

(g . KNRPSAOK NP Copplihe.

Hello and welcome to lecture 55 of the course Theory of Computation. In this lecture, we will
explore yet another NP-complete problem, which is the knapsack problem. In the previous
lectures, we have discussed many NP-complete problems, including those based on Boolean
formulas like SAT and 3-SAT, as well as problems based on graphs such as CLIQUE,
independent set, and vertex cover. In the last lecture, we examined the subset sum problem,
which asks whether, given a set of numbers and a target sum, there exists a subset of that set
which sums to the target sum. All these problems are NP-complete.

To remind ourselves, NP-complete problems are considered to be the hardest problems in the
class NP. It is widely believed that they do not have a polynomial-time algorithm. If we could
show that any NP-complete problem has a polynomial-time algorithm, we would prove that P
equals NP, which is a major open question that has been unresolved for 50 years. It is widely
expected that P is not equal to NP, and hence, most people do not think that we will be able to

provide polynomial-time algorithms for these NP-complete problems.

This lecture is going to be brief. We will explore another problem called knapsack. Let's start by
understanding the problem. We have n objects indexed from 1 to n, and each object has a weight,
denoted as wl, w2, ..., wn. The first object has weight w1, the second object has weight w2, and
so on. Each object also has a value, denoted as v1, v2, ..., vn. So, there is both a weight and a
value associated with each object. For instance, gold might be very valuable despite its small

weight, whereas iron might not be as valuable for the same weight.

The scenario is as follows: you are a thief or a robber, and you are robbing a place with a large
assortment of objects. You have brought a sack or a bag with you, which is what the knapsack
refers to. This bag can carry objects but has limited capacity; it can only hold items up to a
certain weight. As a thief, you want to maximize the value of the items you carry because that is
how you can sell them for the most money, given the risks you are taking. Therefore, you want
to maximize the value of the items in your bag. However, the bag has a physical limit and cannot

hold items exceeding a certain total weight.

The goal is to pack as many valuable items as possible such that the total weight does not exceed

the bag's capacity. We will now formulate this question as a decision problem.

There are n items indexed from 1 to n, each with a weight w1 to wn and a value v1 to vn. Given
the capacity of the bag W (capital W) and a goal value G, the task is to determine if there exists a
subset of items whose total weight is less than or equal to W and whose total value is at least G.
In other words, does there exist a subset of items such that the sum of their weights is below the
capacity W and the sum of their values exceeds or meets the goal G?

To summarize the problem statement: There are n items, each with a specific weight and
value.The bag can carry a maximum weight of W.The goal is to achieve at least a total value of
G from the items packed in the bag.We need to determine if there exists a subset of items

meeting these conditions.

This formulation allows us to understand the knapsack problem as a decision problem and
recognize its complexity and its place among NP-complete problems.

(Refer Slide Time: 05:15)

o,
g KANPSATC 5 NP gl i\%)
NPTEL

P%’ 1) KNAPSACK € WD,

TR T T S 7
T weh He consbhaneds .

(2) CURLET-SUM &, VAP CALL.
Gown 0k $o s, el ad

TV R AT L .
a CNAPSAUL i on (el

CNAPSA UL &k tuwy it
Wealdic oo ¢ - R

This is a natural desire: to obtain items with weights below capacity but values above a given goal.
The question is about selecting items with a maximum capacity WWW and values meeting or
exceeding the goal, which is an NP-complete problem. It's akin to the subset sum dilemma where
we aim to choose a subset of terms or numbers whose sum matches a target. Similarly, here, we
seek a subset of items that satisfy both conditions. This problem is also NP-complete. Initially, it's
in NP due to the guess-and-verify method. We guess a subset by selecting or not selecting each
element, then verify if the subset meets the weight and value constraints. If it's truly a knapsack

problem, one of these guesses will be correct.

(Refer Slide Time: 05:53)

(2) 0RSET-SUM &, KNADSALL. {:*)

NPTEL

C\‘MIMO\'Jk K: {squ_, ,_fkg &«A
PR ETE AR RO ¢
o AP SAUL e on (ol

ENAPSA L« & Yoy with
MUQ&QA A S\.SL, Sk
Vo - S\’Xa/_ Sk

Vi il = &
Nolue God =¥

Tlisy CNAPLACK istamee o & (€S wifoue.
B 3TNt el ok

CNAPSAOL © k duwy wih 7~

"\)' : S\ISL Sk "%
Z /
Voduay - S\,sl/_ Sk NPTEL
Wi lagaidy = &
Volue G =4 .

Tis CNAPLACK istamue o & {6 wifoue.
b ETCENY k] ok

RS (Vaa_ g}

oot Wiy tagli sieﬁ‘ =t

(|Lw 09y MM M \,Z, s W

Y @
Tl ot i v 0,0, 0 ‘?@
—'ming VA-QML Vi Voo Ve

flse o a tadk (hag) ok et wpaid W-
%M‘\Akw.ow\op&l&.

Quoion - Dy o, ik o ke 9| wdieny
LC%M'L, “’k st tk

va\/l)wm 1%01 W
Sum\lbwkw_ 5_21“'\ 7/61

.~ KARPSAUC 5 NP Gl
R 1) KNBPACKC € Y.

To prove NP-completeness, we need to show that some NP-complete language reduces to this
problem. We'll reduce the subset sum problem to the knapsack problem, as they are similar in
nature. In subset sum, we choose a subset of numbers that sum to a target. Similarly, in the
knapsack problem, we choose a subset of items. This similarity is useful when proving a
language is NP-complete, as we can look for similar NP-complete problems for reduction.

Subset sum asks if there is a subset of a set S (with elements s1 to sk) that sums to a target t. To
construct a knapsack instance from a subset sum instance, we need to define n items, their

weights, values, weight capacity, and value goal.

Here’s how we define the knapsack instance:We have k items (same as the number of elements
in the subset sum problem).The weights of the items are s1 to sk (the same numbers from the
subset sum problem).The values of the items are also s1 to sk.The weight capacity is t (the target
sum from the subset sum problem).The value goal is also t.

This reduction is straightforward: the numbers from the subset sum problem become both the
weights and values in the knapsack problem, and the target sum becomes both the weight
capacity and the value goal. This takes linear time to write down, making it a polynomial-time

reduction.

The correspondence is clear: if the knapsack instance is a yes instance (meaning there is a subset
of items whose total weight is at most t and whose total value is at least t), then the subset sum
instance is also a yes instance (there is a subset of numbers summing to t). Hence, if the subset
sum instance is a yes instance, then the knapsack instance will also be a yes instance, and vice

Versa.

For a yes instance of knapsack, we need to satisfy two conditions: the sum of the weights must
be at most the weight capacity, and the sum of the values must be at least the goal. Here, the
weight capacity and the goal are both t. The weights are sl to sk, and the values are also s1 to sk.

So, we need to check if there is a subset of items (indices) such that the sum of their weights is at
most t. This means we need to find a subset | of indices such that the sum of si for all i in I is at
most t. This is the weight constraint.

Similarly, for the value goal, we need to check if the sum of the values of the selected items is at
least t. Since the values are also s1 to sk, this means we need the sum of si for all i in | to be at

least t.

Therefore, we have two inequalities: The sum of the selected weights (sum of si for i in 1) should
be at most t.The sum of the selected values (sum of si for i in I) should be at least t.

Combining these inequalities, if the knapsack instance is a yes instance, both conditions must be

satisfied. This implies that the sum of the selected si is exactly equal to t.

This condition is precisely what we require for a yes instance of subset sum. We need a subset of
the given set S that sums to the target sum t. Therefore, a yes instance of knapsack implies a yes
instance of subset sum. Similarly, a yes instance of subset sum implies a yes instance of

knapsack, as both directions satisfy the same condition of summing to t.

Hence, the reduction from subset sum to knapsack is valid, and the knapsack problem is NP-
complete.

(Refer Slide Time: 11:59)
oty ifiune o 6C tadkuner &) 0RLETCON

o oo Qi 1 il

=
<
=t
m
=

llusa CNRPSKUL o P- omugled.-

So, this means that the correspondence is also proved. A yes instance of knapsack implies a yes
instance of subset sum, and vice versa. This shows that we have a yes instance of the knapsack if
and only if we have a yes instance of subset sum. Together, this implies that the knapsack

problem is NP-complete. It's a brief proof, but that’s all there is to it.

In the knapsack problem, we have weights and values for each item. We reduced subset sum to
knapsack by making the weights and values equal to the numbers in the subset sum, and setting
both the weight capacity and value goal equal to the target sum. If the knapsack is a yes instance,
it gives us a subset whose sum equals the target sum. If there is a subset with the target sum, the

same subset will be a yes instance of the knapsack. It's straightforward.

This reduction shows that subset sum reduces to knapsack, and since the reduction takes
polynomial time, it proves that knapsack is NP-complete. Now, one small thing | want to

mention.
(Refer Slide Time: 13:38)

o, oo Qi & sl g;f:\

s CORSRUL o WP- gtk

(luh!,\M NP-MW%C,M b

e 1) Cewp
() Vhenp, kol |- Wl

O b sl Vg
B<,0
LUQMXK &‘%M/\ ‘\\P»CM\APM

So, there are 2 parts in showing NP completeness. To show NP completeness of, let's say C, we
need to show 2 things: one is that C is in NP, and two is that for all A in NP, A reduces to C in
polynomial time. This second condition can actually be replaced by showing that B reduces to C
in polynomial time, where B is an NP-complete problem. Instead of showing that all A in NP
reduce to C, we just show that a selected NP-complete problem reduces to C. This is the strategy

we used by reducing subset sum, already shown to be NP-complete, to knapsack.

The second part alone is usually referred to as NP-hard or NP-hardness. To show NP
completeness, we need to show that C is in NP (condition 1) and that C is NP-hard (condition 2).
NP-hard means all languages in NP reduce to C, or equivalently, some NP-complete language
reduces to C. Sometimes, the second condition is referred to as NP-hardness.

| wanted to stress this terminology because, as students of a Theory of Computation course or
when learning computational complexity, you may come across the term NP-hardness. NP-

hardness means that all languages in NP reduce to that language. To show something is NP-

complete, we need to show membership in NP (condition 1) and NP-hardness (condition 2).

These two together show that a language is NP-complete.

So, that concludes lecture number 55. We defined the knapsack problem, a decision problem,
and showed it is NP-complete by reducing it from subset sum. We also briefly discussed NP-
hardness. That completes lecture 55. In the next lecture, lecture 56, we will see yet another NP-
complete problem. See you in lecture 56. Thank you.

