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Hello, and welcome to lecture 52 of the course Theory of Computation. This is also the first lecture 

in week 11 of the course. In week 10, we saw the notion of NP completeness, we saw Cook–Levin 

theorem, which showed that SAT was NP complete. We also saw some other languages being NP 

complete, which was CNF SAT and 3 SAT. We also saw properties of NP completeness and some 

other properties.  

In this week, week 11, we are mostly going to be seeing other NP complete problems. So, we will 

we will make use of what we have already learned. And using those properties, we will see other 

NP complete problems. Hopefully the idea is, you understand different types of NP complete 

problems like how so many different types of problems can be NP complete. And also, different 

ways in which we can build gadgets in order to show NP completeness reductions.  
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So, the first problem that we'll see is CLIQUE. In fact, all the ingredients to show that CLIQUE is 

NP complete, we have already covered. So, it is just about stating them and putting them together 

and seeing that it is NP complete. So, CLIQUE is the problem where we are given 2 things 1 is a 

graph G and a number K. And this is a yes instance, if the graph has a CLIQUE of size K or bigger.  

This is NP complete. So, CLIQUE is a subgraph. Let us say K is 4 means there are 4 vertices, such 

that they are adjacent in all possible ways. So, there are 6 possible ways in which 4 vertices can be 

adjacent to each other and all these possibilities exist. If there is a 5 CLIQUE, there is a group of 



5 vertices which are adjacent in all possible ways. So again, my drawing is terrible, and it is messy, 

but you get the idea. So, this is NP complete. So, how are you going to show that this NP complete? 

So, we are going to make use of the following observation that we saw from the previous week. 

So, to show that SAT is NP complete ,we had to show that all languages in NP are reducible to 

SAT. However, from now on, we are not going to be taking that route because we already have 

one NP complete language.  

In fact, we already have SAT , CNF SAT and 3 SAT all of them are NP complete. So, what we 

are going to be using is this result like we saw that. Suppose B is NP complete, C is in NP, and B 

is reducible to C in polynomial time, then all of these 3 together imply that C is NP complete.  

The way we are going to do this is take an existing or taking known NP complete language B and 

let C be the language that we want to show is NP complete. So, then all that we have to do is  

choose a known NP complete language B, then show that B reduces to C where C is the language 

that we want to show is NP complete.  

And then show that C is an NP or we could change the order we could show that C is in NP and 

show that B is reducible to C for some NP complete language B. So, the things that we have to do 

is. To show that CLIQUE is NP complete. We have to show that CLIQUE is NP CLIQUE is an 

NP and then show that an existing known NP complete language reduces to CLIQUE. So here we 

choose 3 SAT. So, we will show that CLIQUE is an NP and 3 SAT reduces to CLIQUE.  
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In fact, both of these we have already done in lecture 48, again in the previous week. We showed 

that 3 SAT reduces to CLIQUE (full reduction). So, when we saw NP complete polynomial time 

reductions. So, this shows that 3 SAT is in CLIQUE. So now all that remains is to show that 

CLIQUE is in NP. 

In fact, even this we saw in lecture 30. We showed CLIQUE has a non-deterministic decider. We 

guess a subset of vertices (non-deterministically select a set). For each vertex, we non-

deterministically decide to select or skip it. 

And at the end you have a subset of vertices. And now you just check does a set have size K. If set 

has size K, we continue if it does not have size K we reject it. This is first step. So, we are choosing 

a set non deterministically if it does not have the desired size we reject.  

If it has a desired size we check whether it is a K CLIQUE or it is a CLIQUE like we already 

checked whether it has size K, we check whether it is K CLIQUE we for each pair of vertices 

check whether there is an edge. So, here Aij is 1, A here is the adjacency matrix . 

So, for any such ij, Aij is 0 or in other words the there is no edge between i and j then we reject. If 

all of them are adjacent we accept. So, this we had seen then and it is clear that this is non 

deterministic process. So, the time taken to non-deterministically select or omit each vertex is the 

number of vertices n and then once we have that, then for each pair we check whether there is an 

edge.  



So, that takes 𝐾2 time, so  𝐾2 is at most 𝑛2. Hence, this whole process take at most 𝑂(𝑛)2 time. 

So, this takes order n time, maybe I will mark that here, this takes order n time and this takes order  

𝐾2 time. And so, the whole time the time complexity of the center process is 𝑂(𝑛)2, which is 

polynomial.  

Hence, so, we had already seen that this decider for CLIQUE, so I am not going through the 

characters, but this shows that the running time is also polynomial. So, this is the correctness we 

have already seen in the running time being polynomial is very clear. And hence, this is a non-

deterministic polynomial time decider, hence CLIQUE is an NP.  

And earlier in the last week, we showed that 3 SAT reduces to CLIQUE together these 2 imply 

that CLIQUE is NP complete. So, that is 1 language 1 more language that we know now to be NP 

complete. Now, if we want to show a new language is NP complete, we can reduce from CLIQUE. 

We can add CLIQUE to the arsenal of languages that we have and so, that we can reduce from 

CLIQUE.  
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The next thing is what is covered, what is vertex cover? So, in an undirected graph a vertex cover 

is a subset of vertices. So, here the vertex cover is a subset U of vertices such that all the edges 

there one of the endpoints is in U. So, if you take this graph here in the left side, the circle vertices 

form a vertex cover.  



Because you take this edge there is endpoint in this, this edge both endpoints are there, this edge 

1 endpoint, this edge 1 endpoint, this edge 1 endpoint, this edge 1 endpoint and this edge also 1 

endpoint. So, usually we are interested in the smallest vertex cover and in the largest CLIQUE. 

So, vertex cover means it is a covering problem we want to cover as many as possible, but we want 

to reduce the number of vertices used in covering.  

So, this is a vertex cover now, we can add 1 more vertex also that is also a vertex cover. So, we 

can add any vertex because already this covering. So, 1 more vertex will continue to cover. So, 

that is the vertex cover. And here and the right side we have a complete bipartite graph, 3 vertex 

on the left side and 4 vertices on the right side. So, any half we can take or the right side or left 

side and that forms a vertex cover. So, these 3 vertices for a vertex cover. These 4 vertices also 

would form a vertex cover or form a vertex cover but then I just mark this because this is smaller 

in number.  

Looking at the graph, 2 vertices wouldn't suffice. Covering the left triangle alone requires 2, 

leaving the other edge exposed. We need a third vertex, so (G, 2) is a no instance. 

Vertex Cover deals with pairs (G, K) where G is a graph with a vertex cover of size K. Similar to 

accepting (G, 3) for graphs with a size-3 cover (which implies a size-4 cover as well), we reject 

(G, 2). 

This highlights another NP-complete problem, distinct from those based on Boolean formulas 

(like 3-SAT) or clique existence in graphs. Vertex Cover shows how different problem types can 

be NP-complete. 
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So, we'll follow a similar approach to CLIQUE. We'll first show Vertex Cover is in NP, then 

show a known NP-complete language reduces to it. The known language will be 3-SAT (from 

Theorem 7.44). 

The first part is easy: Vertex Cover is in NP. The hard part, as usual, is showing an NP-complete 

language reduces to it. Proving C is NP-complete usually involves a reduction from a known NP-

complete language. Here, showing Vertex Cover is in NP is simpler. 

Similar to CLIQUE, we can use a guess-and-verify approach. We guess a subset of K vertices 

and check if they form a vertex cover (cover all edges). This straightforward algorithm is clearly 

non-deterministic and can be verified in polynomial time, making Vertex Cover in NP. We'll 

skip further details on this part. 

What we'll spend time on is the reduction from 3-SAT, which is interesting. Given a 3-SAT 

instance φ (phi), we want to build a vertex cover instance (G, K) such that φ is satisfiable if and 

only if G has a vertex cover of size K. (This captures the satisfiability equivalence) The process 

of constructing (G, K) from φ must be done in polynomial time. (This ensures the reduction's 

efficiency) 



In other words, we want to create a graph G and a size K such that φ being satisfiable is 

equivalent to having a vertex cover of size K in G. Additionally, this construction process from φ 

to (G, K) needs to be achievable in polynomial time. 

equations. It effectively explains the concept of the reduction from 3-SAT to Vertex Cover, 

highlighting the two key points. Equivalence: A satisfiable 3-SAT formula (φ) corresponds to a 

graph (G) having a vertex cover of size K. Conversely, if G has a K-sized vertex cover, then φ is 

satisfiable. Polynomial Time: The process of constructing the graph (G) and size (K) from the 3-

SAT formula (φ) should be achievable in polynomial time with respect to the size of φ. 

Overall, the passage effectively conveys the essence of the reduction without requiring further 

modifications. 
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We consider a 3-SAT instance φ (phi) with n variables and m clauses. Each clause in φ is a 

disjunction (OR) of 3 literals. 

To illustrate the reduction, we'll use a simple example. While this example may have repeated 

variables and literals, the overall procedure is generalizable. We can construct a corresponding 

graph for any 3-CNF formula following these steps. 



The construction of the graph G from the 3-SAT formula φ (phi) involves two types of vertices: 

clause gadgets and variable gadgets. Let φ have n variables (𝑋1, 𝑋2, . . . , 𝑋𝑛) and m clauses 

(𝐶1, 𝐶2, . . . , 𝐶𝑚). 

Clause Gadgets: Each clause 𝐶𝑖  in φ is represented by a corresponding clause gadget 𝐺𝑖  in G. 

This gadget is a triangle with three vertices, denoted as {𝑣𝑖
1, 𝑣𝑖

2, 𝑣𝑖
3}. Each vertex is labeled 

with a literal from the clause. For example, if 𝐶𝑖 = (𝑋1 OR ¬𝑋2 OR 𝑋3), then 𝐺𝑖 might have 

vertices labeled {𝑣𝑖
1: 𝑋1, 𝑣𝑖

2: ¬𝑋2, 𝑣𝑖
3: 𝑋3}. 

Variable Gadgets: Each variable 𝑋𝑗 in φ has a corresponding variable gadget 𝑉𝑗 in G. This gadget 

consists of two vertices: {𝑢𝑗 , ¬𝑢𝑗}, representing the variable itself and its complement (¬𝑋𝑗). 

These two vertices are connected by an edge in G. 

Edges within Gadgets: All three vertices within a clause gadget are connected by edges, forming 

a complete triangle. This can be represented mathematically as for each clause gadget 𝐺𝑖: E(𝐺𝑖) = 

{{𝑣𝑖
1, 𝑣𝑖

2}, {𝑣𝑖
1, 𝑣𝑖

3}, {𝑣𝑖
2, 𝑣𝑖

3}}. 

Edges between Gadgets: The crucial connections between clauses and variables are established 

through edges between gadgets. For each clause 𝐶𝑖 and its corresponding gadget 𝐺𝑖, we connect 

each literal vertex 𝑣𝑖
𝑗 in 𝐺𝑖 to the corresponding variable vertex (or its complement) in the 

variable gadget. If the literal in 𝐶𝑖 is 𝑋𝑘, we connect 𝑣𝑖
𝑗 to 𝑢𝑘. If the literal is ¬𝑋𝑘, we connect 

𝑣𝑖
𝑗  to ¬𝑢𝑘. This ensures that a variable can only "satisfy" a clause if the corresponding literal 

vertex in the clause gadget is connected to the appropriate variable vertex in the variable gadget 

(either the variable itself or its negation). 
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So, this explaining whatever I just said 3 vertices form a CLIQUE and 2 adjacent vertices the 

variable gadget and these are the new edges we add edges between the vertices in the clause and 

the variable gadget that have the same label. And as I said earlier, if φ has n variables and m 

clauses, the variables being 𝑋1 to 𝑋𝑛 and clauses being 𝐶1 to 𝐶𝑚, then G has 3m plus 2n vertices 

3m plus 2n because each clause gadget contains 3 vertices each. So, m clauses gives 3m vertices 

and each variable gadget contains 2n vertices sorry 2 vertices, so, 2n vertices in all.  

So, we get 3m plus 2n. So, total number of vertices is 3m plus 2n, total number of edges is also 

not very different we have each clause gadget contains 3 edges. Each variable gadget contains 1 

edge so, 3m edges.  



Because each clause contains 3 edges, so, 3m then n edges 1 for each variable gadget so 3 m plus 

n and then again 3m edges going across. So, 6m plus n I think maybe I will see check, so, that you 

can check and verify this. So, this is the graph so graph is polynomial size 3m plus 2n ,6m plus n 

the procedure is fairly simple like given the formula the process for constructing the graph is 

simple. So, hence, the construction of the instance is also in polynomial time. So, you can write a 

for loop or something for the clause gadget for the variable gadget and for the edges going across. 

So, the we can construct the graph in polynomial time.  
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The next step is to define the value of K in the vertex cover instance (G, K). Here, K is set to 2m 

+ n, which is less than the total number of vertices in G (3m + 2n). As mentioned earlier, the 

construction process can be achieved in polynomial time (𝑂(𝑚 +  𝑛)) using loops to iterate 

through clauses and variables. 

Now we need to show the critical correspondence between the satisfiability of the 3-SAT 

formula φ and the existence of a vertex cover of size K (2m + n) in G. This works in two 

directions. 

Satisfiable Formula implies Vertex Cover of size K: If φ is satisfiable, a truth assignment exists 

for the variables that makes all clauses true. We can leverage this assignment to construct a 

vertex cover of size K in G. For example, consider a formula with three clauses. While an initial 

assignment might not satisfy all clauses, a different approach can work. By strategically 

assigning truth values (like 𝑋2 = True and 𝑋1 = False), we can ensure a satisfying assignment. 

Translating this into a vertex cover, we include all literal vertices connected to true variables and 

one vertex from each clause gadget. This guarantees that every edge in G is covered, resulting in 

a vertex cover of size 2m + m (less than or equal to K) for any satisfiable formula. 

Vertex Cover of size K implies Satisfiable Formula: Conversely, if G has a vertex cover of size 

K (2m + n), we can show that φ is satisfiable (though proving this direction is slightly more 

complex and will be explained separately). 
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So, first let us go see the forward direction. If the formula is satisfiable. The graph has a vertex 

cover of the set size. So, in this case the formula is satisfiable 𝑋1 is false and 𝑋2 is true. Now, since 

𝑋1 is so now I will explain how to pick the satisfying assignment, so maybe I will use as a different 

color to pick them. Maybe I will use this color. So, 𝑋1 is false. So, we pick this 𝑋1 compliment 

from the variable gadget. 𝑋2 is true, so we pick 𝑋2 from the variable gadget, so we pick these 2. 

And for each clause, we know of 1 at least 1 true literal.  

So, in the case of clause 1, we know 𝑋2 is true. Clause 2, we know𝑋1  complement is true, clause 

3 we know both are true, let us say 𝑋1 compliment is true. So what we do is we select the vertices 



which are not the true which are not the ones that I just mentioned. So, in clause 1 𝑋2 is true. So 

we pick the other 2.  

So, the what I am building is the vertex cover. So the formula is satisfiable and from the satisfying 

assignment, I am building the vertex cover and these circle vertices are going to be part of the 

vertex cover clause 2 𝑋1 complement is a true literal. So, we select the other 2. Clause 3 in fact, all 

the literals are true, but let me pick 𝑋1 compliment as the true literal and the other 2 are the ones 

that I pick. So, the claim is that this constitutes a vertex cover. So, let us see why.  

So, 1 thing is that for from each clause gadget each clause gadget we have picked 2. So, whatever 

I am saying is I am saying on the basis of this particular example, but it is general even if you 

construct any from any formula φ if we from any 3 C in a formula 5 if you construct this reduction 

and we follow these rules, whatever I am saying applies for any such instance So, we have picked 

2 vertices from each clause gadget.  

So, the claim is that this clause gadget has 3 edges and these 2 vertices any 2 vertices in this triangle 

covers the edges. So, all the 3 edges here are covered by these 2 vertices. So, all the vertices in this 

clause gadget is covered and all the vertices in this clause gadget is also covered and all the clause 

gadgets all the vertices in the all the clause gadgets are covered sorry all the edges in all the clause 

gadgets are covered by the 2 vertices that we picked from each clause gadget because it the 2 

vertices cover this triangle.  

Now, all the edges in the variable gadget variable gadget just consists of 2 vertices and 1 edge that 

is covered by the single vertex that we picked from each variable gadget. So, all the edges in the 

variable gadgets are also covered. So, what remains to argue is the edges that are going across.  

So, for each clause gadgets, there are 3 edges coming out of it once one from each end point one 

from each vertex of the clause gadget. So, 2 vertices are anyway covered because they are anyway 

sorry 2 edges coming out of the clause gadget to the variable gadget are anyway covered because 

should we take 𝐶1 these 2 edges are anyway covered because these 𝑋1 and 𝑋1 are part of the vertex 

cover.  

So, the only thing that remains to be argued is this 𝑋2 or this edge, how is that covered? This edge 

is covered because this 𝑋2 is covered and in a general setting we have one edge that is to be 

covered, but how did that edge or how was this vertex chosen or how was this vertex 𝑋2 in the 



clause gadget chosen to be not included in the vertex cover. This was chosen to be not included in 

the vertex cover because it was a true literal. So, we looked for in every clause we looked for 1 

literal that is true. So, this was a true literal and hence it was not part of the vertex cover. So, which 

means, it is adjacent to the 𝑋2 in the variable gadget, which is a true literal and which will be 

selected.  

So, if this 𝑋2 is true, then it would be adjacent to a vertex in the clause gadget sorry, in the variable 

gadget that is selected as part of the vertex cover, hence, that come that explains how this edge is 

also going to be covered. Because this 𝑋2 is not part of the vertex cover only because it is a true 

literal. And because it is a true literal, this endpoint is going to be part of the vertex cover hence 

these edges are also covered.  

So, I have said the same thing here. Choose a 2 literal from each variable gadget and add them to 

the vertex cover. So, S is the vertex cover the 2 literal from the variable gadgets cover the edges 

in the variable gadget. Choose a true literal from each clause gadget and add the other 2 vertices 

into S. And because we are picking 2 vertices in from each clause gadget this cover the edges in 

the clause gadget  
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What remains is the edges going across from each clause, the vertices from the clause gadget and 

the true literal from the variable gadgets cover them. So, if you look at this clause there are 3 edges 

coming out going to the variable gadget, these 2 are anyway covered what remains is this and this 

𝑋1 complement was not picked because it was a true literal, which means the other endpoint must 

be selected.  

So, that covers all the edges. Hence, the selected edges is selected vertices form a vertex cover, 

and how many vertices did we select? 2 from each clause gadget. So, 2m and 1 from each variable 

gadget so n, so we pick 2m plus n vertices and that form a that forms a vertex cover. So, we started 

with the assumption that is a satisfying assignment and we got a vertex cover of size 2m plus n. 

So this completes 1 direction. Now for the other direction. 
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Suppose the graph has a vertex cover of size 2m plus n. Suppose the graph has a vertex cover of 

size 2m plus n. Now we need to show that there is a satisfying assignment. So let us try to see this 

again. This graph has a vertex cover of size 2m plus n. Now notice the structure of this graph. 

There are these m clause gadgets. Now, if I need to pick it, if I need to cover a triangle, if I need 

to cover a triangle, something like this maybe I will do it below if I need to cover a triangle. Sorry, 

if I need to cover a triangle like this, these 3 edges, we need to pick 2 out of these 3 vertices.  

So, any clause gadget we need 2 vertices at least in the vertex cover. So any clause gadget we need 

at least 2 vertices coming out of it and any variable gadget it is something like this. To cover this 



edge, we need to pick 1 of these endpoints. So we need 2 vertices from each clause gadget. And 

we need 1 vertex from each variable gadget at least to form a vertex cover we need 2 vertices from 

each clause gadget and 1 vertex from each variable gadget. So, this itself tells us that we need 

minimum 2m plus n vertices in a vertex cover.  

But here the assumption was that there is a vertex cover of size 2m plus n. Now this and now we 

are saying that every clause gadget has to have at least 2 vertices and every variable gadget has to 

have at least 1 vertex. Now, the only way we can do this is to pick exactly 2 from each clause 

gadget and exactly 1 from each variable gadget. Because if we pick more from 1 clause gadget, 

that means some other clause gadget or variable gadget will not get this number. And hence, there 

will be something that is not covered in that cluse gadget or variable gadget.  
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So, this implies that the vertex cover contains exactly 2 vertex vertices from each clause gadget 

and exactly 1 vertex from each variable gadget, because if you pick if you tried to pick more from 

some clause gadget, some other gadget is going to suffer because of that and that will hence it will 

not be a vertex cover. Which means we pick some every cross gadget contributes to and every 

variable gadget contributes 1. Now, it is kind of the same argument that we saw in the other 

direction of the proof but in the reverse direction. 

Now, how is this going to be a vertex cover? So, now every clause gadget picks 2. So, the edges 

in the clause gadget are covered and adjacent the variable gadgets are also covered by the 1 vertex. 

Now, how are we covering the edges going across. So, if you pick a clause 2 edges are covered 

because 2 vertices are covered, the third vertex is covered because, but, the third vertex is covered 

sorry third edge is covered because from the other side from the variable gadget because we only 

have exactly 2 vertices from each clause gadget in the vertex covered.  

So, the third edge going across is covered by the from the literals side sorry from the variable 

gadget which means, if you set all these selected literals to be true, so, X in the case of 𝑋1 suppose 

the vertex cover 𝑋1 complement then we set 𝑋1 to be false. In the case of 𝑋2 suppose we select 𝑋2, 

so, then we set 𝑋2 to be true. So, we look at each variable gadget and see which literally said to 

which literal is selected for the vertex cover.  

So, if 𝑋𝑖 is selected to the vertex cover you set 𝑋𝑖 to true. If 𝑋𝑖 compliment is selected to the vertex 

cover from the variable gadget we set 𝑋𝑖 to be false and this ensures that this assignment that I just 



described. So, you look at the selected variables selected literals from each variable gadget. So, 

maybe I will just write it again here. So, suppose some 𝑋𝑖 , 𝑋𝑖 compliment here 𝑋𝑖 is picked, so, 

we set 𝑋𝑖 to true. Now suppose some others let us say 𝑋𝑗, 𝑋𝑗 compliment, then here we set 𝑋𝑗  

another color just for set 𝑋𝑗 to false. 

Because yes set 𝑋𝑗 to false. So, depending on which 1 we pick, and as I just explained, this will 

ensure that the selected vertices will form a vertex cover sorry selected vertices will form is a 

vertex cover so the selected literals the way if we set it this way, this assignment will form a 

satisfying assignment this is because every so, we need to argue that every clause has a true literal.  

So, the way to argue this is that the look at the variable or look at the vertex that is not picked into 

the vertex cover from the clause. The claim is that this will certainly be true because this is not 

being covered from the clause vertices it is being this edge is being covered from the other side 

which means, the other side means this 𝑋2 is connected to 𝑋2.  

So, the other side means 𝑋2 should be picked which means 𝑋2 should be set to true. Hence, each 

clause is satisfied hence the formula satisfied. So, this gives us that each the assignment that is 

constructed like this form a satisfying assignment and since φ has a satisfying assignment, this 

implies that this is a yes instance of 3 SAT.  
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Vertex Cover is first shown to be in NP using a guess-and-verify approach. Then, we reduce 3-

SAT to Vertex Cover. Given a 3-SAT formula φ with n variables and m clauses, we construct a 

graph G and size K. The formula is satisfiable if and only if G has a vertex cover of size K (2m + 

n). 

This construction involves two types of gadgets. Clause Gadgets (m total): Each clause has a 

corresponding triangle gadget with 3 vertices labeled with literals from the clause. Variable 

Gadgets (n total): Each variable has a corresponding gadget with 2 vertices, one for the variable 

and its complement, connected by an edge. 

Crucially, we connect clause gadget vertices to corresponding variable gadget vertices based on 

literal labels (e.g., 𝑋𝑖 connects to 𝑢𝑖). 

The correspondence between satisfiability and vertex cover size works in two directions. 

Satisfiable Formula implies Vertex Cover (2m + n): A satisfying assignment for φ can be used to 

construct a vertex cover in G by including literal vertices connected to true variables and one 

vertex from each clause gadget. This ensures all edges are covered in a vertex cover of size less 

than or equal to K. Vertex Cover (2m + n) implies Satisfiable Formula: If G has a vertex cover of 

size K (2m + n), it can be shown (explained separately) that φ has a satisfying truth assignment. 



This reduction demonstrates that 3-SAT reduces to Vertex Cover, implying that Vertex Cover is 

NP-complete (since 3-SAT is already known to be NP-complete). It's important to remember that 

Vertex Cover can also be reduced from another NP-complete problem like Clique, highlighting 

the interconnectedness of these problems within the NP-complete class. 
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The lecture concludes by mentioning an alternative reduction possibility. While the lecture 

focused on reducing 3-SAT to Vertex Cover, it's also possible to show that Clique reduces to 

Vertex Cover. 

Here's a brief explanation of the alternative reduction chain .Clique to Independent Set: Clique 

and Independent Set are complementary graph properties. A Clique is a complete subgraph (all 

vertices connected), while an Independent Set has no edges between any two vertices in the 

subset. We can construct a reduction from Clique to Independent Set by flipping the graph edges. 

A graph with a Clique of size K will have an Independent Set of the same size in the flipped 

graph (and vice versa). Independent Set to Vertex Cover: Independent Set and Vertex Cover are 

also related. In a Vertex Cover, every edge must be "covered" by a vertex in the cover. An 

Independent Set, by definition, has no edges, so all vertices in an Independent Set of size K 

automatically act as a valid Vertex Cover of size K. 



Therefore, by demonstrating reductions from Clique to Independent Set and Independent Set to 

Vertex Cover, we can establish that Clique also reduces to Vertex Cover, reinforcing the NP-

completeness of Vertex Cover. 

The lecture concludes by highlighting that both Clique and Vertex Cover are NP-complete 

problems related to graphs, not Boolean formulas. The next lecture will explore another NP-

complete problem based on graphs, focusing on finding specific paths within the graph structure. 

 


