
Theory of Computation
Professor Subrahmanyam Kalyanasundaram

Department of Computer Science and Engineering
Indian Institute of Technology, Hyderabad

Closure Properties of Regular Languages under Union, Concatenation and Kleene Star
Operation - Part 01

(Refer Slide Time: 00:15)

Hello and welcome to lecture 6 of the course Theory of Computation. In the previous lecture,

we saw the 3 regular operations which were union, concatenation and star. In this lecture we

will try to first see closure properties of the regular languages, the class of regular languages

is closed under the union operation.

And then we will move on to concatenation. And then we will see why that does not work

which leads us to the next topic. So the thing that we want to show is that the class of regular

languages is closed under the union operation. So, what does this mean, what is closed under

the union operation mean?

So, what this means is that if you take the set of all regular languages, you take 2 regular

languages and take the union of them, you still get a regular language. So, you can think of

all the regular languages as a class. Let us say A is here and B is here. And you take A union

B. These are all regular languages and so A union B is also somewhere here.

So, if you take the union of any 2 regular languages, you still get a regular language. In other

words, what it means is that if A1 and A2 are regular then the union is also regular. The union

A1 union A2 is also regular. So, what does it mean?



(Refer Slide Time: 01:58)

So, suppose, A1 and A2 are regular. Because we do not know anything about A1, we do not

know anything about A2 except for the fact that they are both regular. So, to show the

statement, we have to actually take any arbitrary regular language A1 and arbitrary regular

language A2 and then show that the union is also regular.

The only thing that we know is that it is regular. So, by definition of regular language, there is

a DFA M1 that exists such that the language recognized by M1 is A1. And there is a DFA M2,

such that the language recognized by M2 is A2. So, this is just pretty much the definition of

what is a regular language.

So, now the question is to show that the union is regular, we have to build another DFA M

such that the language recognized by that DFA is the union. So, you have one DFA that

recognizes A1, there is another DFA that recognizes A2. So, the first one is called M1 the

second is called M2.

Now, we want to somehow use these two DFA’s, maybe combine them in some way such that

the resulting DFA M recognizes the union language. So, it should recognize exactly those

things that are in the union and nothing more. How will we build such a DFA?

So, maybe the simplest thing that one can think of is let us say you get a string w. So, try to

run M1 on it and then M2 on it. If M1 accepts w then you accept. If M1 does not accept then

you check M2. If M2 accepts then this does not work.



We cannot go back and run the DFA on the same input again. So, you know how a DFA reads

symbol by symbol of the input. So, if the input is 01101, it reads 01001 and at the end we

expect it to have made a decision whether to accept it or not. There is no provision to go

somewhere and then you go back and read it again, that provision is not there.

So, we cannot go back and read the string again. This does not work. It’s a simple idea and

probably is the first natural idea that comes to mind but it doesn't work. So, if we cannot read

it again, which means we only have one chance to read it. So, again the natural thing that we

may think is that in that one reading itself we want to see what M1 and M2 does.

So, basically, we want to see the workings of M1 as well as M2 at the same time. This is

probably what we need to do. We do not get a second chance to go back and try running M2

on it. So, how do we ensure that both M1 and M2 runs on the string? We want to simulate that

together. How do we ensure that? So, that is what we want to accomplish.



(Refer Slide Time: 06:31)

So, the idea is, so, this is something I want to say about this course in general, most of the

ideas are fairly straightforward. Only some ideas are there that are a bit more advanced and a

bit more intricate but most of the ideas are simple and maybe the difficulty is only in

formalizing those ideas.

So, once you understand what the notation is, what these complex looking symbols represent

then it is fairly just translating your idea into those symbols. It is not really, again I said it in

the previous lecture, I will say it again, do not be scared of these symbols, it is just another

way to represent what we know. So, the idea is this.

So, suppose let us say, these dots are the states of M1, these red dots. Let us say, these blue

dots are the state of M2. And the idea is we will make kind of a 4 by 5 grid in such a way that

if you end up in the third red dot and the fourth blue dot you will end up in the dot that is the

black dot that is in the third column and the fourth row.

And if we can manage to construct a DFA that simulates this kind of a grid situation and ends

like this. This intuitively it seems to capture both the row information and the column

information. So, this is the basic idea. The rest is just notation in order to realize this. So, let

us see what we do.



(Refer Slide Time: 09:26)

So, the idea is this. So, now we need to make a DFA M. So, we have a DFA M1

corresponding to the language A1 and DFA M2 that corresponds to the language A2. So, now,

we will build a DFA whose states are of this form, the Cartesian product. So, they are of the

form of (r, s) where r is a state of the first DFA and s is a state of the second DFA. So, maybe

you will come back to this figure in a bit.



(Refer Slide Time: 09:59)

I have already said all this, so we have A1 and A2 regular languages and M1 and M2 are DFA’s

that recognize A1 and A2. And for the sake of simplicity, we may assume that A1 and A2

belong to the same or are over the same alphabet Σ. So, this is not a very unreasonable

assumption because if you want to take the union etcetera, if they are in different alphabet, it

does not really do much.

So, we want it to make more sense if they are both the same like A1 is over binary A2 is over

English, it does not really make much sense to do this. So, let M1 be the following DFA (Q1,

Σ, δ1, q1, F1). So, q1 is the starting state, as I already said, we assume that both A1 and A2 are

over the same alphabet Σ.



δ1 is a transition function of M1, small q1 is a starting state of M1 and F1 is the set of accepting

states of M1. Similarly, we have (Q2, Σ, δ2, q2, F2) where the one thing that is the same here is

the alphabet, everything is different, everything else is potentially different for M1 and M2.

Our goal is to build a DFA M using which has say over again over the same alphabet but

starting with a set of states Q, δ and starting state q0 and accepting states F such that the set of

strings accepted is the union of A1 and A2. Or in other words, it is just

𝐿(𝑀
1
) ∪ 𝐿(𝑀

2
)

Because M1 and M2 are machines or DFA’s, you cannot take the union of DFA’s.

(Refer Slide Time: 12:32)

So, as I already said, the set of states of this DFA M will be the Cartesian product. So, every

state of the new DFA constructed will be of this form (r1, r2) where r1 comes from the state of

the first DFA M1 and r2 comes from the state of the second DFA M2. In other words, it is just

𝑄 = 𝑄
1

× 𝑄
2

And the alphabet is the same as the alphabet of M. So, in just some cases A1 and A2 are over

different alphabets, then we can let the alphabet of M be the union of these 2 alphabets. So,

again this is and you can view A1 and A2 as the languages over the union. So, this is possible.



(Refer Slide Time: 13:35)

And the main key thing is how are we keeping track of the transitions of M1 and M2.

(Refer Slide Time: 13:52)



So, in our example over here, we try to explain that we want to keep track of what M1 does

through the columns and what M2 does through the rows. So, if a certain string ends up at the

middle in the third state for M1 and the fourth dot from the top for M2 , we want it to end in

the third column and the fourth row of the Cartesian product.

So, basically, whatever happens in the row, it must be captured by the transitions that happen

across the rows, and whatever happens to the columns must be captured by the transitions

that happen across the columns.

Suppose, this is just a snapshot of the Cartesian product. Suppose, there are 3 states, call them

b1, b2 and b3. These are the 3 rows of the machine. So, b1, b2 and b3 belong to Q2. And let us

say, these red ones, a1 and a2 belong to Q1. What do we want these to represent?

For instance, the top left black dot actually represents (b1, a1), this one represents (b1, a2) and

so on, (b2, a1), (b2, a2), (b3, a1), and (b3, a2). So, suppose we start from the top left, (b1, a1) state

and we see a 0. If you see in the rows, if you see a 0, you go to the one row below.

And in the columns if you see a 0, you remain in the same point a1. So, b1 goes to b2 and a1
does not change. So, if you see a 0 you should just go down to b2 but remain at a1. Suppose,

you see a 1 at (b1, a1) you skip down to 2 levels, you go to b3.

And if you see a 1 at a1 you move to a2. So, you should go to (b3, a2). This is if you see a 1.

So, this is what happens when you try to see a 1 from (b1, a1) and see a 0 from (b1, a1). If you



look at it both these transitions are faithful to their respective rows as well as their respective

columns.

So, what we are trying to do is make the transition such a way that we are capturing both the

row wise transition of M2 and the column wise transitions of M1. In other words, if the M1

transition is given by δ1(r1, z) = s1 and M1 transition is given by δ2(r2, z) = s2.

(Refer Slide Time: 18:01)





Then from the Cartesian product we get δ((r1, r2), z) = (s1, s2). That is pretty much the key

thing here.

In other words, the transition function for this DFA is given by-

δ 𝑟
1
,  𝑟

2( ),  𝑧( ) =  δ
1

𝑟
1
, 𝑧( ),  δ

2
𝑟

2
, 𝑧( )( )

So, basically, what is happening is that where does z take r1 in the machine M1 and where

does z take r2 in the machine M2 and the combination is where you end up. Then a takes or

after you see a from the combined state r1 r2 in the machine M.

And now we need to define what is the static state and what is the accepting state. This is

fairly straightforward.



(Refer Slide Time: 20:37)

The starting state is simply the Cartesian pair consisting of the starting states of M1 and M2

which is simply q0 = (q1, q2) is the starting state of M. Now which states should we earmark

as the accepting states?

So, the thing is that we are trying to generate a machine for the union of two languages. So, if

r1 was an accepting state of M1, we should accept. Or if r2 was an accepting state of M2, we

should accept. In other words, either if the string gets accepted in M1 or M2 we should accept.

So, if or we should accept it.𝑟
1

∈ 𝐹
1

𝑟
2

∈ 𝐹
2

So, in other words, the set of accepting states of the machine M which we call F is simply the

set of all pairs (r1, r2) where either r1 comes from the accepting state of F1 or r2 comes from F2.

The exact expression will be as follows-

𝐹 =  (𝐹
1

× 𝑄
2
) ∪ (𝑄

1
× 𝐹

2
)

This is not a disjoint union, of course, there would be pairs that r1 comes from F1 and r2
comes from F2 which will feature in both.



(Refer Slide Time: 23:34)

Also think about why the accepting states were not F1xF2 (I am not going to explain now but

think about this here) which is defined as follows-

F1x F2 = {(r1, r2) | r1∊ F1 and r2∊ F2}

The correctness of the proof is fairly straightforward. Let us say a certain string that is in the

union, some w is there that is in the union. So, now the way this combined Cartesian product

machine M operates on w, faithfully replicates what happens when M1 reads w through the

columns and M2 reads w through the rows.

Now suppose M1 accepts w and w belongs to the union. Therefore w belongs to A1. This

means that M1 accepts w because M1 is the DFA corresponding to w. Which means there is a

sequence of states s0, s1, ….. and each transition is proper, and you end up at an accepting

state.



(Refer Slide Time: 25:46)

So, sn is the accepting state of M1. Therefore conditions for M1 to accept w are-

1) s0 = q1
2) δ(si-1, wi) = si

3) sn ∊ F1

Now, when M reads w this part will be faithfully reproduced in the first coordinate of M.



So, what I want to say is when M reads w, it will end in some state (sn, r) where r is some

state in Q2 which is in M2.

So, which means M ends in F1xQ2. And by our definition it belongs to the accepting state of

M. Similar reasoning works for if w was accepted by M2 as well.

So, what we have reasoned here is that if w is in the union then w is accepted by M1 or w is

accepted by M2, it will be accepted by M.

(Refer Slide Time: 28:40)

What we have shown is for all w in A1 union A2, w is accepted by M. So, the question is, is

this enough to reason that L(M) = A1∪ A2.

The answer is no. Because all this means is that any string that is in A1 or A2 is accepted by

M. So this only means that A1 ∪ A2 is a subset of L(M). Meaning any string that is an A1 or

A2 is accepted by M. But we actually have to show equality by saying that no string which is

not in A1∪ A2, it is not accepted by M.

You also need to show that L(M) is a subset of A1∪ A2. Meaning, anything that is accepted

is in A1 or A2. This is not that difficult to see as you can reason pretty much the same way.

Suppose, a string is not in A1 or A2 then it will end in some state (r1, r2) where r1 is not in the

accepting state of M1 and r2 is not in the accepting state of M2.



So, that also needs to be reasoned. What I am saying here or what I am emphasizing here is

that when you want to show that a certain DFA corresponds to a certain language, it is not

enough to show that all those language members are accepted by the DFA.

We also have to show that the strings that are not in the language are also not accepted. So, in

order to show that a language of M is equal to a certain language, it is not enough to show

that so, in order to show that what I am saying is, in order to show that language of M equal

to a certain language B.

It is not enough to show that all members of B are accepted by M. We also have to show that

all members of, all strings that are not in B are not accepted also. So, this just means, if you

just show that all members of B are accepted by M, it just means that B is a subset of the

language accepted by it. So, we also have to rule out that anything that is not in B is not

accepted.


